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Abstract
Purpose  Soil–water characteristic curve (SWCC) models have generally been developed based on measurement results in 
the low suction range. However, different mechanisms govern the SWCC in the low suction range (desaturation zone) and 
high suction range (residual zone). Accurate estimation of the residual zone is critical for analysing the behaviour of soils 
in arid regions. This study aimed to develop prediction models for the residual zone based on selected properties of soils.
Materials and methods  To achieve the abovementioned purpose, 162 total suction (in pF) and gravimetric water content 
(%) measurement pairs in the high suction range were made on 40 cohesive soil samples with known physical, chemical, 
and spectral properties. A semi-logarithmic linear model was used to define the residual saturation zone of the SWCC. The 
model parameters were the slope of the SWCC ( sr ) and total suction at zero water content ( �dry ). Correlation and stepwise 
regression analyses were carried out between the model parameters and selected soil properties. The regression equations 
were validated using the four-fold cross-validation procedure. Water content (%) estimation models were developed using 
combinations of different regression equations for sr and �dry , and their estimates were evaluated using performance metrics.
Results and discussion  The sr values for the soils studied ranged from 1.589 to 13.035, with an average of 6.007. Although 
some studies have shown strong correlations between clay content and sr , no significant relationship was found between clay 
content and sr for the soils in this study. However, significant correlations were found between the consistency limits, some 
spectral parameters, and sr . The R2 was 0.88 when the liquid limit (LL) and depth of the 1900 nm wavelength band (D1900) 
values were used as descriptive variables. The �dry values for the soils studied ranged from 6.483 to 7.370 pF, with an average 
of 6.855 pF. The relationships between the selected soil properties and �dry were weak, consistent with previous research.
Conclusion  The spectral absorption characteristics of the soils in this study had a high potential for estimating the SWCC. 
Prediction models based on various sr and �dry equation combinations could predict measured water content values with 
varying degrees of accuracy. The SWCC’s residual saturation zone was accurately estimated using soil properties such as 
liquid limit, electrical conductivity, and spectral characteristics that can be determined quickly and inexpensively.

Keywords  Multivariate linear stepwise regression · Residual saturation zone · Total suction · SWCC​

1  Introduction

Swelling and collapsing upon wetting, water retention, and 
infiltration are vital behaviours of soils, especially in arid 
regions. Soil suction, which reflects the ability of the soil to 

attract and retain water, is a critical stress state variable that 
influences the strength, deformation, and hydraulic behav-
iour of unsaturated soils. The term total suction describes 
the combined effect of all the mechanisms that influence 
the water retention behaviour of soil. Total suction or total 
soil–water potential comprises several components, includ-
ing matric, osmotic, gravitational, pneumatic, and piezomet-
ric potential. However, in the absence of externally applied 
gradients and under isothermal conditions, the matric and 
osmotic components are sufficient to describe the soil–water 
potential of unsaturated soils (Bulut and Wray 2005; Yong 
and Warkentin 1975; Yong 1999). Matric suction arises due 
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to adsorptive and capillary forces in the soil matrix, whereas 
osmotic suction is caused by salts or contaminants in the 
soil pore water. Since matric suction is the most significant 
component of total suction, changes in the total suction of 
soil are usually caused by variations in matric suction (Agus 
et al. 2001; Arifin and Schanz 2009; Nam et al. 2010; Ng 
and Menzies 2007; Malaya and Sreedeep 2012).

Soil suction can be measured directly or indirectly in the 
laboratory or the field using various techniques and instru-
ments. In direct measurements, the water and air phases are 
separated by a ceramic cup or disk, and the negative pore 
water pressure is measured directly. The suction plate, pres-
sure plate, and tensiometer methods are examples of the 
direct measurement of matric suction (Agus and Schanz 
2005). Indirect techniques are generally based on measur-
ing relative humidity in a climate with a moisture balance 
between the soil and the environment and estimating suc-
tion using the Kelvin equation. Indirect suction measurement 
techniques include the thermocouple, transistor, or chilled-
mirror psychrometer methods, the filter paper method, the 
thermal conductivity sensor technique, the evaporation 
method (HYPROP), and the electrical conductivity sen-
sor technique (Woodburn et al. 1993; Leong et al. 2003; 
Fredlund and Wong 1989; Likos and Lu 2002; Erzin 2007; 
Satyanaga et al. 2019). The suction of a given soil var-
ies with its moisture conditions. Suction is zero in a fully 
saturated state but can exceed 1 GPa in a completely dry 
state. The soil–water characteristic curve (SWCC) describes 
the relationship between water content and suction in the 
region between the saturated and dry states for a given 
soil (Zhai et al. 2019). Each instrument or technique used 
to measure suction has some limitations in terms of reli-
ability, practicality, or cost, and none of them can individu-
ally provide satisfactory measures for the entire suction or 
moisture range (Guan 1996; Vanapalli et al. 1999; Rahardjo 
and Leong 2006; Bulut and Leong 2008). The WP4-T dew 
point potentiometer provides satisfactory results in the high 
suction range region of the SWCC while reducing the time 
and costs associated with suction measurements (Ebrahimi-
Birang and Fredlund 2016).

Several mathematical models (Brooks and Corey 1964; 
van Genuchten 1980; Williams et al. 1983; McKee and 
Bumb 1987; Fredlund and Xing 1994) have been developed 
to simulate the SWCC of a particular soil. On the other 
hand, these models have only been tested in certain soils 
and are only valid for specific suction ranges; for example, 
the Brooks and Corey, van Genuchten, McKee, and Bumb 
models are unsuitable for high suction ranges (Zapata 1999). 
Nam et al. (2010) observed that the Fredlund and Xing 
(1994) and van Genuchten (1980) models provide nearly 
identical SWCCs, except at high suction values. According 
to Lu and Khorshidi (2015), while many empirical SWCC 
models have been developed to cover the entire suction 

range, matric suction data greater than 10 MPa is limited; 
thus, the validity of these models in the high suction range 
is uncertain.

On a semi-logarithmic scale, the SWCC is typically 
S-shaped and consists of three zones separated by specific 
limit values. These limits can be expressed as saturated state 
water content, air entry value (AEV), and residual water 
content. The region between the saturated water content 
and the AEV is referred to as the capillary saturation zone; 
the region between the AEV and the residual water content 
is referred to as the desaturation zone or transition zone; 
and the region between the residual water content and the 
completely dry state is referred to as the residual satura-
tion zone. The fundamental mechanisms influencing the 
water retention behaviour in these three regions are distinct. 
In the transition zone (the region dominated by capillary 
water), pore water is retained primarily as capillary menisci 
located between soil particles; consequently, capillary forces 
are effective, and suction is mainly a function of pore size 
distribution (Lu and Likos 2006; Zhai et al. 2018, 2021). 
In the residual zone (the adsorbed water-dominant region), 
the majority of pore water is retained as hydration on the 
particle surfaces; adsorptive forces are more critical in this 
region, and the effect of soil structure on the SWCC is negli-
gible (Lu and Likos 2006; Malaya and Sreedeep 2012; Fang 
et al. 2022). In other words, different mechanisms control 
the moisture–suction relationship of soils over different suc-
tion ranges. It is difficult to explain the entire suction range 
using a model that only focuses on capillary mechanisms 
and ignores soil physicochemical interactions, especially in 
cohesive soils (Guo et al. 2021). Salager et al. (2013) indi-
cated that the retention curves corresponding to different 
densities of the same soil converge and become unique after 
a specific suction value is exceeded in the suction versus 
water content plane. Chen et al. (2022) also demonstrated 
that at high suction levels, the SWCCs in terms of water 
content versus initial void ratio are independent of the ini-
tial void ratio. It can be deduced that the region where the 
void ratio or density changes do not affect suction is located 
within the SWCC’s residual zone.

The validity of most current prediction models for soils 
under low moisture conditions — typical for arid and semi-
arid regions — is unclear. Models are needed to reliably esti-
mate SWCC under these moisture conditions, particularly in 
cohesive soils. The present study attempted to develop pre-
diction models for the residual saturation zone of the SWCC 
in cohesive soils based on the soils’ physical, chemical, and 
spectral properties. For this purpose, 162 gravimetric water 
content and total suction (> 10 MPa) measurements for 40 
different soils were investigated. The SWCC at large suc-
tions was simulated using a semi-logarithmic linear model 
with two parameters: the slope of the residual saturation 
zone of the SWCC ( sr ) and suction at zero water content 
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( �dry ). Correlation and regression analyses were conducted 
between these parameters and several soil properties. As a 
result of these analyses, empirical estimation models for the 
SWCC residual saturation zone in cohesive soils were devel-
oped. The estimation capabilities of the proposed models 
were evaluated using different performance measures and 
then discussed.

2 � Material and methods

2.1 � Some physical, chemical, and spectral 
properties of soils

The current study utilised experimental data obtained from 
a comprehensive survey by Demirci (2010). Forty soil sam-
ples for which sufficient suction and water content meas-
urement data existed to establish a reliable relationship at 
high suction levels (> 10 MPa) were selected for evaluation. 
These soils had plasticity index values ranging from 9.5 to 
70.1 and fine contents ranging from 46.8 to 97.2%. The soil 
sampling sites were located in the Turkish cities of Tokat 
(S1 to S6), Sivas (S7), Mersin (S8), Adana (S9), Burdur 
(S10 and S18), Antalya (S15 and S16), Mugla (S11 to S14), 
Isparta (S17), Afyon (S19, S20, and S22), Kutahya (S21), 
Ankara (S23 to S31), Istanbul (S32 to S38), and Kirklareli 
(S39 and S40), as shown in Fig. 1.

The WP4-T dew point potentiometer was used to meas-
ure the total suction of the soils under specific moisture 
conditions following the ASTM D6836-02 D protocol. The 
ASTM D4318-10 standard was followed to determine the 
consistency limits of the soils. Mechanical sieving (follow-
ing ASTM D422-63) and laser diffraction (Malvern Instru-
ments Mastersizer 2000) were used to determine the grain 
size distributions of the soil samples. The specific surface 
area (SSALD) values were calculated from the grain size 
distributions using Malvern Mastersizer software. The sur-
face area activity (ASSA) values were calculated by divid-
ing the specific surface area by the clay content. The free 
swell index (FSI) values of the soil samples were deter-
mined using the procedure described by Sridharan and Rao 
(1988). The carbonate content of the soil samples was deter-
mined using the method described by Loring and Rantala 
(1992). The electrical conductivity (EC) values were meas-
ured using a conductivity meter (Delta OHM, model HD 
2106.1), and the pH values were measured with a pH/mV 
meter (Delta OHM HD 2105.1). The soils’ cation exchange 
capacity (CEC) values were determined using the sodium 
acetate method (Bower et al. 1952). Following this method, 
the soil was washed with sodium acetate, soluble salts were 
extracted with ethyl alcohol, and the sodium produced by 
washing with ammonium acetate was quantified (Azadi and 
Baninemeh 2022). The specific surface charge (SSC) was 

calculated as the ratio of CEC/SSALD (Pesch et al. 2022). 
The reflectance properties of the soil samples were meas-
ured in the laboratory using an ASD field spectrometer. The 
spectral absorption feature characteristics (asymmetry and 
depth of an absorption band) were determined according to 
procedures outlined by van der Meer (2004). The above-
mentioned textural, physical, and chemical soil properties of 
cohesive soils were used as explanatory variables to develop 
prediction equations that define the residual saturation zone 
of the SWCC. Table 1 presents the descriptive statistics, 
such as the standard deviation, minimum and maximum 
values, and quartiles for some of the textural, physical, and 
chemical properties of the 40 cohesive soils examined in 
this study.

2.2 � Statistical analysis

Multiple linear regression is an analysis method that uses 
observed data to develop a prediction model for a dependent 
variable by describing the relationship between the depend-
ent variable and explanatory variables using a linear equa-
tion. This study used stepwise multiple linear regression to 
develop prediction models for the residual saturation zone. 
Stepwise regression is an iterative procedure in which the 
possible explanatory variables to be used in a prediction 
model are added to or removed from the model in each itera-
tion based on the test statistics and statistical significance of 
the coefficients (Hosseinpour et al. 2018). Prediction models 
were developed based on the results of stepwise regression 
analysis, as shown in Eq. 1:

where Y is the dependent variable; �0 , �1,…, �n are regression 
coefficients; and X1 , X2 , …,Xn are explanatory variables.

One of the most essential aspects of the predictive stabil-
ity of a regression model is the presence of multicollinear-
ity. A high correlation between two or more explanatory 
variables is defined as multicollinearity. Multicollinearity 
between explanatory variables in a regression model can 
lead to unstable model estimates. The variance inflation fac-
tor (VIF) is a common indicator used to assess the multicol-
linearity of explanatory variables in a model. A value of 1 
indicates that the predictive variables are independent of one 
another, while a value greater than 5 indicates that the vari-
ables are highly correlated (Daoud 2017; Shrestha 2020). 
In this study, the upper limit for the VIF value was set at 3.

Validation of a regression model is another crucial aspect 
of predictive stability. The two main methods for validating 
regression models are external validation and internal vali-
dation (cross-validation). External validation is achieved by 
collecting, analysing, and comparing new and previous data 
(Lucko et al. 2006). Cross-validation is a variable selection 

(1)Y = �0 + �1 ⋅ X1 + �2 ⋅ X2 +⋯ + �n ⋅ Xn
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technique used to evaluate prediction models with a small 
data sample, and it is an effective method of model valida-
tion when collecting new data is impractical (Snee 1977). 
In this study, cross-validation of the regression models was 
performed using the K-fold procedure. The dataset was 
divided into four random and equal parts. A candidate model 
was trained on three subsets of the data, and its prediction 
performance was evaluated on a test set containing the 
remaining data. The model training and testing procedure 
was repeated to provide each of the four parts as a test set. 
The results from all four processes were combined to create 
a single validation set, and the cross-validated performance 
of the predictive model was evaluated by the performance 

measurements on the validation set (Jung and Hu 2015; Li 
et al. 2020; Liu et al. 2021). SPSS (version 25.0) software 
was used to perform the statistical analysis.

2.3 � Performance metrics

In this study, the predictive performance of models was evalu-
ated using six distinct metrics: the coefficient of determination 
(R2), the mean absolute error (MAE), the root mean square 
error (RMSE), the mean absolute percentage error (MAPE), 
the ratio of performance to deviation (RPD), and the ratio of 
performance to interquartile range (RPIQ). These metrics were 
calculated using the following equations:

Fig. 1   Sampling sites of soils
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where Yi is the actual value of the dependent variable, Yi 
is the average of the actual values of the dependent vari-
able, Y∗

i
 is the predicted value of the dependent variable, and 

Y∗
i

 is the average of the predicted values of the dependent 
variable.

(2)R2 =
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where n is the number of observations.

(4)RMSE =
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i
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(6)RPD =
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RMSE

(7)RPIQ =
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RMSE
=

Q3 − Q1

RMSE

Table 1   Descriptive statistics 
of selected textural, physical, 
and chemical properties of soil 
samples

d10, d30, and d60 are diameters through which 10%, 30%, and 60%, respectively, of the total soil mass 
passes. LL, PL, and SL are liquid, plastic, and shrinkage limits, respectively. R is shrinkage ratio. GS is 
specific gravity. A is activity. S1400, S1900, and S2200 are SWIR spectral parameters that correspond to asym-
metry factors at the 1400 nm, 1900 nm, and 2200 nm wavelength bands, respectively. D1400, D1900, and 
D2200 are SWIR spectral parameters that correspond to depths of 1400 nm, 1900 nm, and 2200 nm wave-
length bands, respectively. SD is the standard deviation

Soil property (unit) Min Q1 Q2 Q3 Max SD

Sand (%) 2.8 13.4 20.4 37.3 52.0 14.8
Silt (%) 26.1 40.1 50.9 54.4 69.5 10.6
Clay (%) 9.8 17.3 24.8 33.7 50.0 10.8
d10 (mm) 0.00072 0.00140 0.00165 0.00235 0.00530 0.00094
d30 (mm) 0.00170 0.00338 0.00465 0.00805 0.01700 0.00364
d60 (mm) 0.00600 0.00943 0.02000 0.05575 0.30000 0.06736
LL (%) 27.3 44.2 56.0 65.2 106.0 19.2
PL (%) 13.9 21.3 25.6 32.3 44.7 7.6
SL (%) 11.3 13.4 15.5 17.4 31.2 3.8
R 1.292 1.508 1.598 1.667 1.900 0.128
GS 2.593 2.705 2.730 2.753 2.822 0.047
A 0.53 0.80 1.05 1.41 4.61 0.77
SSA (gr/ m2) 75.54 129.89 166.01 198.72 310.44 52.91
ASSA 4.78 5.57 6.63 8.26 13.30 1.89
FSI (cm3/gr) 1.00 1.20 1.28 1.50 4.30 0.56
CaCO3 (%) 0.00 1.48 8.66 21.65 71.12 16.78
pH 6.50 7.88 8.14 8.47 9.60 0.62
EC (mS/m) 34.00 115.03 183.05 311.50 1807.00 319.22
CEC (meq/100gr) 0.68 7.34 14.41 18.15 56.42 10.50
CEA 0.04 0.31 0.51 0.74 5.39 0.85
SSC (meq/100m2) 0.00483 0.05119 0.07229 0.12383 0.58500 0.09232
S1400 0.37666 0.44934 0.5294 0.61546 0.96441 0.14014
D1400 0.05099 0.07756 0.11152 0.13861 0.23717 0.04593
S1900 0.28085 0.30233 0.31693 0.33631 0.67494 0.06087
D1900 0.01381 0.15181 0.25091 0.29497 0.44744 0.09659
S2200 0.42234 0.74133 0.803 0.85736 1.61396 0.17274
D2200 0.0087 0.10091 0.13336 0.15397 0.27058 0.04488
Ψ (pF) (N = 162) 5.003 6.629 5.421 5.745 6.131 0.439
w (%) (N = 162) 0.820 17.353 3.019 6.017 8.835 3.686
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The MAE determines the magnitude of the mean errors 
between the predicted and actual values, regardless of the 
direction of the errors. In the case of large error values, 
the model’s prediction performance may not be accurately 
reflected. Unlike the MAE, which provides equal weight to 
all errors, the RMSE accounts for variance by giving greater 
weight to larger error values. The MAPE helps evaluate 
the performance of predictive models since it is independ-
ent of the sizes of the observed and anticipated values. 
Lewis (1982) categorises a model’s predictive capacity 
based on its MAPE values as highly accurate forecasting 
(10%), good forecasting (10 to 20%), reasonable forecasting 
(20 to 50%), or inaccurate forecasting (> 50%). The RPD 
is another metric used to assess prediction performance; 
higher values indicate the model’s robustness. If the RPD 
value is less than 1.5, the model lacks the ability to predict; 
if it is between 1.5 and 2, the model can distinguish between 
high and low values; if it is between 2 and 2.5, the model 
can be used for quantitative predictions; if it is between 
2.5 and 3, the model has good estimation ability; and if it 
is greater than 3, the model has excellent predictive ability 
(Saeys et al. 2005). Ludwig et al. (2017) adapted the clas-
sification developed by Saeys et al. (2005) for RPD values 
to categorise the prediction performance of a model based 
on RPIQ values. According to Ludwig et al. (2017), if the 
RPIQ value is between 2.02 and 2.70, the model can dis-
tinguish between high and low values; if it is between 2.70 
and 3.37, the model provides approximate quantitative pre-
dictions; if it is between 3.37 and 4.05, the model has good 
estimation ability; and if it is greater than 4.05, the model 
has excellent predictive power.

The Wilcoxon signed-rank sum test was employed in 
addition to the performance indicators mentioned above 
to evaluate the statistical significance of the differences 
between the actual and predicted values. The Wilcoxon 
signed-rank test is a non-parametric test used to deter-
mine whether two populations differ statistically based 
on rank. The following equation can be used to calculate 
the Wilcoxon z-score:

where R+ and R− are the sums of the ranks of the positive 
paired difference and negative paired difference ( Si − S∗

i
 ), 

respectively.
A two-tailed test is applied to decide if the difference 

between the actual and predicted values is statistically sig-
nificant. Since the critical z value for the 95% confidence 
interval (or a 5% significance level) in a two-tailed test 
is 1.96, the null hypothesis of no difference is rejected if 
the absolute value of the calculated z value is greater than 

(8)z =
max

(
R−,R+

)
−
(

nn(+1)

4

)
√

nn(+1)(2n+1)

24

1.96 or the p-value is less than the significance level. On 
the other hand, it is assumed that there is no significant 
difference between the actual and predicted values if the 
z-score is less than 1.96 or the p-value is greater than 0.05 
(Uzundurukan 2023).

2.4 � Model used to describe the residual saturation 
zone of SWCC​

In the current study, the residual saturation zone of SWCC 
was defined using the linear relationship expressed in Eq. 9 
between total suction ( � ) values (in pF) and gravimetric 
water contents ( w).

where a and b are the equation coefficients of the 
relationship.

The equation coefficients of the relationships between 
total suction (in pF) and gravimetric water content (%) have 
specific values for each soil included in this study. The 
assessment of equation coefficients for all soils demonstrates 
a linear proportional relationship between coefficients a and 
b. Thus, Eq. 10 can be written as follows:

where a represents the slope of SWCC in the residual satura-
tion zone ( sr ) and b∕

a
 represents total suction at zero water 

content ( �dry ) of a particular soil. As a result, the expression 
in Eq. 9 can be transformed into the following form, which 
gives the gravimetric water content ( wi ) corresponding to 
a specific suction value ( �i ) within the boundaries of the 
residual saturation zone:

3 � Results and discussions

3.1 � Obtaining the model parameters for the residual 
saturation zone of the SWCC​

Total suction and gravimetric water content datasets with 
suction values larger than 10 MPa (> 5 pF) were used to 
develop a model defining the residual saturation zone of 
SWCC. The linear relationship expressed by Eq. 9 was 
obtained between the total suction (in pF) and the gravi-
metric water content (%) for each of the soils examined. 
It was observed that the equation coefficients of this 
relationship had specific values for each soil. Figure 2 
provides an example of the relationship obtained for the 
S24 sample.

(9)w = −a ⋅ � + b

(10)w = a ⋅
(
b∕

a
− �

)

(11)wi = sr ⋅
(
�dry − �i

)
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The coefficients a and b, both of which have a specific 
value for each soil, were observed to have a linear propor-
tional relationship (Fig. 3).

Figure 3 demonstrates that the ratio b/a produces an 
approximate value applicable to all soils evaluated in the 
study. This ratio represents the suction at zero water con-
tent ( �dry ), while the coefficient a indicates the slope of the 
soil–water characteristic curve ( s

r
 ) in the residual saturation 

zone. Consequently, Eq. 11 was derived by making appropri-
ate modifications to Eq. 9, resulting in a model that properly 

reflects the behaviour of the SWCC within the residual satu-
ration zone. It must be noted that Eq. 11 presents another 
representation of the semi-log-linear function initially devel-
oped by Campbell and Shiozawa (1992) to describe the rela-
tionship between water content and suction in soil.

Table 2 provides descriptive statistics for the sr and �dry 
values obtained from the 40 soils examined in this study.

The sr values of the investigated soil samples were between 
1.589 and 13.035. The values corresponding to the dimen-
sionless slope SL ( 1∕

sr
⋅ 100 ) of the Campbell–Shiozawa 

model can be calculated as 62.93 and 7.67, respectively.  
Resurreccion et al. (2011) reported SL values between 19.2 
and 276.92 for 41 illite-predominant clay samples. Chen et al. 
(2014) determined that the SL values of 24 clayey soils ranged 
from 7.6 to 135.6. Pittaki-Chrysodonta et al. (2019) inves-
tigated 144 different soils with SL values ranging between 
16.71 and 165.54.

The �dry values obtained for the soils examined in this 
study ranged from 6.483 to 7.370 pF, with an average of 
6.855 pF. Although previous research has assumed that the 
suction at zero water content can reach up to 1 GPa (or 7 pF), 
the exact limits have not been defined. Several studies have 
considered a value ranging from 6.7 to 7.1 for �dry (Ross 
et al. 1991; Rossi and Nimmo 1994; Fayer and Simmons 
1995; Webb 2000; Groenevelt and Grant 2004; Schneider 
and Goss 2012; Lu and Khorshidi 2015). Karup et al. (2017) 
revealed that the matric potential at zero water content varies 
between 6.65 and 7.1, even in soils with similar mineralogy, 
in their study of 171 undisturbed soil samples.

Consequently, the sr and �dry values obtained from the semi-
logarithmic linear function for the soils examined in this study 
are consistent with data previously reported in the literature.

3.2 � Correlations between the model parameters 
and the soil properties

Spearman’s rho analyses were performed to determine 
whether the sr and �dry values are related to the soil 

Fig. 2   Gravimetric water content (%)–total suction (in pF) relation-
ship (for S24 soil sample)

Fig. 3   Relationship between the a and b coefficients for all soil sam-
ples investigated in the study

Table 2   Descriptive statistics for sr and �dry values for the investi-
gated soils

Statistics sr �dry(in pF)

Min 1.589 6.483
Q1 3.835 6.763
Q2 (median) 5.633 6.807
Q3 7.999 6.922
Max 13.035 7.370
Average 6.007 6.855
Std. Dev 2.735 0.187
Kurtosis 0.517 1.012
Skewness −0.084 1.313



3981Journal of Soils and Sediments (2023) 23:3974–3989	

1 3

properties selected for the study, and the statistical signifi-
cance of the correlations was determined. The significance 
levels of the correlations and their corresponding correlation 
coefficients are shown in Table 3.

Based on WP4T measurements on 41 Danish soils, 
Resurreccion et  al. (2011) found strong correlations 
between the slope SL of the Campbel and Shiozawa 
(1992) model and the clay content and specific surface 
area. Arthur et al. (2013) and Schneider and Goss (2012) 
also observed significant relationships between 1∕SL and 
clay content. However, this study observed no significant 
relationship between the slope values and the clay content. 
According to Spearman’s rho analyses, there are significant 
correlations (p < 0.01) between Sr and the liquid limit, the 

plastic limit, the shrinkage ratio, the activity, the free swell 
index, and the SWIR spectral parameters D1400 and D1900. 
According to Pittaki-Chrysodonta et  al. (2019), higher 
absolute values of SL indicate sandier soils, while lower 
absolute values indicate clayey soils. However, examining 
Table 3 demonstrates that defining this judgement based 
on consistency limits rather than clay content is more 
significant because consistency limits are controlled by the 
mineral composition, particle size distribution, and pore 
fluid chemistry, which govern the physicochemical forces 
that exist between soil grains and soil water (Zhou and Lu 
2021). Therefore, even if it contains fewer clay particles, soil 
with higher plasticity and activity may have larger suction 
under the same humidity conditions than one with lower 
plasticity (Kocaman et al. 2022).

Several studies have been conducted to determine the 
relationship between spectral adsorption features and the 
physical and chemical properties of soils (Escadafal 1993; 
Kariuki et al. 2003; Kariuki et al. 2004; Viscarra Rossel 
et  al.  2006; Ben-Dor et  al. 2009; Mulder et  al. 2013; 
Dufréchou et al. 2015; Zhou et al. 2022; Taghdis et al. 
2022). In most of these studies, geometric parameters, 
such as band position, band depth, band width, band 
area, and asymmetry, have been used to express spectral 
absorption properties (van der Meer 1999; Byun et al. 
2023). Some studies have explored the relationships 
between water retention characteristics and spectral soil 
properties (Janik et al. 2007; Santra et al. 2009; Babaeian 
et al. 2015; Pittaki-Chrysodonta et al. 2021), but studies 
on the residual saturation zone remain limited (Pittaki-
Chrysodonta et al. 2019; Norouzi et al. 2022). The spectral 
parameters of soil are strongly affected by clay mineralogy, 
and the presence of kaolinite and smectite significantly 
affects the intensity of the 1900 nm and 2200 nm features 
(Kariuki et al. 2003, 2004). Santra et al. (2009) discovered 
a strong correlation between basic soil and hydraulic 
properties and spectral reflectance in the 2000–2300 nm 
wavelength bands. Babaeian et  al. (2015) stated that 
wavelength bands in the NIR-SWIR (700–2500  nm) 
region had predictive capacity in their study, which aimed 
to estimate Mualem–van Genuchten model parameters 
using spectral reflectance data. Pittaki-Chrysodonta et al. 
(2021) indicated that visible near-infrared spectroscopy 
can effectively estimate the soil water retention curve. 
Consequently, the strong relationship between sr and the 
SWIR spectral parameters D1400 and D1900 observed in this 
study is consistent with the literature.

Karup et al. (2017) stated that they could not find a dis-
tinct relationship between the matric potential at zero water 
content and clay mineralogy, organic matter, or clay con-
tent. In this study, the relationships between �dry and the 

Table 3   Results of Spearman’s Rho correlation analysis

*p < 0.05; **p < 0.01

Soil properties Spearman’s Rho correlation analysis

sr �dry

r p r p

Sand % −0.305 0.056 0.431** 0.005
Silt % 0.209 0.196 −0.410** 0.009
Clay % 0.162 0.316 −0.266 0.098
d10 −0.097 0.551 0.141 0.384
d30 −0.198 0.220 0.269 0.093
d60 −0.367* 0.020 0.313* 0.050
LL 0.888** 0.000 −0.401* 0.010
PL 0.820** 0.000 −0.165 0.310
SL −0.118 0.468 −0.015 0.927
R −.878** 0.000 0.353* 0.025
GS −0.073 0.656 0.079 0.629
A 0.572** 0.000 −0.231 0.152
SSA −0.052 0.751 −0.129 0.427
SAA −0.311 0.051 0.409** 0.009
FSI 0.757** 0.000 −0.544** 0.000
CaCO3 −0.096 0.555 0.061 0.710
pH 0.247 0.124 0.008 0.961
Ec 0.393* 0.012 −0.381* 0.015
CEC 0.294 0.066 0.133 0.413
CEA 0.160 0.323 0.221 0.170
SSC 0.307 0.054 0.170 0.293
S1400 −0.258 0.108 −0.376* 0.017
D1400 0.625** 0.000 −0.004 0.980
S1900 −0.034 0.833 −0.123 0.450
D1900 0.680** 0.000 0.040 0.807
S2200 −0.271 0.090 −0.254 0.114
D2200 0.256 0.111 −0.232 0.151



3982	 Journal of Soils and Sediments (2023) 23:3974–3989

1 3

selected soil properties are not as strong as those observed 
for Sr . The total suction at zero water content was observed 
to have weak correlations with the free swelling index, 
particle fractions, surface area activity, liquid limit, and 
electrical conductivity.

3.3 � Regression analysis between model parameters 
and soil properties

Following the correlation analysis between the selected soil 
properties and the Sr and �dry values, the goal was to develop 
regression models for the sr and �dry values. Multiple linear 
regression analyses were performed using IBM SPSS Sta-
tistic Data Editor v25 and the stepwise regression method. 
Table 4 reveals the linear regression equations obtained 
between sr and the selected soil properties. Table 5 presents 
the regression equations for �dry.

Assessing Tables 4 and 5, it is evident that the coef-
ficients of determination of the regression equations for sr 
values are acceptable, whereas those for �dry are relatively 
low. A four-fold cross-validation procedure was used to 
validate the regression models. The dataset was randomly 
divided into four equal parts, and the model training and 
testing procedure was repeated four times, with each of 
the four parts serving as a test set. The results of all four 
processes were combined to form a single validation set, 
and the predictive model’s performance was assessed 
using validation set performance measures. Figure 4 com-
pares the performance metrics obtained for each fold, the 
combined validation set, and the regression set for sr . 

The predictive performance comparison for �dry is given 
in Fig. 5.

Figure 4 shows that, except for E1, all other regression 
equations can be used to accurately predict sr for the soils 
examined. The calculated performance criteria, on the 
other hand, show that E1’s predictive ability is acceptable.

The values of the performance criteria of the regression 
equations used for the �dry predictions are, as expected, 
lower than those obtained for sr . Based on the calculated 
performance criteria, it can be concluded that the regres-
sion equations obtained for �dry cannot provide reliable 
predictions. The Wilcoxon signed-rank sum test was per-
formed to determine whether the regression equations 
produced statistically significant results by comparing the 
predicted values of sr and �dry with their corresponding 
actual values. Table 6 summarises the results.

The Wilcoxon signed-rank sum test results revealed that 
the E5 equation used for �dry estimation did not produce 
statistically significant results. Consequently, this equation 
was not used as a part of the prediction models in the next 
part of the study.

Combinations of sr and �dry values predicted by differ-
ent regression equations were substituted into Eq. 11, and 
the actual water content values of the 162 measured wi − �i 
data pairs were compared to the predicted values. Table 7 
shows the prediction performance for all predictive model 
combinations. Table 7 also shows the prediction perfor-
mances for cases where the average value obtained for the 
soils studied (6.855 pF) was used instead of the suction 
value at zero water content. The most accurate predictions 

Table 4   The regression equations for sr

Eq. ID Regression equation R2 Adjusted R2 Std. error of the 
estimate

E1 sr = −0.9455 + 0.1228LL 0.744 0.737 1.402
E2 sr = −2.1803 + 0.0945LL + 11.9523D1900 0.883 0.876 0.962
E3 sr = −2.3963 + 0.0971LL + 10.459D1900 + 4.5676SSC 0.904 0.896 0.881
E4 sr = −1.9599 + 0.0976LL + 9.8193D1900 + 4.3509SSC − 0.0202CaCO3 0.919 0.910 0.822

Table 5   The regression equations for �dry

Eq
ID

Regression equation R2 Adjusted R2 Std. error of the 
estimate

E5 �dry = 6.9308 − 0.0003EC 0.219 0.198 0.167
E6 �dry = 7.1177 − 0.0003EC − 1.4047D2200 0.332 0.295 0.157
E7 �dry = 6.401 − 0.0002EC − 1.3076D2200 + 0.4287R 0.403 0.353 0.150
E8 �dry = 6.3462 − 0.0002EC − 0.9566D2200 + 0.5882R − 0.4664S1400 0.507 0.451 0.138
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Fig. 4   Variations of the performance metrics according to datasets and regression equations for sr
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Fig. 5   Variations of the performance metrics according to datasets and regression equations �dry
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were provided by the P13 model, which employs the E4 
equation for sr estimations and the E6 equation for �dry 
estimations. The P4 model, which uses the E1 equation 
for sr estimates and the average value of 6.855 pF for �dry , 
had the worst predictive accuracy. Figure 6 compares the 
water content values calculated from the models with the 
best and worst predictive performances with the measured 
water content values.

Figure 7 depicts a visual comparison of the performances 
of the prediction models for the threshold values given for 
the performance criteria in the literature.

As shown in Table 7 and Fig. 7, the regression equa-
tion selected to predict the slope of the residual saturation 

zone of the SWCC has the greatest influence on the pre-
diction performance of different models. Models employ-
ing regression equations other than the E1 equation, 
which employs only the liquid limit as an explanatory 
variable to predict sr , provide acceptable estimates. Mod-
els that use the E3 and E4 regression equations to predict 
sr have the best predictive performance. However, using 
the E2 regression equations to predict sr yields good pre-
dictions. The regression equation used to predict suction 
at zero water content has a limited effect on the predic-
tion performance of the models. Even in models employ-
ing the average value of 6.855 pF obtained for the soils 
examined in this study without any estimation equations 
for �dry , acceptable estimations are achieved. For the P8 
model, for example, knowing the liquid limit and the 
D1900 values, which are inexpensive and easily identifi-
able, is sufficient. The performance metrics demonstrate 
that the P8 model makes good predictions for the soils 
under consideration in the study.

3.4 � Limitations of the study

The study’s results were obtained from the analysis of 
experimental data from 40 cohesive soils with plasticity 
index values between 9.5 and 70.1 and fine content between 
46.8 and 97.2%. The suction–water content measurements 
in the high suction range (> 10 MPa) were considered in 
line with the study’s objectives. Consequently, the mod-
els proposed in this study can only be used to predict the 
residual saturation zone of the SWCC in cohesive soils.

Table 6   Wilcoxon signed rank sum test result for actual values vs. 
predicted values

* z > 1.96; **p < 0.05

Dependent 
variable

Equation no Wilcoxon signed rank 
sum test
(%95 confidence 
interval)

Z p

sr E1 −0.175 0.861
E2 −0.161 0.872
E3 −0.148 0.882
E4 −0.175 0.861

�dry E5 −2.796* 0.005**

E6 −0.780 0.436
E7 −0.726 0.468
E8 −0.390 0.697

Table 7   Prediction 
performances of different 
prediction models

Model no Prediction equation Performance criteria

sr �dry R2 MAE RMSE MAPE RPD RPIQ

P1 E1 E6 0.78 1.29 1.72 0.26 2.15 3.32
P2 E1 E7 0.76 1.33 1.79 0.26 2.06 3.18
P3 E1 E8 0.79 1.22 1.69 0.24 2.19 3.37
P4 E1 Average 0.69 1.45 2.12 0.29 1.74 2.68
P5 E2 E6 0.89 0.93 1.22 0.19 3.04 4.67
P6 E2 E7 0.88 0.92 1.26 0.18 2.93 4.51
P7 E2 E8 0.88 0.93 1.30 0.18 2.85 4.39
P8 E2 Average 0.85 1.02 1.48 0.21 2.51 3.86
P9 E3 E6 0.92 0.86 1.08 0.06 3.43 5.28
P10 E3 E7 0.91 0.86 1.10 0.06 3.36 5.18
P11 E3 E8 0.91 0.86 1.12 0.18 3.31 5.10
P12 E3 Average 0.88 0.96 1.32 0.20 2.79 4.30
P13 E4 E6 0.93 0.78 0.98 0.17 3.77 5.81
P14 E4 E7 0.93 0.76 1.00 0.16 3.69 5.68
P15 E4 E8 0.93 0.78 1.00 0.16 3.70 5.69
P16 E4 Average 0.89 0.91 1.28 0.20 2.90 4.47
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Fig. 6   Predicted and measured gravimetric water contents for models with the best and worst prediction performance: a sr was estimated from 
E4, and �dry was estimated from E6; b sr was estimated from E1, and average value was used for �dry

Fig. 7   Comparison of prediction performances of the models
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4 � Conclusion

Models used to predict the SWCC generally depend on suc-
tion measurements within the transition zone; however, the 
validity of these models for soils under low-moisture con-
ditions, typical of arid and semiarid regions, is uncertain. 
Thus, models are needed that can accurately estimate the 
residual saturation zone of the SWCC, especially in cohe-
sive soils.

In this study, a semi-logarithmic linear model was used 
to simulate the residual saturation zone of the SWCC. The 
model has two parameters: the suction at zero water content 
( �dry ) and the slope of the SWCC in the residual saturation 
zone ( sr ). Using an experimental dataset for 40 cohesive 
soil samples, correlations between model parameters and the 
soils’ physical, chemical, and mineralogical properties were 
examined. The sr values were observed to have strong corre-
lations with the consistency limits, activity, and some spec-
tral properties that reflect the quantity and mineralogical 
composition of the clay minerals in the soils. However, the 
correlations between �dry and soil properties in this study’s 
dataset are not very strong, consistent with previous stud-
ies. Using the physical, chemical, and spectral properties of 
soils as explanatory variables, stepwise regression analyses 
were used to obtain empirical equations that could be used 
to predict the model parameters. Sixteen estimation models 
for predicting the residual saturation zone of the SWCC in 
cohesive soils were developed by inserting combinations of 
empirical equations based on regression analyses for sr and 
�dry into the two-parameter semi-logarithmic linear model. 
The results show that using the semi-logarithmic linear 
model to describe the SWCC’s residual saturation zone pro-
vides satisfactory estimations. The fact that the prediction 
equations include physicochemical soil properties, such as 
the liquid limit and specific surface charge, indicates that 
parameters related to the amount and type of clay minerals 
should be included for good predictions of the models that 
define the dry region of the SWCC in cohesive soils. Fur-
thermore, the results demonstrated that spectral absorption 
properties in the SWIR region have the potential to predict 
the residual saturation zone of the SWCC in cohesive soils.

Data availability  The data underlying this article will be shared on 
reasonable request to the corresponding author.
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