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Abstract
Purpose  Sediment internal nutrient loading plays an important role in algal blooms. Thus, understanding the specific char-
acteristics of nutrient (nitrogen (N) and phosphorus (P)) recycling from sediment is important for clarifying the processes 
and mechanisms of cyanobacterial growth and succession.
Materials and methods  Sediments and water samples were collected monthly from five sampling sites in Lake Chaohu for 
1 year. N and P concentrations in surface and interstitial water were determined, and fractions of sediment organic matter, 
P, and iron were quantified. P adsorption characteristics were modeled with adsorption isotherms.
Results and discussion  Dolichospermum was the dominant bloom species in the western lake in April, followed by Microcys-
tis from May to September in the whole lake. The impulsive regeneration and release mode from iron-bound P and ammonium 
(NH4

+-N) regeneration from sediment in spring triggered the Dolichospermum bloom. In early summer, continuous P release 
potential as well as nitrate accumulation and NH4

+-N deficiency due to NH4
+-N prior assimilation by Dolichospermum 

jointly drove the transition from Dolichospermum to Microcystis due to the energy saving and competitive advantage of 
rapid uptake and storage of inorganic P as well as a wide range of N utilization forms for Microcystis. All these facts put the 
Dolichospermum towards common N and P stress. Furthermore, in summer, NH4

+-N rapid regeneration from organic algal 
detritus remineralization due to the decline of Dolichospermum developed Microcystis blooms.
Conclusions  The specific mode and pathway of N and P recycling from sediment determined the dominant algal species 
based on the particular N and P utilization strategies of the algae. Pulsed and a vast amount of P release facilitated the 
Dolichospermum growth, while continuous and a small quantity of P release was in favor of Microcystis growth. Organic N 
hydrolysis from Dolichospermum detritus further supported the development of a Microcystis bloom.

Keywords  Sediment · Nutrient recycling · Phosphorus · Nitrogen · Cyanobacterial bloom

1  Introduction

Cyanobacterial blooms in eutrophic lakes are severe envi-
ronmental problems worldwide and of global concern due 
to the multiple harmful risks they pose towards aquatic 
ecosystem and human health (Jiang et al. 2017; Jia et al. 
2019). Sediment internal loading plays an important role 
in the eutrophication of Lake Chaohu (Yang et al. 2020) 
and represents a significant supply for the growth of cyano-
bacteria (Cao et al. 2016). Phosphorus (P) migration and 
transformation caused by the microbes in sediments during 
cyanobacterial resuscitation phase may lead to the release 
of phosphorus from sediments and accelerate algae growth 
(Tu et al. 2022). In eutrophic Lake Dianchi, up to 70.2% 
of the released P could be absorbed by cyanobacteria (Cao 
et al. 2016). In Lake Taihu, cyanobacteria relied extensively 
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on regenerated ammonium (NH4
+-N) to sustain the bloom 

(Hampel et al. 2018). NH4
+-N recycling supported toxic 

Planktothrix blooms in Sandusky Bay, Lake Erie (Hampel 
et al. 2019). Hence, algal bloom was mainly controlled by 
nitrogen (N) and P fluxes from sediment.

Nitrogen and P diffusive fluxes at the sediment–water 
interface in Erhai Lake showed different temporal and spatial 
variations (Zhao et al. 2018). The content of total P and N 
and their forms in water and sediment were rather dynamic 
during the year-long field investigation in the most polluted 
area of a shallow eutrophic lake (Lake Chaohu, China), the 
phosphate and NH4

+-N fluxes showed evident seasonal vari-
ation, and higher fluxes were observed in warmer seasons 
especially during the period of algal bloom with high sedi-
mentation (Yang et al. 2020). Meanwhile, the forms and con-
tent of P and N in water influenced the dominance of cyano-
bacteria (Ma et al. 2015). Green algal dominance quickly 
switched to cyanobacterial dominance after N and P enrich-
ment in a greenhouse with elevated temperature (Wang et al. 
2015). The response to nutrient enrichment differs among 
cyanobacterial species, which showed differential growth in 
relation to N and P concentrations (Loza et al. 2014).

Cyanobacterial dominance and composition of cyano-
bacterial blooms depended on the total N and total P levels 
as well as N to P ratios (Gonzlez-Madina et al. 2019). In 
Missisquoi Bay, Lake Champlain, Dolichospermum was the 
major bloom-forming cyanobacterium during summer, fol-
lowed by a second intense bloom event of Microcystis in 
the fall; and the variation in the cyanobacterial population 
was strongly associated with inorganic and readily available 
fractions of N and P such as nitrites (NO2

−-N) and nitrates 
(NO3

−-N), NH4
+-N, and dissolved organic P (Celikkol et al. 

2021). The growth of Microcystis was influenced by the syn-
ergistic uptake and assimilation of nitrogen and phosphorus 
(Cai and Tang 2021). Furthermore, high concentrations of 
dissolved inorganic N and dissolved reactive P in Lake Taihu 
sediments potentially stimulated the initiation and mainte-
nance of cyanobacterial blooms (Fan et al. 2022). The shal-
low, polymictic Ornamental Lake in Australia had suffered 
significant blooms of toxic Anabaena then Microcystis spe-
cies every summer over the last decade; the prolific algal 
growth was controlled by the springtime P fluxes from the 
sediment, which was caused by diel stratification, combined 
with high oxygen consumption associated with organic car-
bon loading (Grace et al. 2010). Therefore, the temporal and 
spatial variation of P and N fluxes from sediment stimulated 
the initiation and transition of cyanobacterial blooms, which 
may be attributed to the different characteristics of sediment 
N and P recycling.

To explore the different characteristics of sediment N 
and P recycling during different dominated blooms and to 
test our hypothesis that the specific mode and pathway of 
sediment N and P recycling determines the pattern of algal 

succession, samples (including surface water and sediment) 
from five sampling sites in Lake Chaohu were collected 
monthly from January to December 2011 and were analyzed 
for chlorophyll a (Chl. a) in surface water, N and P species 
in surface water and interstitial water, labile organic matter, 
fractionation and sorption behaviors of phosphorus, extra-
cellular enzymatic activities (EEA), and iron (Fe) in sedi-
ment. Through this study, we hope to (1) clarify the different 
modes and pathways of sediment N and P recycling and (2) 
illuminate the process that the different characteristics of 
sediment N and P recycling stimulated the initiation and 
transition of cyanobacterial blooms.

2 � Materials and methods

2.1 � Study sites and sample collection

Lake Chaohu, which is located in the middle of Anhui Prov-
ince, China, is the fifth-largest shallow freshwater lake in 
China. The lake is commonly divided into three parts: west-
ern lake, central lake, and eastern lake. The western lake 
is evaluated as hypereutrophic status while the central and 
eastern lake stays in mesotrophic status (Shang and Shang 
2007; Yu et al. 2011, 2014). In Lake Chaohu, cyanobacterial 
biomass showed high spatial–temporal changes, tending to 
increase in February and reaching a peak in April at some 
sites due to the growth of Dolichospermum; the second peak 
arrived in July and September and was caused by the rapid 
growth of Microcystis (Ren et al. 2021). Five sampling sites 
were established, and they were named with the initial let-
ters of the rivers entering Lake Chaohu (to avoid confusion, 
sampling site X was named with the initial letter of another 
inflowing river, River Xiage). Sites X and T belong to east-
ern lake, site Z belongs to central lake, and sites S and N 
belong to western lake.

Surface water samples were taken by an organic glass 
hydrophore to analyze the N, P, and Chl. a concentration. 
Surface sediments samples were taken using a Peterson grab 
sampler to analyze P fractionation and sorption behavior, 
EEA, labile organic matter, and Fe. The interstitial water was 
separated from the sediment particles by centrifugation at 
3000 r/min for 20 min. The supernatants were then filtered 
through a 0.45-μm membrane filter for analysis of N and P 
concentration. All samples were analyzed immediately after 
being back to the laboratory.

2.2 � Nutrient forms in water samples

Chl. a was measured using the ethanol extraction method 
(Golterman et al. 1978). Soluble reactive phosphorus (SRP) 
concentration was detected by the molybdate blue method 
(Murphy and Riley 1962). Total P (TP) and dissolved total 
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P (DTP) were determined following digestion by K2S2O8 
according to GB11893-89 issued by State Environmental 
Protection Administration of China. Dissolved organic P 
(DOP) was calculated as DTP-SRP, and particulate P (PP) 
was calculated as TP-DTP. NH4

+-N was determined by the 
indophenol-blue method described by Solórzano (1969) and 
Aminot et al. (1997), NO3

−-N was determined by a UV-
spectrophotometry determination method, and NO2

−-N was 
determined by the α-naphthylamine method (Xu et al. 2005).

2.3 � Nutrient forms in sediments

Sediment P fractionation was carried out according to 
Golterman (1996). This method groups sediment P into 
iron-bound P (Fe(OOH) ~ P), calcium-bound P (CaCO3 ~ P), 
acid-soluble organic P (ASOP), and hot NaOH-extractable 
organic P (Palk).

Ferrous iron (Fe2+) and total iron (TFe) were extracted 
from sediment by HCl and were determined according to 
the 1, 10 phenanthroline spectrometric method (Hauck et al. 
2001). Before TFe was measured, all iron was reduced to 
the ferrous state with hydroxylamine hydrochloride (Stookey 
1970). Ferric iron (Fe3+) was calculated as TFe-Fe2+.

Protein (PRT) analysis was conducted following extrac-
tion with NaOH (0.5  mol/L, 4  h) and was determined 

according to Hartree (1972) and modified by Rice (1982) to 
compensate for phenol interference and expressed as bovine 
serum albumin equivalents. Carbohydrates (CHO) were 
analyzed according to Gerchakov and Hatcher (1972) and 
expressed as glucose equivalents. Lipids were extracted by 
direct elution with chloroform–methanol according to Bligh 
and Dyer (1959) and Marsh and Weinstein (1966).

2.4 � Phosphorus sorption in sediments

Phosphorus sorption characteristics of sediments were stud-
ied by batch incubation experiments (Li et al. 2014). Batch 
P sorption isotherm experiments were conducted in tripli-
cate for sediment homogenates under reducing condition, 
using 0.01 mol L−1 KCl solution containing 0, 0.1, 0.2, 1, 
2, 5, 8, 10, 15, 20, 25, 30, 40, and 50 mg P L−1 KH2PO4 as 
sorption solution matrices. The sealed centrifuge tubes with 
the mixed solution were shaken on a reciprocal shaker at a 
speed of 200 cycles min−1 for 24 h at 25 ± 3 °C. The suspen-
sion was centrifuged at 3500 rpm for 20 min. The superna-
tants were filtered through a 0.22-µm mixed cellulose ester 
membrane and determined for SRP. Phosphorus sorption 
parameters of sediments were simulated by the Langmuir 
and Freundlich isothermal model:

Fig. 1   Map of the study lakes showing the sampling sites
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Langmuir equation: Q = QmaxKLC/(1 + KLC) − Q0L
Freundlich equation: Q = KFCn – Q0F
Q: amount of P sorbed by the solid phase after 24-h equi-
librium (mg kg−1)
C: P concentration in solution after 24 h equilibrium (mg L−1)
Qmax: the maximum P sorption (mg kg−1)
KL: Langmuir adsorption energy parameter (L mg−1)
KF: Freundlich adsorption energy parameter (mg kg−1)
Q0F and Q0L: amount of P sorbed by the solid phase before 
the P sorption experiments (mg kg−1)
n: content (L kg−1)

Equilibrium P concentration (EPC0) was measured by the 
Freundlich equation, where no P sorption or desorption occurs. 
The P sorption maximum (Qmax) was measured by the Lang-
muir equation.

2.5 � Extracellular enzymatic activity in sediments

Heterotrophic microorganisms in sediments produce extra-
cellular enzymes to hydrolyze organic macromolecules, so 
their products can be transported inside the cell and used for  
energy and growth (Schmidt et al. 2021). Extracellular enzy-
matic activity is typically measured by addition of a fluo-
rescently labeled substrate to an environmental sample, and 
hydrolysis is detected either as an increase in fluorescence 
as a fluorophore is cleaved (Hoppe 1983) or as a change in 
molecular weight distribution as a fluorescent substrate is 
hydrolyzed into lower molecular weight products (Arnosti 
1996, 2003). Leucine aminopeptidase activity (LAP) and 
β-D-glucosidase activity (GLU) were measured fluoromet-
rically according to Boetius and Lochte (1994), using the 
methylumbelliferone (MUF)–labeled substrates MCA-leu 

Fig. 2   The comparison of 
chlorophyll a (Chl. a), nitrogen 
(N), and phosphorus (P) species 
in surface water at different 
sampling sites from January 
to December. SRP soluble 
reactive phosphorus, DOP dis-
solved organic phosphorus, PP 
particulate phosphorus, NH4

+-N 
ammonium, NO2

−-N nitrite, 
NO3

−-N nitrate
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(L-leucine-4-methylcoumarinyl-7-amid HCl) and MUF-
glu (MUG-Beta-D-glucopyranoside), respectively. Alkaline 
phosphatase (AP) was analyzed spectrophotometrically as 
p-nitrophenol (p-NP) resulting from the cleavage of phos-
phate from p-nitrophenylphosphate (p-NPP) (Sayler et al. 
1979). Dehydrogenase activity (DHA) was determined by 
UV spectrophotometry according to Neto et al. (2007), with 
triphenyltetrazolium chloride as substrates.

2.6 � Statistical analysis

All samples were analyzed in triplicate and the data are 
expressed as the average. Independent-sample T test was per-
formed using the SPSS 18.0 package (SPSS, Chicago, IL), 
with a value of 0.05 or 0.01 selected for significance Fig. 1.

3 � Results and discussion

3.1 � Phosphorus recycling patterns

The significantly higher Chl. a concentration in western  
lake (sites N and S) in April (P < 0.01, Fig. 2a) and in the 

whole lake from May to September (Fig. 2a) indicated that 
severe algal bloom occurred in western lake in April and in 
whole lake from May to September. Dolichospermum was 
the dominant bloom species in western lake in April, fol-
lowed by Microcystis from May to September in the whole 
lake. However, in April, the SRP concentration of surface 
water in western lake did not obviously decrease as algal 
blooms occurred and P was absorbed by Dolichospermum 
(Fig. 2b), indicating continuous P replenishment from sedi-
ment evidenced by significantly higher Fe(OOH) ~ P in sedi-
ments of western lake (sites N and S) (P < 0.01, Fig. 4a). 
Moreover, in April, the decrease of Fe3+ and the increase 
of Fe2+ as well as the increase of SRP in interstitial water 
in western lake (sites N and S) supported the above conclu-
sion of the desorption of Fe(OOH) ~ P and P release from 
sediment to the interstitial water (Figs. 3a and 4c); that is to 
say, ferric iron was reduced to ferrous iron, finally leading 
to the release into interstitial water of inorganic P as SRP 
from Fe(OOH) ~ P. The re-dissolution of solid Fe(OOH) ~ P 
pools is the most important source of labile P and aggravates 
the P budget in lake water via anaerobic intervals (Yuan 
et al. 2019). Hence, desorption of Fe(OOH) ~ P was mainly 
responsible for P recycling in western lake. In April, the AP 

Fig. 3   The comparison of 
nitrogen (N) and phosphorus 
(P) species in interstitial water 
at different sampling sites from 
January to December. SRP 
soluble reactive phosphorus, 
NH4

+-N ammonium, NO2
−-N 

nitrite, NO3
−-N nitrate



2956	 Journal of Soils and Sediments (2023) 23:2951–2961

1 3

activity showed the higher levels than the other months in 
western lake (sites N and S) (Fig. 5a), suggesting that the 
hydrolysis of organic P may be another P source for the 
growth of Dolichospermum. The Dolichospermum culture 
experiments in different eutrophication scenarios showed 
that the expression of genes involved in P uptake, e.g., those 
involved in P-transport and the hydrolysis of phosphomo-
noesters, was upregulated in P-deficient cultures (Wang  
et al. 2018). AP was regulated by P availability in monocul-
tures of Dolichospermum, but no cell bound extracellular 
phosphatase was found on Microcystis even in the culture 
without P supply (Wan et al. 2019). Therefore, the P sources 
required by Dolichospermum in western lake mainly derived 
from the impulsive release of Fe(OOH) ~ P and the hydroly-
sis of organic P, of which the former is more important.

Hydrolysis of polymers through extracellular enzymes 
is the first and acknowledged rate-limiting step in the 

decomposition of organic matter in aquatic environments 
(Cunningham and Wetzel 1989; Chróst 1992). GLU, LAP, 
and AP are extracellular enzymes hydrolyzing carbohydrates, 
organic N, and organic P and mediating C, N, and P cycling, 
respectively. In western lake, after the decline of Dolichos-
permum, with the increase of algae detritus, the sediment 
labile organic matter (PRT, CHO, and lipid) did not obvi-
ously increase from May to September (Fig. 4b), and extra-
cellular enzymatic activities maintained a constantly high 
level during this period (Fig. 5a–c), indicating that the quick 
organic matter decomposition led to the rapid consumption of 
labile organic matter. The decomposition of organic carbon is 
always accompanied by a shift of redox status expressed by 
DHA (potential of oxidation and dehydrogenation of organic 
compounds) (Simčič 2005), which measures microbial meta-
bolic activity as respiratory electron transport and has proved 
to be a good tool for estimating the respiratory potential of 

Fig. 4   The comparison of 
different P forms, iron (Fe), 
and labile organic matter in 
sediment at different sampling 
sites from January to Decem-
ber. Fe(OOH) ~ P iron-bound 
P, CaCO3 ~ P calcium-bound 
P, ASOP acid-soluble organic 
P, Palk hot NaOH-extractable 
organic P, PRT protein, CHO 
carbo-hydrates
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sediment (Broberg 1984; Blenkinsopp and Lock 1990). 
High respiratory potential (DHA) can trigger the change 
of redox potential and the formation of anaerobic status (Li 
et al. 2016). In this process, the bottom anaerobic status was 
formed expressed as high DHA (Fig. 5d); SRP was con-
tinually regenerated through the desorption of Fe(OOH) ~ P 
and released into the surface water based on the data of the 
continuous decrease of Fe(OOH) ~ P and Fe3+, the increase 
of Fe2+, and a constantly higher SRP concentration in sur-
face water from May to August (Figs. 2b and 4a, c). The AP 
activity did not obviously increase from May to September 
(Fig. 5a), suggesting that extracellular alkaline phosphatase 
did not play a key role in P release during Microcystis bloom. 
At the same time, EPC0 could be used to estimate the func-
tion for sediment to act as sink or source of P and has been 
proved as a key index to indicate the P release potential and 
flux rate from sediments to water (Dong et al. 2011; Fu 
et al. 2022). In this study, compared to central and eastern 
lake (sites X, T, and Z), EPC0 in sediments of western lake 
maintained a higher level from April to August (P < 0.01, 
Fig. 6a), and the Qmax was similar (Fig. 6b), indicating that 

the decline of Dolichospermum and decomposition of labile 
organic matter lead to significantly higher P release potential 
to water column in western lake. The released P was quickly 
utilized by Microcystis, in terms of continuous higher SRP 
and PP in surface water in western lake from May to August 
(Fig. 2b). Therefore, impulsive regeneration and release from 
Fe(OOH) ~ P triggered the Dolichospermum bloom, and then, 
continuous and rapid P release potential drove the transi-
tion from Dolichospermum to Microcystis due to the energy 
saving and competitive advantage for Microcystis to rapidly 
uptake and store inorganic P, which put the coexisting Doli-
chospermum into P stress.

3.2 � Nitrogen recycling patterns

As mentioned above, in April, the Chl. a concentration in 
western lake (sites N and S) was significantly higher than 
that of central and eastern lake (sites X, T, and Z) (P < 0.01, 
Fig. 2a). Nevertheless, the NH4

+-N and NO3
−-N in sur-

face water, as well as NH4
+-N in interstitial water, did not 

decrease but increase in this period (Figs. 2c and 3b). On the 

Fig. 5   The comparison of enzymatic activities in sediment at different sampling sites from January to December. AP alkaline phosphatase, LAP 
leucine aminopeptidase, GLU β-D-glucoside, DHA dehydrogenase activity
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one hand, in March and April, higher LAP activity in west-
ern lake (sites N and S) (Fig. 5b) fueled the NH4

+-N produc-
tion in interstitial water by ammonification. Subsequently, 
NH4

+-N was released into water column and simultane-
ously transformed partially into NO3

−-N in surface water 
due to nitrification. On the other hand, Dolichospermum 
was the dominant bloom species in western lake in April. 
Previous research showed that growth rates of Dolichos-
permum was significantly higher when grown on NH4

+-N 
relative to NO3

−-N, and the existence of NH4
+-N and urea 

significantly lowered N2 fixation of Dolichospermum 
(Kramer et al. 2022). Thus, Dolichospermum growth gave 
priority to NH4

+-N, which inevitably led to the decrease of 
NH4

+-N and the accumulation of NO3
−-N, in terms of the 

lower NH4
+-N and higher NO3

−-N in surface water in May 
(Fig. 2c). Besides, the decline of Dolichospermum produced 
abundance of organic N, which might provide enough N 
source for the breakout of Microcystis bloom.

Organic N produced by Dolichospermum bloom was rap-
idly mineralized into NH4

+-N with Dolichospermum col-
lapse from spring to summer based on the data of continuous 
lower PRT content and higher LAP activity from May to 
September (Figs. 4b and 5b). As mentioned above, organic 
carbon, N, and P decomposition increased from May to Sep-
tember in terms of low sediment labile organic matter (PRT, 
CHO, and lipid) content (Fig. 4b) and a constantly high AP, 
LAP, and GLU in this time (Fig. 5a–c). And NH4

+-N was 

partially released into water column and simultaneously 
transformed into NO3

−-N by nitrification in surface water 
(Li et al. 2021), in terms of the higher NH4

+-N in intersti-
tial water and higher NO3

−-N in surface water before May 
(Figs. 2c and 3b). But from June to October, both NH4

+-N 
and NO3

−-N in surface water were very low (Fig. 2c), which 
may be due to rapid assimilation by Microcystis. Microcystis 
can utilize different forms of inorganic and organic N, with 
the greatest capacity for NH4

+-N uptake and the least for 
glutamic acid uptake (Lee et al. 2015). High concentration 
of NO3

−-N facilitated the dominance of Microcystis, and 
Microcystis displayed faster growth rates in NH4

+-N than 
in NO3

−-N (Tan et al. 2019). Moreover, in the presence of 
SRP enrichment, the maximal uptake velocity of NH4

+-N 
by Microcystis substantially increased without evidence of 
saturation (Yang et al. 2017). Additionally, in this study, 
anaerobic condition limited the nitrification, resulting in 
the NH4

+-N accumulation in interstitial water in summer 
(Fig. 3b), which could provide a continuous N source for 
Microcystis blooms. Thus, we may conclude that in spring, 
NO3

−-N accumulation due to NH4
+-N prior assimilation of 

Dolichospermum initiated the transition from Dolichosper-
mum to Microcystis, and in summer, NH4

+-N rapid regenera-
tion from organic algal detritus remineralization due to the 
decline of Dolichospermum developed Microcystis blooms.

Finally, the decline of Microcystis blooms led to accu-
mulation of sediment labile organic matter (PRT, CHO, and 

Fig. 6   The comparison of phos-
phorus sorption parameter of 
sediment at different sampling 
sites from January to December. 
EPC0 equilibrium phosphorus 
concentration, Qmax phosphorus 
sorption maximum
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lipid), and extracellular enzyme activity decreased due to 
low temperature based on the data of remarkable increasing 
PRT, CHO, and lipid content from October to December and 
decreasing AP, LAP, and GLU in November and Decem-
ber (Figs. 4b and 5a–c), which suggested that labile organic 
matter was stored in sediment at the end of algal bloom and 
can provide abundant N and P for algal bloom the next year.

4 � Conclusions

Dolichospermum was the dominant bloom species in west-
ern lake in April, followed by Microcystis from May to Sep-
tember in the whole lake. The impulsive regeneration and 
release mode from Fe(OOH) ~ P and NH4

+-N regeneration 
from the sediment in spring triggered the Dolichospermum 
bloom. In early summer, the continuous and rapid P release 
potential as well as NO3

−-N accumulation and NH4
+-N 

deficiency due to NH4
+-N prior assimilation by Dolichos-

permum jointly drove the switch from Dolichospermum to 
Microcystis due to the energy saving and competitive advan-
tage of rapidly uptake and store inorganic P as well as a wide 
range of N utilization forms for Microcystis. All these facts 
put the Dolichospermum towards N and P common stress. 
Furthermore, in summer, NH4

+-N rapid regeneration from 
organic algal detritus remineralization due to the decline 
of Dolichospermum developed Microcystis blooms. Hence, 
the mode and pathway of P regeneration and release from 
sediment determined algal bloom species based on algal 
own special P utilization strategies. In detail, pulsed and 
a vast amount of P release facilitated the Dolichospermum 
growth, while continuous and a small quantity of P release 
was in favor of Microcystis growth. Organic N hydrolysis 
from Dolichospermum detritus further supported the devel-
opment of Microcystis bloom.
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