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Abstract
Purpose This study aims to explore the spatio-temporal variation of soil nutrients as well as soil organic matter (SOM), 
and clarify the role of environmental and soil management factors in determining soil nutrients and SOM in farmland over 
Jiangxi Province of Southern China.
Materials and methods Between 2005 and 2012, we collected 16,504 surface soil samples (0–20 cm) from farmland across 
Jiangxi Province. Based on this soil dataset, we summarized the changes in SOM, alkali-hydrolyzable nitrogen (available 
N), available phosphorus (P), available potassium (K), pH, and cation exchange capacity. Then, we used the geostatistical 
method to explore and map the spatio-temporal variability of SOM, and available N, P, and K. Finally, the random forest 
algorithm was used to identify the main factors controlling the variation of SOM and available N, P, and K.
Results and discussion Our results revealed a clear right-skewed trend for the histogram of available P and K, pH, and cation 
exchange capacity in farmland soil of Jiangxi Province. From 2005 to 2012, the average concentrations of SOM and avail-
able P showed an insignificant decreasing temporal trend in the farmland of Jiangxi Province. The average concentrations 
of available N and available K showed a significant increasing trend between 2005 and 2012. In general, most of the soil 
samples had SOM, available N and P content at or above the level of Class 3 (high grade), and available K at or below the 
level of class 4 (moderate grade). The apparent lack of K fertility was detected. Regarding the spatio-temporal variation 
pattern, noticeable changes in the concentrations of SOM and available N, P, and K were detected in most of the region in 
2012 when compared with 2005.
Conclusion Farmland soils in Jiangxi Province had good fertility, and soil nutrients and SOM in farmland showed strong spa-
tial variability. Overall, the climate (e.g., mean annual precipitation and mean annual temperature) and soil management (e.g., 
straw return and chemical fertilizer application) had dominant effects on soil nutrients and SOM, while other factors such as 
relief and soil properties had slight effect. The straw return is a sustainable way to improve soil fertility. Moreover, soil pH 
has a slight impact on soil nutrients and SOM. Great efforts are needed to prevent farmland soils from further acidification.

Keywords Spatial–temporal trend · Farmland · Random forest · Influencing factors · Soil management

1 Introduction

Soil nutrients and soil organic matter (SOM) play a critical 
role in soil quality, plant growth, and nutrient cycling in the 
ecosystem, and they are closely correlated with soil produc-
tivity (Hu et al. 2021a; Farooq et al. 2021). Crop development 
mainly depends on the availability of soil nutrients and SOM. 
Soil nutrients including nitrogen (N), phosphorus (P), and 
potassium (K) as well as SOM are recognized as the most 
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critical mineral components for plants and microorganisms 
(Hu et al. 2021a). In addition, SOM, N, P, and K are closely 
related to a variety of current environmental issues such as 
carbon sequestration, carbon neutralization, and eutrophica-
tion (Hu et al. 2021b; Huang et al. 2021). Therefore, accu-
rate information related to the spatial–temporal variability 
and factors determining soil nutrients and SOM in farmland 
is critical for soil management and agricultural production. 
However, the farmland ecosystem is usually complex due to 
varying conditions (e.g., crop types, soil management prac-
tices, topography, geomorphology and lithology heteroge-
neity, climate factors) (Fu et al. 2021; Wu et al. 2021). All 
of these lead to significant spatial heterogeneity of the soil 
nutrients and SOM (Yan et al. 2021a, b).

Many researchers have conducted studies to analyze the 
spatial or spatio-temporal variability of soil nutrients and 
SOM in various terrestrial ecosystems of different regions  
around the world (Granger et al. 2021; Zhou et al. 2021). Geo-
statistical methods have proved to be an effective tool to reveal 
the spatial variation of soil properties; hence, it has been 
broadly used to predict spatial distribution of soil properties 
at various spatial scales (Hu et al. 2019; Sheng et al. 2022).  
However, the high spatial heterogeneity of soil nutrients 
and SOM, coupled with the limited observations, leads to 
tremendous uncertainty in predicting spatial–temporal varia-
tion of soil nutrients and SOM, primarily when the study was 
conducted at a large spatial scale. At the same time, there 
is growing interest in exploring environmental factors (e.g., 
climate, relief properties) and anthropogenic activities which 
determine the variation of soil nutrients and SOM (Souza 
and Billings 2021). Previous studies have mainly focused on 
analyzing the role of natural factors such as climate condi-
tions, terrain properties, and lithology for the variation of soil 
nutrients and SOM. However, few studies have quantified the 
influence of anthropogenic factors like straw return and chem-
ical fertilizer input on the variation of soil nutrients and SOM 
in farmland (Farooq et al. 2021; Souza and Billings 2021). 
Moreover, the correlations between the soil properties and 
environmental as well as anthropogenic factors are very com-
plex (Peng et al. 2019; Liu et al. 2022); thus, more robust and 
flexible methods are urgently needed to capture complicated 
and non-linear relationships between soil properties and their 
possible controls. Therefore, understanding spatio-temporal 
variation of soil nutrients as well as SOM, and identifying its 
potential controls is of great importance and crucial for imple-
menting efficient and reasonable soil management measures 
to enhance soil fertility and promote agricultural production.

Jiangxi Province has a farmland area of 27,216  km2 and 
produced 21.9 million tons of grain in 2021. Yet, to meet the 
increasing demand for food, the large amount of chemical 
fertilizer is applied and the farmland is intensively culti-
vated to improve food production. Therefore, it is of great 

importance to explore the spatio-temporal variation and 
potential controls of soil nutrients and SOM in the farm-
land of Jiangxi Province. However, current information on 
the spatio-temporal variation and possible controls of soil 
nutrients and SOM is still far from demand.

Therefore, in this study, we aim to explore the spatio-
temporal variation of SOM, and available N, P, and K 
between 2005 and 2012 in farmland throughout Jiangxi 
Province. In addition, we identified the most important 
variables (e.g., straw return, chemical fertilizer input, 
precipitation, temperature, soil properties) which affect 
the variation of SOM, and available N, P, and K. Finally, 
specific recommendations were put forward. The results 
obtained from this study were expected to provide critical 
information for making scientific and efficient farmland 
management policies as well as enhancing food production. 
We hypothesized that (1) the soil nutrients and SOM were 
largely affected by soil management measures, relief, soil 
properties, and climatic conditions; (2) the spatial distribu-
tion of soil nutrients and SOM is uneven in farmland of 
Jiangxi Province; (3) substantial spatial–temporal variation 
of soil nutrient concentration is expected due to the long-
term effect of different soil management measures, relief 
factors, soil properties, and climatic condition; and (4) the 
machine learning methods could well capture the relation-
ships between the concentrations of soil nutrients and SOM 
and multiple covariates; hence, it is an excellent tool to 
identify main factors which determine spatio-temporal of 
soil nutrients and SOM. This study provides crucial infor-
mation for understanding the spatio-temporal variations of 
soil nutrients and SOM in the farmland. In addition, it will 
allow for the optimization of farmland management strate-
gies and policy decisions.

2  Materials and methods

2.1  Study area

We conducted this study in Jiangxi Province, which is 
situated in Southern China. The Jiangxi Province is geo-
graphically located between 24°29′14′′N–30°04′41′′N 
and 113°34′36′′E–118°28′58′′E (Fig. 1). The total area of 
farmland in Jiangxi Province is 27,216  km2, among which  
the areas of paddy field, irrigated farmland, and dry farm-
land are 22,705, 41, and 4470  km2, respectively (https:// bnr. 
jiang xi. gov. cn/ art/ 2021/ 12/ 29/ art_ 35804_ 3,810,534. html)  
(Fig. S1). Jiangxi Province is characterized by a humid sub-
tropical climate, with hot, rainy summers and chilly, dry 
winters. The mean annual temperature of Jiangxi Province 
ranges from 16.3 to 19.5 °C, and the annual precipitation 
varies between 1341 and 1943 mm.

https://bnr.jiangxi.gov.cn/
https://bnr.jiangxi.gov.cn/
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Fig. 1  Map of sampling locations
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2.2  Data collection and chemical analysis

An extensive survey was conducted in farmland across 
Jiangxi Province. A total of 16,504 surface (0–20 cm) soil 
samples were collected between 2005 and 2012 under the 
framework of the soil testing and formulated fertilization 
project which was organized by the Department of the Min-
istry of Agriculture and Rural Affairs of China. The repre-
sentative soil samples were randomly collected by an “S” 
shape pattern on each 0.3–0.5  km2 plot. At each plot, five 
subsamples (with a depth of 20 cm) within a 100-m radius 
were collected, and thoroughly mixed to obtain a composite 
sample of around 1 kg after removing the surface litter. The 
sampling locations were recorded using a portable global 
positioning system. Then, the tone and large roots were 
removed. All soil samples were air-dried, crushed using 
a mortar and a pestle, and then sieved through a 20-mesh 
nylon screen (1 mm aperture size) to determine the con-
centration of SOM, and available N, P, and K. The SOM 
concentration was determined by the dichromate oxidation 
method of Walkley–Black (Nelson and Sommers 1983). The 
available N was extracted with KCl and measured by alka-
line hydrolysis diffusion method (Spargo and Alley 2008). 
The available P was extracted using sodium bicarbonate 
and the concentration was determined by the molybdenum 
blue method (Bao 2000). The available K was determined 
by spectrophotometry and flame photometry (Bao 2000; Hu 
et al. 2021b). Soil pH was analyzed by potentiometer at a 
soil/water ratio of 1:2.5 referring to the national standard 
(NY/T 1377–2007) regulated by the Chinese government 
(Bao 2000). The bulk density was determined using the 
cutting ring (5 cm diameter and 5 cm height) method (Liu 
et al. 2021a, b). The cation exchange capacity was meas-
ured using the ammonium acetate method (Schollenberger 
and Simon 1945). The exchangeable calcium and exchange-
able magnesium were measured using ammonium acetate 
extraction-atomic absorption method (Bao 2000). The soil 
available silicon was measured using the molybdenum blue 
colorimetric methods (Wang et al. 2021a, b, c).

Other information about soil properties, soil manage-
ment, and topography was also recorded when conduct soil 
sampling (Table S1). The raster data of mean annual pre-
cipitation, mean annual temperature, and population density 
with a spatial resolution of 1 km was downloaded from the 
Resources and Environmental Sciences Data Center, Chinese 
Academy of Sciences (RESDC 2017). Relief factors, such as 
slope, aspect, topographic wetness index, topographic posi-
tion index, and multi-resolution valley bottom flatness, is cal-
culated based on the DEM data issued by the European Space 
Agency using SAGA GIS (http:// saga- gis. org/) software. The 
Topographic wetness index is a physical indicator to measure 

the effect of regional topography on runoff flow direction 
and accumulation. The Topographic position index is a top-
ographic position classification identifying upper, middle, 
and lower parts of the landscape. The multi-resolution valley 
bottom flatness is a topographic index designed to identify 
areas of deposited material at a range of scales, based on the 
observations that valley bottoms are low and flat relative to 
their surroundings and that large valley bottoms are flatter 
than smaller ones. The landform is recorded according to the 
expert knowledge when sampling. The landowners provide 
information on the input of N fertilizer, P fertilizer, K ferti-
lizer, and straw return amount.

2.3  Data analysis

The minimum, maximum, mean value, standard devia-
tion, and coefficient of variation (%) of SOM and avail-
able N, P, and K in different years were analyzed using 
the RStudio (R Development Core Team 2013). Hillel 
(1980) divided the variability into three classes: weak 
(< 10%), moderate (10–100%), and strong (> 100%) vari-
ability, based on the coefficient of variation value. The 
statistical analysis and correlation test were employed in 
RStudio (R Development Core Team 2013). The optimized 
experimental semi-variograms in different years were fit-
ted using GS + 9.0 software (Gamma Design Software, 
Plainwell, MI, USA). The random forest models were 
trained using the caret package in RStudio (Liaw 2002). 
All the maps of soil nutrients and SOM in different years 
were produced using ArcGIS (ESRI Inc., Version 10.7).

2.4  Geostatistical analysis

We used geostatistical method to analyze the spatial variation 
and map the spatial distribution of soil nutrients and SOM. 
The experimental semi-variogram was fitted to indicate the 
spatial dependence of soil nutrients and SOM. The experi-
mental semi-variogram could be expressed as (Webster and 
Oliver 2007):

where y (h) represents the semi-variance with spatial lag of 
h, Z(xi) is the value of variable Z at observed site i, and N(h) 
means the number of pairs of soil samples with distance lag 
of h. As one of the most widely used geostatistical methods, 
the ordinary kriging was used to map the spatial distribution 
of soil nutrients and SOM using ArcGIS 10.7 software (Hu 
et al. 2020a).

(1)y∗(h) =
1

2N(h)

N(h)
∑

i=1

[Z(xi) − Z(xi + h)]2

http://saga-gis.org/
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2.5  Random forest

The random forest is a classical and widely used machine 
learning method developed by Breiman (2001). It builds a 
large number of decision trees (500 trees were used in this 
study) and then combines all the tree to generate a random 
forest. The final prediction results are the averaged value 
produced by different individual decision tree. The random 
forest could model the linear or non-linear relationships 
between the dependent variable (SOM, and available N, P, 
and K in this study) and independent variables (like soil 
management factors, climate condition, terrain properties, 
soil properties in this study) (Hu et al. 2020b; Munnaf and 
Mouazen 2022). Moreover, it could quantify the importance 
of independent variables in the constructed model, according 
to how much worse the prediction would be if the independ-
ent variables were randomly permuted (Chen et al. 2019; Jia 
et al. 2020; Yan et al. 2020). Breiman (2001) provides the 
detailed principle of the random forest.

In this study, 24 explanatory variables thought to affect 
SOM, and available N, P, and K were chosen using an exten-
sive literature review and expert knowledge (Table S1). 
These variables covered the lithology, climate, relief, soil 
management, and soil properties. The random forest model 
was constructed to calculate the relative importance of these 
variables. The covariates used in this study and correspond-
ing sources are listed in Table S1.

In addition, the relative importance of different variables 
was calculated by the mean increase in prediction error for 
out-of-the-bag data, which occur as a result of randomly 
permuting each variable while leaving all others unchanged 
(% IncMSE) when running the machine learning models 
(Xie et al. 2021). The formula is as follows:

where Wi was the relative importance of the ith factor, gi 
was the value of %IncMSE for the ith factor, and m was the 
number of covariates.

3  Results

3.1  Descriptive statistics of soil nutrients and SOM

The average concentration of SOM slightly dropped by 
3.6% and decreased from 30.9 to 29.8 g/kg in 2012 when 
compared with 2005 (Table S2). The mean concentration of 
available N grown by 7.8% and increased from 155.8 mg/
kg in 2005 to 167.9 mg/kg in 2012. In terms of available P, 
the averaged concentration dropped by 16.4% and decreased 
from 23.8 mg/kg in 2005 to 19.9 mg/kg in 2012. The mean 

(2)Wi =
gi

∑m

n=1
gi

concentration of available K slightly improved by 5.1% and 
increased from 86.0 mg/kg in 2005 to 90.6 mg/kg in 2012. 
The coefficient of variations of SOM and available N, P, and 
K varied from 30.7 to 74.7% between 2005 and 2012, which 
indicates moderate variability of soil nutrients and SOM con-
centration in the farmland of Jiangxi Province (Hillel 1980).

The mean pH value in the farmland of Jiangxi Province 
varied between 5.1 and 5.3, which belongs to the acidic 
grade as regulated by the Office of the National Soil Survey 
in China (1998). The mean concentration of cation exchange 
capacity changed between 6.0 and 6.4 cmol/kg. As indicated 
by the standard issued by the Office of the National Soil 
Survey in China (1998), it illustrates that farmland soil in 
Jiangxi Province has a weak ability to maintain fertility. In 
addition, a right-skewed trend was detected for the histogram 
of SOM and available N, P, and K, pH, and cation exchange 
capacity (Table S2, Fig. S2). This means the value of the 
SOM and available N, P, and K, pH, and cation exchange 
capacity deviate from the normal distribution. It also indi-
cates that the mean values of the SOM and available N, P, 
and K, pH, and cation exchange capacity tend to higher 
than corresponding median values due to existing of a few 
extremely highly values (Fig. S2).

3.2  Temporal trend of soil nutrients and SOM

The boxplot of SOM and available N, P, and K and fitted 
temporal trends of mean between 2005 and 2012 are pre-
sented in Fig. 2. The averaged concentration of SOM and 
available P showed insignificant temporal trend between 
2005 and 2012 (p = 0.93), whereas the mean concentration 
of available N (p < 0.05) and available K (p < 0.01) presented 
a significant increasing trend.

3.3  Geostatistical analysis of soil nutrients and SOM

The optimized fitted semi-variogram models for the SOM 
and available N, P, and K in different years are listed in 
Table S3. The high R2 value of most of experimental semi-
variogram models indicate that the fitted semi-variogram 
models could well reveal the spatial variation of soil nutri-
ents and SOM (Table S3). The exponential model gives the 
best fit for the experimental semi-variogram models of soil 
nutrients and SOM in most of the years.

The nugget variance  (C0) represents the experimental 
error and field variation within the minimum sampling inter-
val (Xia et al. 2019; Hu et al. 2022). The sill is commonly 
considered to be the variogram value where the variogram 
points or function flatten off at increasing distance (Webster 
and Oliver 2007; Xia et al. 2021). The nugget to sill ratio 
 (C0/(C +  C0), %) represents the proportion of spatial varia-
tion caused by random factors. When the  C0/(C +  C0) ratio is 
less than 25%, it means strong spatial dependence. When the 
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Fig. 2  Temporal trend of soil available nitrogen (a), available phospho-
rus (b), available potassium (c), soil organic matter (d), pH (e), cation 
exchange capacity (f) in the farmland of Jiangxi Province. The upper 
figures are the boxplot of soil properties in each year. The blue point 

indicates the mean value of soil properties in each year. The solid orange 
line indicates the fitted linear temporal trend of each soil property. The 
grey area means the 95% confidence interval of the fitted temporal trend
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Fig. 2  (continued)
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 C0/(C +  C0) ratio is between 25 and 75%, it means moder-
ate spatial dependence. When the  C0/(C +  C0) ratio is larger 
than 75%, it means weak spatial dependence (Webster and 
Oliver 2007; Hu et al. 2017). As shown in Table S3, the  C0/
(C +  C0) ratio of different soil nutrients and SOM in differ-
ent years varied between 50.0 and 89.9%. Among which, 
the  C0/(C +  C0) ratio of available N in 2012 and available P 
in 2005 and 2012 is the smallest, while the  C0/(C +  C0) ratio 
of available K in 2008 is the largest. This indicates that the 
soil nutrients and SOM showed weak to moderate spatial 
dependency in the farmland of Jiangxi Province.

The spatial range of soil nutrients and SOM in different 
years changed between 12.8 and 166.2 km. The spatial range 
of available K in 2011 was the smallest, while the spatial 
range of SOM in 2012 was the largest. The spatial range of 
available K showed increasing trend, while the spatial range 
of SOM, available N, and available P violently fluctuated 
between 2005 and 2012.

3.4  Spatial–temporal variation of soil nutrients 
and SOM

3.4.1  Spatial–temporal variation of SOM

Changes were observed for the SOM concentration in differ-
ent regions between 2005 and 2012 (Fig. 3). The high value 
of SOM concentration mainly appeared in the central part 
of Jiangxi Province, while the low value of SOM concentra-
tion mainly observed in Northern and Southern regions. As 
shown in Fig. 3a, the value of SOM clearly decreased from 
2005 to 2012 in farmland of the central part of Jiangxi Prov-
ince, especially in the plain around Poyang Lake, while the 
SOM concentration in the farmland of the eastern, western, 
and southeastern parts of Jiangxi Province increased.

3.4.2  Spatial–temporal variation of available nitrogen

The general spatial pattern of available N in farmland of 
Jiangxi Province keeps stable between 2005 and 2012 
(Fig. 4). The high value of available N was mainly detected 
in the central part of Jiangxi Province, while the low value 
majorly discretely distributed in western, northern, and 
southern regions of Jiangxi Province. Great difference was 
observed for the temporal change of the concentration of 
available N in different regions. The available N in farmland 
in the central part of Jiangxi Province decreased. In contrast, 
the available N in the western and southern region increased 
between 2005 and 2012 (Fig. 4i).

3.4.3  Spatial–temporal variation of available phosphorus

Between 2005 and 2012, the high concentration of available 
P in farmland is mainly observed in the central and eastern 

parts of Jiangxi Province, while the low value was primarily 
detected in the Northern part and plain around the Poyang 
Lake (Fig. 5). In addition, the spatial pattern of available P 
concentration considerably changed from 2005 to 2012. The 
available P concentration in farmland in the southern, west-
ern, and eastern parts of Jiangxi Province slightly increased. 
Especially, the available P concentration in farmland in the 
southeastern part greatly increased, while available P con-
centration in the farmland of the central region decreased 
from 2005 to 2012.

3.4.4  Spatial–temporal variation of available potassium

Clearly, change was taken place for the spatial pattern of 
available K concentration in farmland of Jiangxi Province 
from 2005 to 2012 (Fig. 6). Concentration of available K 
in northern part kept at high level while in southern and 
western and eastern part kept at low level between 2005 
and 2012. In addition, the high concentration and low value 
of available K are crosswise distributed in the central part 
of Jiangxi Province. In terms of temporal trend, the avail-
able K concentration in the central part of Jiangxi Province 
increased, while available K concentration in most regions of 
the southern, western, and eastern parts decreased between 
2005 and 2012 (Fig. 6i).

3.4.5  General spatial pattern of soil nutrients and SOM 
during whole the study period

By compiling all the soil samples collected between 2005 
and 2012, we produced the maps of different soil nutrients 
and SOM during whole the study period (Fig. 7). Our results 
indicate that the high values of SOM are mainly observed in 
farmland of the central part of Jiangxi Province, while the 
low values of SOM were mostly detected in northern part 
throughout the study period (Fig. 7a). In terms of available 
N, the high values are mainly located in the central part 
and plains around the Poyang Lake, while the low value is 
mainly situated in the southern and northern parts of Jiangxi 
Province (Fig. 7b). Regarding available P, the high values 
are primarily distributed on the central and southwestern 
part of Jiangxi Province. In contrast, the low value is pri-
marily observed in the western and eastern part (Fig. 7c). 
For the available K, the high values are concentrated in the 
central parts and plains around Poyang Lake and the low 
values are concentrated in the eastern and southeastern parts 
of Jiangxi Province.

3.5  Changes of soil fertilizer grades in the farmland 
of Jiangxi Province

As regulated by the national standard of nutrients classifi-
cation issued by the Chinese government, the soil samples 
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Fig. 3  Spatio-temporal variation of soil organic matter (SOM) in the farmland of Jiangxi Province
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Fig. 4  Spatio-temporal variation of alkali-hydrolyzable nitrogen (AN) in the farmland of Jiangxi Province
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Fig. 5  Spatio-temporal variation of available phosphorus (AP) in the farmland of Jiangxi Province
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Fig. 6  Spatio-temporal variation of available potassium (AK) in the farmland of Jiangxi Province
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Fig. 7  Spatial pattern of soil organic matter (SOM) (a), alkali-hydrolyzable nitrogen (AN) (b), available phosphorus (AP) (c), available potas-
sium (AK) (d) in the farmland of Jiangxi Province which compiled all the soil samples collected between 2005 and 2012
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were classified into six grades: class 1 (extremely high), 
class 2 (very high), class 3 (high), class 4 (moderate), class 
5 (low), and class 6 (very low) (Table S4). The proportion of 
soil samples with SOM concentration at class 1 and class 2 
decreased from 2005 to 2012, while the proportion of class 
3, class 4, and class 5 increased. The SOM concentration 
of most of soil samples belongs to class 1 and class 4 from 
2005 to 2012.

The ratio of soil samples with available N concentration 
which belongs to classes 1, 4, 5, and 6 slightly decreased, 
while the proportion of soil samples with available N con-
centration which belongs to classes 2 and 3 increased from 
2005 to 2012 (Table S5). In terms of the available P, the 
proportion of soil samples with available P concentration 
which belongs to class 1 dramatically dropped by 11.7%. 
In contrast, the proportion of soil samples which belong to 
class 5 slightly decreased and the proportion of soil samples 
which belong to classes 2, 3, and 4 increased. For available 
K, the proportion of soil samples with available K concen-
tration which belongs to classes 1, 2, 5, and 6 increased, 
while the proportion of soil samples which belong to classes 
3 and 4 decreased. It is worth noting that the apparent lack of 
K fertility is detected in farmland of Jiangxi Province since 
the available K concentration in most soil samples belongs 
to classes 3, 4, 5, and 6. Lacking K would lead to the delay 
or advance of the natural growth and development process 
of crop hence cause reduction of quality and yield of crop. 
Therefore, applying K fertilizer is recommended to enhance 
the K nutrient supply for the crop.

3.6  The effects of different covariates on soil 
nutrients and SOM

We also quantified the relative importance of variables for 
affecting soil nutrients and SOM variation in farmland of 
Jiangxi Province (Fig. 8), and listed the top ten most impor-
tant variables for different soil nutrients and SOM (Table 1). 
The results indicate that straw return amount, mean annual 
precipitation, and mean annual temperature were the most 
important variables for affecting variation of SOM. At lower 

magnitude, elevation, population density, the input of N fer-
tilizer, the input of phosphate fertilizer, the input of potash 
fertilizer, available silicon, and multi-resolution valley bot-
tom flatness also affected variation of SOM. These factors 
were ranked as the top ten variables for affecting variation 
of SOM. Concerning available N, the mean annual pre-
cipitation, straw return amount, mean annual temperature, 
population density, elevation, N fertilizer, potash fertilizer, 
available silicon, multi-resolution valley bottom flatness, 
and phosphate fertilizer were the top ten most important 
variables. In terms of available P, the mean annual precipi-
tation, mean annual temperature, available silicon, eleva-
tion, population density, N fertilizer, phosphate fertilizer, 
potash fertilizer, multi-resolution valley bottom flatness, 
and exchangeable calcium were identified as most important 
variables which control variation of available P. Concerning 
available K, mean annual temperature, mean annual precipi-
tation, elevation, population density, crop rotation system, 
soil available silicon, potash fertilizer, phosphate fertilizer, 
N fertilizer, and pH have the largest influence on variation 
of available K. Overall, the climate (e.g., mean annual tem-
perature, mean annual precipitation) and soil management 
(e.g., straw return amount, population density, crop rotation 
system, N fertilizer, phosphate fertilizer, potash fertilizer) 
had larger effects on variation of soil nutrients and SOM.

4  Discussion

4.1  Comparison with others regions in China

Overall, most soil samples had concentrations of SOM, 
and available N and P at or above the level of class 3 (high 
grade). This indicates the farmland in Jiangxi Province could 
well supply SOM and available N and P for crop growth. 
In contrast, the concentration of available K in most soil 
samples belongs to or below the level of class 4 (moder-
ate grade). This reveals relatively low concentrations of 
available K in farmland soils, and more K fertilizer input 

Table 1  Top ten most importantvariables (variables with 10 largest 
value of % IncMSE) for affecting variationof different soil nutrients. 
The yellow color represents the anthropogenicfactors, the green color 

represents the climate factors, the brown color representsthe relief fac-
tors, the purple color represents the soil properties

Soil properties TOP1 TOP2 TOP3 TOP4 TOP5 TOP6 TOP7 TOP8 TOP9 TOP10
Soil organic matter SR MAP MAT Ele PD NF PF KF ASi MRVBF

Available Nitrogen MAP SR MAT PD Ele NF KF ASi MRVBF PF

Available Phosphorus MAP MAT ASi Ele PD NF PF KF MRVBF ECa

Available Potassium MAT MAP Ele PD CRS ASi KF PF NF pH

MAP mean annual precipitation, MAT mean annual temperature, Ele elevation, PD population density, NFinput of nitrogen fertilizer, PFinput of 
phosphate fertilizer, KFinput of potash fertilizer, ASiavailable silicon, MRVBFmulti-resolution valley bottom flatness, ECaexchangeable calcium, 
CRS croprotation system
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Fig. 8  The relative importance of different variables which affect vari-
ation of soil organic matter, available nitrogen, available phosphorus, 
available potassium based on % IncMSE (MAP means mean annual 
precipitation, MAT means mean annual temperature, Ele means eleva-
tion, PD means population density, NF means input of nitrogen ferti-
lizer, PF means input of phosphate fertilizer, KF means input of potash 

fertilizer, ASi means available silicon, MRVBF means multi-resolution 
valley bottom flatness, EMg means exchangeable magnesium, ECa 
means exchangeable calcium, CRS means crop rotation system, CEC 
means cation exchange capacity, PM means parental material, TLD 
means tillage layer depth, TWI means topographic wetness index, ST 
means soil type, SC means soil class, LF means landform
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is urgently needed, although the average concentration of 
available K increased by 5.1% during the study period.

In this study, we compared soil pH, SOM, and available 
N, P, and K in other regions of China by lumping all the 
data collected from different years (Table S6). As shown 
in Table S6, the mean soil pH (5.21) in the farmland of 
Jiangxi Province was lower than these of Hunan Province 
and Guizhou Province and close to the soil pH in farmland 
of Zhejiang Province. The mean SOM in Jiangxi Province 
was30.9 g/kg and belongs to a very high degree (Table S4). 
It was higher than the mean SOM concentration in Sichuan 
Province, Jiangsu Province, Fujian Province, and Beijing 
City, while lower than those in Guizhou Province, Hunan 
Province, Zhejiang Province, and Northeast China. The 
mean available N in the farmland of Jiangxi Province was 
164.3 mg/kg and belongs to extremely high grade, which 
was the highest among all the regions listed in Table S6. The 
mean available P concentration in farmland soils of Jiangxi 
Province was 20.6 mg/kg and belongs to a very high grade. 
It was higher than those in Sichuan Province, Guizhou 
Province, Jiangsu Province, and Zhejiang Province, while 
lower than those in Liaoning Province, Hunan Province, 
Jilin Province, Fujian Province, Beijing City, and Northeast 
China. The mean available K in the farmland soil of Jiangxi 
Province is 87.43 mg/kg and belongs to the moderate grade 
(Table S4). It was higher than those in Sichuan Province, 
Guizhou Province, Jiangsu Province, and Zhejiang Province 
but lower than those in Liaoning Province, Hunan Province, 
Jilin Province, Fujian Province, Beijing City, and Northeast 
China. Overall, the soil nutrients and SOM in farmland soils 
of Jiangxi Province are at a high level.

4.2  Effects of climate factors on soil nutrients and SOM

Our results indicate that the climate factors (mean annual 
precipitation, mean annual temperature) have the most sig-
nificant effect on the variation of soil nutrients and SOM 
in the farmland of Jiangxi Province (Figs. 8 and 9). Many 
researchers have proved that temperature and precipitation 
could greatly affect the decomposition process of SOM 
through the alteration of soil temperature, hydrological 
cycle, soil moisture, and microbial activity (Pregitzer and 
King 2005; Yan et al. 2021a, b). Among which, the changes 
in soil moisture were proved as a consequence of climate 
change and which could then alter soil nutrient availability 
as well as soil–plant microbial interactions (Emmett et al. 
2004). Yuan et al. (2017) revealed that soil carbon, N, and 
P concentrations generally decreased with water addition in 
manipulative experiments but increased with annual precipi-
tation along environmental gradients. Osland et al. (2018) 
reported that at the regional scale, the climate has a consid-
erable influence on SOM. Yu et al. (2018) demonstrated that 
the SOM concentration decreased with the increase of mean 

annual precipitation in subtropical China. Li et al. (2020) 
revealed a moderately negative correlation between SOM 
and mean annual temperature. 

Moreover, the temperature and precipitation could also 
affect the plant cover and crop system in different regions, 
resulting in changes of the plant uptake of soil nutrients, 
which then indirectly change the cycles of soil nutrients. 
Pregitzer and King (2005) reported that plant nutrient uptake 
is influenced by changes in soil temperature. Matias et al. 
(2011) indicated that higher precipitation could boost micro-
bial and plant-nutrient uptake, and hence achieve nutrient 
balance. All of these studies confirmed the crucial role of 
climate factors on the variation of soil nutrients and SOM.

4.3  Effects of soil management measures on soil 
nutrients and SOM

Our results found that soil management factors such as straw 
return and chemical fertilizer input essentially affected the 
variation of soil nutrients and SOM in the farmland of 
Jiangxi Province (Figs. 8 and 9). Many studies have con-
firmed that straw return could improve soil fertility, allevi-
ate nutrient leaching, and increase crop yield and nutrient 
use efficiency (Wang et al. 2021a, b, c; Cui et al. 2022; Wu 
et al. 2022). Crop straw is a post-harvest waste material that 
can function as organic fertilizer. It is an important source 
of SOM and soil nutrients like N, K, magnesium, and sulfur 
in farmland (Zhu et al. 2010). Wang et al. (2015) found that 
straw return significantly increased the SOM and total N 
concentration by 10.1% and 11.0%, respectively. Zhang et al. 
(2021a, b) also found that straw return was the most effective 
way to conserve N in soil and could significantly reduce N 
runoff by 11.6%. Cui et al. (2022) revealed that straw return 
significantly increased the concentrations of SOM and avail-
able P over 4-year period.

However, Zhu et al. (2010) found a negative effect of 
straw return under initial high concentration of SOM, and a 
positive impact under initial moderate level on crop yield. In 
addition, the way of straw return to the field and the balance 
of soil nutrients can also affect the effectiveness of straw 
return (Huang et al. 2021; Hu et al. 2022). Moreover, exces-
sive straw return can lead to imbalanced soil carbon and N 
and P stoichiometry (Jin et al. 2020). Thus, further surveys 
and deeper analyses are necessary to highlight the effect of 
straw return on soil nutrients and SOM.

The application of chemical fertilizer could also greatly 
affect soil nutrient variation. Generally, the input of chemi-
cal fertilizer could improve soil nutrient supply. However, 
as presented in Fig. 9, the application amount of N and K 
fertilizer per hectare showed a significantly decreasing trend, 
while the P fertilizer gave a non-significantly decreasing 
trend during the study period. This is inconsistent with 
the temporal trend of available N and K in the study area 
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Fig. 9  Temporal trend of annual application rates (kg/ha) of nitrogen fertilizer (a), phosphate fertilizer (b), and potash fertilizer (c) per hectare in 
the farmland of Jiangxi Province (kg/ha)
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(Fig. 2). It indicates an increasing utilization efficiency of 
N and K fertilizer in Jiangxi Province. It is also revealed 
that the soil nutrient and SOM variation are also affected by 
some other factors, such as soil pH and the microbial com-
munity, as well as application strategy of chemical fertilizer 
(Zhalnina et al. 2015). Unreasonable fertilization and over-
fertilization can lead to adverse effects such as an imbalance 
of soil nutrients or even a decline of soil fertility (Fulford 
et al. 2018). Therefore, more attention should be paid to 
increasing the utilization efficiency of chemical fertilizers 
instead of overuse of chemical fertilizers, hence reducing the 
related environmental risks and economic costs of the land-
owner (Zhao et al. 2014). Specifically, chemical fertilizers 
combined with straw return can improve the availability of 
the nutrient, which reduces the input of chemical fertilizers 
and thus plays a positive role in maintaining nutrient balance 
(Wang et al. 2022).

Crop rotation is another major factor, which determines 
the variation of soil nutrients and SOM (Figs. 8 and 9). It can 
maintain soil fertility, improve soil physicochemical proper-
ties, increase soil microbial diversity, and affect various natu-
ral processes such as N-enrichment of the soil by leguminous 
plants (Malobane et al. 2020; Town et al. 2022). Using dif-
ferent species in rotation allows for increased SOM and adds 
nutrients to the soil (Malobane et al. 2020; Hu et al. 2022). 
Song et al. (2016) reported an increased soil organic carbon 
concentration in the rice–wheat rotation system compared to 
the conventional plow system. Haruna and Nkongolo (2019) 

revealed that no-till management and corn-soybean rotation 
significantly improve total carbon compared with continuous 
corn and soybean production. Malobane et al. (2020) showed 
that crop rotation increased soil N by 6.0% in marginal soils 
of South Africa. Town et al. (2022) found that different crop 
rotations affect the bacterial and fungal communities in the 
root, rhizosphere, and bulk soil, and impact soil microbial 
processes, which then essentially affect the availability of soil 
nutrients and crop yield. However, further work is needed to 
explore and compare the effects of various crop rotations on 
soil nutrients, SOM, and crop yield.

4.4  Effects of soil properties on soil nutrients and SOM

Compared with climate factors and soil management meas-
ures, the soil properties like soil available silicon, exchange-
able Ca, and pH had slight but significant effects on the 
variation of soil nutrients and SOM (Figs. 8 and 9). As 
shown in Fig. 10, the soil available Si was significantly and 
positively correlated with available K. Meanwhile, it was 
significantly and negatively correlated with SOM and avail-
able N and P, which is consistent with the results of Yanai 
et al. (2016). Silicon is the second most common element 
in the Earth’s crust, and it has been recognized as beneficial 
for crop production by alleviating various biotic and abiotic 
stresses (Skinner 1979; Wang et al. 2020). Silicon could 
modify the uptake and acquisition of nutrients differently for 
different plant species (Islam and Saha 1969; Greger et al. 

Fig. 10  The correlation between soil nutrients and soil properties. SOM, 
soil organic matter; AN, alkali-hydrolyzable nitrogen; AP, available P; 
AK, available potassium; MAP, mean annual precipitation; MAT, mean 

annual temperature; ASi, available silicon; ECa, exchangeable calcium; 
EMg, exchangeable magnesium; CEC means cation exchange capacity
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2018). According to Wallace (1989) and Ma et al. (1990), 
the uptake of N, P, K, Mg, and Ca by the plants is influenced 
by silicon in different ways. De Tombeur et al. (2020) also 
confirmed that the SOM and soil available Si are closely 
related to phytolith concentration, releasing silicon in soil 
solution through dissolution. 

The exchangeable Ca is significantly and positively cor-
related with SOM and available N and K. In contrast, it was 
significantly but negatively linked to available P. High concen-
trations of exchangeable calcium will hinder the uptake of soil 
nutrients by crops since the cation  Ca2+ can directly compete 
with other soil nutrients on adsorption sites (Mei et al. 2016).

Moreover, the pH correlated significantly and positively 
with available K while negatively with SOM and available 
N, which is consistent with previous studies, such as Zhao 
et al. (2011) and Qian et al. (2015). This may attribute to the 
fact that the microbial decomposition and transformation of 
straw returning to the field could increase the concentration 
of SOM. It can also lead to the increase of cellulose, lignin, 
polysaccharide, and humic acid, which may decrease soil 
pH. The mean value of soil pH in Jiangxi Province was 5.2 
and belongs to the acidic grade (Table S6). Moreover, Guo 
et al. (2018) reported that excessive fertilizer application and 
acid rain intensity led to an overall 0.6-unit decrease of soil 
pH over the farmland of Jiangxi Province between the 1980s 
and the 2010s. Soil pH significantly influences the concen-
tration of various nutrients and SOM in the soil by affect-
ing the availability of soil nutrients and microbial activity 
(Zhalnina et al. 2015; Chen et al. 2019). Wright et al. (2009) 
reported that soil pH strongly affected the availability of soil 
nutrients. For example, the increase of soil pH contributes 
to the rise of negative charge of the colloid and the change 
of the colloid-adsorbed chaperone ions, which leads to the 
improvement of K availability (Qian et al. 2015).

Additionally, we found no significant relationship 
between the cation exchange capacity and SOM (Table 1), 
which is consistent with the result reported by Petersen et al. 
(1996). However, some other researchers reported signifi-
cant relationships between cation exchange capacity and 
SOM (Lourenco et al. 2021; Zhao et al. 2022). The relation-
ship between cation exchange capacity and SOM may also 
be affected by many other factors, such as clay type, parental 
material, and soil texture (Jackson et al. 1986; Solly et al. 
2020). This may lead to the various relations between cation 
exchange capacity and SOM reported by different studies. 
Thus, further investigation is still necessary to make this 
issue more clearly.

4.5  Effects of relief on soil nutrients and SOM

In this study, we found relief factors (e.g., elevation and 
Multi-resolution valley bottom flatness) had small but sig-
nificant effects on soil nutrients and SOM. The relief factors 

could indirectly affect the concentrations of soil nutrients 
and SOM through redistribution of water and radiation in 
soil, and migration of soil nutrients and SOM (Fiedler et al. 
2004; Moser et al. 2009). For example, in soils with high 
moisture, irons play a critical role in P adsorption, retention, 
and release (Aldous et al. 2005), while Al can likewise affect 
P availability. Bruland and Richardson (2005) confirmed 
that the decreasing inorganic N and total P concentrations 
leads to the micro-topographic gradient from higher to lower 
elevations. Clemens et al. (2010) found that the middle and 
lower slope positions are the most prone to erosion and long-
term intensive tillage led to poor soil fertility in this position. 
Furthermore, the topographical factors can also affect delin-
eating of agricultural management zones and the selection 
of crop planting systems (Pilesjo et al. 2005); hence affect 
the soil nutrient recycling.

4.6  Limitations and recommendations

Although we made some progress in this study, there are still 
several limitations, which need to be overcome in further 
work. Firstly, in this study, different number of soil samples 
is taken in different years. The soil sampling locations also 
varied in different years, which may pose bias on the spatio-
temporal variation prediction. Secondly, some studies have 
reported apparent intra-annual variations in soil nutrients 
and SOM (Conyers et al. 1997; Winterdahl et al. 2014). 
For example, Conyers et al. (1997) revealed a complex and 
fluctuating intra-annual temporal trend of soil water con-
tent, pH, and exchangeable aluminum. The soil samples in 
this study were collected in different months over several 
years. Nevertheless, due to limited data availability, we can 
only explore the inter-annual variability of soil nutrients 
and SOM, and hard to explore the intra-annual variation of 
nutrients and SOM. In addition, soil nutrients and SOM are 
affected by many factors, and the interactions between these 
factors are not fully understood (Hu et al. 2022). Moreover, 
in this study, we analyzed the spatial–temporal variation of 
soil nutrients and SOM by separately producing maps of soil 
nutrients and SOM in different years using the geostatisti-
cal method. This way neglects the temporal dependence on 
soil nutrients and SOM. Finally, some information, such as 
the amount of straw return and input of chemical fertilizers, 
is provided by the landowners, which may lead to bias on 
the data due to record errors, although many measures have 
been taken to ensure the reliability and quality of the dataset.

Nevertheless, our results could still provide important and 
valuable implications for soil management and sustainable 
agriculture development. First of all, our study confirmed 
the practical and vital role of straw in enhancing soil fertil-
ity and soil carbon sequestration in the farmland. This is 
crucial for archiving sustainable agriculture, carbon neutrali-
zation strategy, and regulating climate changes, and could 
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also contribute to realizing sustainable development goals 
adopted by the United Nations (Huang et al. 2020; Liu et al. 
2021a, b). Secondly, our results indicate that the soil nutri-
ents and SOM in the farmland of Jiangxi Province are at a 
high grade. As presented in Figs. 2 and 9, reduced use of 
chemical fertilizers did not lead to a reduction in availabil-
ity of nutrients and SOM. This enlightens us that environ-
mentally friendly methods like straw return, coupled with 
appropriate agricultural management measures, can fill the 
gaps between the supply of soil nutrients and chemical fer-
tilizer input. Finally, the nutrients and SOM usually showed 
clear intra-annual variation during different growth stages 
of crops (Conyers et al. 1997; Xiang et al. 2022); thus, more 
attention should be paid to monitor the intra-annual varia-
tion of soil nutrients and SOM. When the study is focused 
on analyzing the inter-annual variability of soil nutrients and 
SOM, the sampling time should be as consistent as possible 
to reduce the bias caused by intra-annual variation of soil 
nutrients and SOM.

5  Conclusion

This study revealed that SOM and available P showed an insig-
nificant decreasing trend, while the available N and K showed 
a significant increasing trend in the farmland soils across 
Jiangxi Province during the study period. The soil nutrients 
and SOM showed weak to moderate spatial dependence in 
the farmland. In addition, clear spatio-temporal variability was 
detected for soil nutrients and SOM. Referring to the national 
standard of China, the SOM and available N and P in most 
soil samples are kept at a relatively high level. In contrast, the 
concentration of available K in most soil samples is kept at a 
relatively low level. This highlights the urgent need for K fer-
tilizer in the farmland. Finally, climate and soil management 
factors have dominant impacts on soil nutrient variation. The 
straw return is widely applied in farmland due to its benefit on 
improving soil fertility and enhancing carbon sequestration.
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