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Abstract
Purpose This research investigates the capability of biochar (BC)–supported nanoscale zero-valent iron (nZVI) composite 
(nZVI/BC) with strong adsorption and reduction properties for immobilization of hexavalent chromium (Cr(VI)) in Cr(VI)-
polluted soil.
Methods Liquid phase reduction method was used to prepare nZVI and nZVI/BC. Cr-contaminated soils were amended with 
BC, nZVI, and nZVI/BC. Toxicity characteristic leaching procedure (TCLP)–leachable Cr(Cr(VI)) was measured to evaluate 
the immobilization efficiency by three materials. The sequential extraction procedure (SEP) method was applied for Cr frac-
tion analysis. The changes of soil properties and the reaction mechanism between Cr(VI) and nZVI/BC were also analyzed.
Results and discussion NZVI/BC exhibited a superior capacity for reducing TCLP-leachable Cr(VI) than nZVI and BC. The 
fraction analysis suggested that nZVI/BC could effectively reduce the toxicity of Cr(VI) by promoting the transformation of 
more accessible forms (exchangeable (EX)) into less accessible forms (iron-manganese oxides-bound (OX)). Compared with 
nZVI, the addition of BC and nZVI/BC could improve soil properties during a short term. X-Ray photoelectron spectros-
copy (XPS) analysis showed that the redox reaction might be the main reaction mechanism between Cr(VI) and nZVI/BC.
Conclusion NZVI/BC exhibited superior remediation capacity for Cr(VI)-polluted soil due to its high reduction and adsorp-
tion capacity. Moreover, those nano-particles could be recovered by magnetic separation after remediation process, and the 
recovery rate could reach more than 60%. Hence, nZVI/BC had a valuable utilization for the immobilization of Cr(VI) in soil.

Keywords Biochar · Nanoscale zero-valent iron · Cr(VI)-polluted soil · Magnetic separation · Fe(III)–Cr(III) coprecipitant

1 Introduction

Over the years, due to human and industrial activities, soils 
have been contaminated by heavy metals (HMs) (Tu et al. 
2020). HMs are generally highly toxic and undegradable in 
the environment, which makes them a huge threat to humans 
and ecosystems (Geng and Wang 2019). As a common HM 

element, chromium (Cr) is widely abundant in soil environ-
ment (Megharaj et al. 2003). Among the several chemical 
species of Cr, trivalent chromium (Cr(III)) and Cr(VI) are 
the relatively stable oxidation states of Cr that exist in soil 
medium (Kotaś and Stasicka 2000). Compared with Cr(III), 
Cr(VI) is far more harmful to human health due to its high 
toxicity (Shi et al. 2011).

Various treatment technologies, such as phytoremedia-
tion, microbial remediation, and soil washing, have been 
applied for soil remediation (Sarwar et al. 2017). However, 
these technologies have low remediation efficiency and are 
expensive (Wang et al. 2021). Being a material prepared 
by pyrolysis technology (heating under high temperature 
with little or no oxygen), Biochar (BC) has strong adsorp-
tion capacity due to its unique pore structure and various 
surface functional groups, which can be applied for HMs 
removal (Ahmed et al. 2021). Nowadays, many researchers 
focused on the modification of BC, especially the synthesize 
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of BC-based nanocomposites which combines the advan-
tages of BC with nano-materials (Tan et al. 2016).

Nanoscale zero-valent iron (NZVI) is effective in the 
treatment of Cr in aqueous system (Liu et al. 2009). Due 
to its strong reducing ability, the toxic Cr(VI) can be con-
verted to non-toxic Cr(III) (Singh et al. 2011). However, the 
agglomeration effect of nZVI particles is strong due to its 
magnetic interaction, and it is easily oxidized (Xu and Zhao 
2007). Using BC as a carrier of nZVI to synthesize a new 
material has been documented by several researchers (Miao 
et al. 2021; Su et al. 2016). The specific structure and unique 
surface property of BC makes it an outstanding supporting 
material to prevent agglomeration of nZVI, which enhances 
the stability of nZVI particles, thereby increasing its remedi-
ation efficiency (Devi and Saroha 2014). Over years, NZVI/
BC had been used for Cr(VI) removal in aqueous system, 
while there are still a few research on remediation of Cr(VI)-
polluted soil by nZVI/BC.

In our study, pyrolysis from municipal sewage sludge 
(MSS) was applied to prepare BC. Liquid phase reduction 
method was used to prepare nZVI/BC. This study aimed to 
(1) evaluate the potentials of nZVI/BC for the remediation 
of Cr-contaminated soil and (2) explore the reaction mecha-
nism between nZVI/BC and Cr(VI).

2  Materials and methods

2.1  Synthesis of remediation materials

MSS was collected from municipal wastewater treatment 
plants in China. The process of BC preparation was as fol-
lows: At first, the MSS was soaked in zinc chloride  (ZnCl2) 
solution for 24 h to increase the pore structure of BC. After 
that, the materials were dried and ground to 1 mm, then the 
MSS was heated inside the pyrolysis furnace at 600 °C for 
60 min under nitrogen  (N2) conditions. Finally, the product 
was washed with deionized water (DI) to remove the surface 
impurities (Xi et al. 2021). The pH of BC was measured at a 
soil/water ratio of 1:20 (Ruili et al. 2020). An element ana-
lyzer (Vario MACRO cube, Germany) was used to determine 
the total C, O, N, H, and S contents of BC. The ash content 
of BC was measured by an industrial analyzer (TRGF-8000, 
China). The properties of BC are shown in Table 1.

nZVI/BC was prepared by liquid phase reduction method. 
In brief, 2.8 g of BC was put into  FeSO4·7H2O solution 
(100 mL) of 0.25, 0.5, and 1.0 M, separately, and stirred 
in nitrogen for 4 h. Afterward,  NaBH4 solution (100 mL, 
2.0 M), which is a strong reducing agent, was added drop-
wise to the reactor under nitrogen  (N2) atmosphere. After 
the reaction, the prepared materials were separated from 
the reactor and washed with ethanol several times, so as 

to prevent the oxidation of nZVI. The nanomaterials were 
vacuum dried at 60 °C before further experiment.

2.2  Soil sample preparation

The Cr(VI)-free soil samples were collected at 0–20 cm 
depth from former nonferrous metals processing factory in 
Shenyang, China. To prepare a Cr(VI)-spiked soil, 1 L of 
 K2Cr2O7 solution (500 mg/L) was mixed with 1 kg of air-
dried soil and mixed for 2 weeks with a 50% moisture con-
tent, then stirred until the mixture was air dried to a constant 
weight (Su et al. 2016). The physicochemical properties of 
the soil are shown in Table 2.

2.3  Remediation experiments

Initially, nZVI/BC materials with three different nZVI loads 
(107.1, 282.1, and 407.4 mg/g) were added to the Cr(VI)-
contaminated soil (500 g). The mixtures were immobilized 
with a moisture content of 50% under room temperature and 
samples were taken at 5, 15, 30, and 45 days. Toxicity char-
acteristic leaching procedure (TCLP) test was applied for 
estimating the efficiency of the nZVI/BC on Cr immobiliza-
tion. The Cr(VI) immobilization efficiency was calculated 
according to Eq. (1):

where E
i
 is the Cr (Cr(VI)) stabilization efficiency in the soil 

sample, and Co and Ci are the initial and final concentration of 
TCLP-extractable Cr(VI), respectively, in the soil. Untreated 
soils were taken as control and all treatments were set up in 
three groups of parallel experiments. The optimal nZVI loads 
and remediation time were selected for further experiment.

Afterward, the Cr(VI) remediation capabilities of BC, 
nZVI, and nZVI/BC were analyzed. The nZVI/BC dose were 
set as 2, 4, and 8 g/kg, respectively, whereas the nZVI and BC 
dose were based on nZVI loads (Fe content) and BC content 
of nZVI/BC particles, separately. The soil remediation condi-
tion was as described above. The leachability of Cr (Cr(VI)) 

(1)E
i
=

C
o
− C

i

C
o

× 100%

Table 1  Properties of BC Properties BC

PH 8.52
C (%) 36.30
H (%) 3.41
O (%) 17.25
N (%) 3.56
S (%) 0.90
Ash (%) 29.29
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and Fe were tested by TCLP methods as well. The Cr(Fe) or 
Cr(VI) content in soil samples were analyzed via acid or alka-
line digestion method and determined by atomic absorbance 
spectrometry (AAS, Z-2300, Japan). The fraction analysis of 
Cr followed a sequential extraction procedure (SEP) devel-
oped by Tessier (Lyu et al. 2018). The order of the extrac-
tion was exchangeable (EX) > carbonate-bound (CB) > iron-
manganese oxides-bound (OX) > organic material-bound 
(OM) > residual (RS). Moreover, the soil pH, soil organic 
matter (SOM), and cation exchange capacity (CEC) were 
determined before and after remediation process according 
to the methods of previous research (Ruili et al. 2020). The 
soil pH was measured by potentiometric method with a soil/
water ratio of 1:2.5. The SOM was determined by using wet 
oxidation with  H2SO4-K2Cr2O7. Moreover, the CEC was 
determined by ammonium acetate  (NH4OAc) method.

2.4  Separation and characterization methods

After the incubation process, 100 g of soil sample was air 
dried and ground to 200 mesh, then the nZVI/BC particles 
were separated by using a magnet; the separated particles 
were washed with ethanol several times and vacuum dried 
at 60 °C before analysis.

Inductively coupled plasma–optical emission spectros-
copy (ICP-OES, Avio 500, USA) was applied for testing 
the Fe content of remediation materials. Scanning elec-
tron microscopy (SEM; Zeiss Sigma 300, Germany) and 
energy-dispersive X-ray spectroscopy (EDS) were used for 
investigating the morphology of nanomaterials. The crystal 
structures of BC and nZVI/BC were characterized by X-ray 
diffraction (XRD; Rigaku Ultima IV, Japan). The surface 
functional groups of BC and nZVI/BC were characterized 
by Fourier-transform infrared spectroscopy (FTIR; Nico-
let iS 10, USA). X-Ray photoelectron spectroscopy (XPS; 
Thermo Scientific K-Alpha+, USA) was used for charac-
terization of nZVI/BC.

2.5  Statistical analysis

IBM SPSS Statistics for Windows version 25 (IBM Corp., 
Armonk, N.Y., USA) was used for the statistical analysis. 
Data were analyzed by one-way analysis of variance with 
Duncan’s multiple range post hoc test (p < 0.05). All figures 
were produced by Origin 2018.

3  Results and discussion

3.1  Effect of nZVI loads (Fe content) 
and remediation time

The Cr(VI) immobilization efficiency was 44.23%, 53.32%, 
and 76.01% at 30 days and were 107.1, 282.1, and 407.4 mg/g, 
respectively, under the nZVI loads in nZVI/BC (each group 
contain same mass of BC) (Fig. 1). Afterwards, the TCLP-
extractable Cr(VI) was almost unchanged. The results showed 
that the nZVI loads influenced the immobilization efficiency 
due to the reactive sites increased with the increase of nZVI 
loads. During the remediation process, the nZVI particles was 
gradually oxidized and finally lost its reactivity. Therefore,  
the optimal nZVI loads and remediation time were selected  
as 407.4 mg/g and 30 days for the next experiment.

3.2  Comparison of immobilization efficiency by BC, 
nZVI, and nZVI/BC

3.2.1  TCLP extraction analysis

TCLP test was used to evaluate the Cr (Cr(VI)) immobiliza-
tion efficiency of three materials. Figure 2 shows the TCLP-
leachable Cr (Cr(VI)) and Fe concentrations in the untreated 
and treated soils. As shown in Fig. 2a, b, the Cr and Cr(VI) 

Table 2  Properties of the  
soil samples

Sample PH CEC (cmol/kg) SOM (g/kg) Fe (g/kg) Cr (mg/kg) Cr(VI) (mg/kg)

Cr-free soil 6.48 6.55 11.14 23.8 141.0 ND
Cr(VI)-spiked soil 6.73 6.59 10.72 23.0 533.7 323.0

Fig. 1  Effect of nZVI loads and remediation time on Cr(VI) immobi-
lization efficiency
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concentrations in TCLP leachates were 514.0 and 309.7 mg/
kg in the contaminated soil. The changes in TCLP-leachable 
Cr or Cr(VI) decreased with higher dose for each of the 
remediation materials. The use of BC reduced TCLP-leach-
able Cr(VI) from 309.7 to 188.0 mg/kg under the maxi-
mum dosage. For the nZVI-treated soil, the immobilization 
efficiency for Cr(VI) was 60.19%, which was much higher 
than that of BC. The nZVI/BC treatment exhibited superior 
performance for Cr(VI) remediation. After nZVI/BC treat-
ment, the TCLP-leachable Cr(VI) reduced from 309.7 to 
262.7, 197.3, and 82.5 mg/kg under the dose of 2, 4, and 
8 g/kg, respectively. The result showed that compared with 
BC, nZVI was high effective for Cr(VI) immobilization in 
the short term, which was due to the strong reducing ability 
of nZVI. However, as a supporting material, BC played a  
significant role in preventing the agglomeration effect of 
nZVI, thus endowing the nZVI/BC with stronger immobi-
lization efficiency for Cr(VI).

The proper amount of iron was helpful for the growth 
of soil microorganisms and plants (Xiaoyan et al. 2022). 
As shown in Fig. 2c, compared with the contaminated soil 
and the BC-treated soil, the TCLP-leachable Fe for nZVI or 
nZVI/BC-treated soil increased significantly, which might 

be caused by the excessive release of iron in the soil system 
during the immobilization procedure (Sneath et al. 2013). 
However, as a carrier, BC can improve the stability of iron 
in a reaction system, thereby reducing the release of iron 
(Devi and Saroha 2014).

3.2.2  Cr fraction analysis

To further explore the immobilization efficiency of Cr(VI) 
by three materials, the fraction transformation of Cr before 
and after remediation was investigated (Fig. 3). Cr species 
in the contaminated soil were EX (37.78%), CB (20.79%), 
OX (10.91%), OM (21.89%), and RS (8.63%). Among them, 
the EX and CB were the most available form of Cr. After BC 
treatment, EX and CB both decreased to 20.11% and 17.25%, 
respectively, whereas OX, OM, and RS increased to 26.96%, 
26.47%, and 9.22%, respectively. The well-developed pore 
structure and the abundant oxygen-containing functional 
groups on the surface of biochar endowed BC with strong 
adsorption capacity, thereby decreasing the more accessible 
forms of Cr. Cr species in the nZVI-treated soil were as fol-
lows: CB (13.00%), OM (21.56%), and RS (8.56%). Com-
pared with BC, EX fraction decreased to 14.99%, whereas 

Fig. 2  TCLP-extractable Cr, Cr(VI), and Fe in soil with different treatment methods (a–c)
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OX remarkably increased to 41.89%. For nZVI/BC-treated 
soil, the speciation transformation of Cr was almost the same 
as that of nZVI-treated soil. The EX fraction decreased to 
8.03% and the OX fraction increased to 42.18%. As we 
reported in a previous research, the Fe(III)–Cr(III) copre-
cipitant could be formed during the reaction between Cr(VI) 
and nZVI/BC (Xi et al. 2021). The formation of Cr(III)/
Fe(III) oxides/hydroxides might contribute to the increase 
in OX fraction (Manning et al. 2007). The result implied 
that both nZVI and nZVI/BC could effectively promote the 
transformation of more accessible Cr into less accessible 
forms, thereby reducing the toxicity and bioavailability of 
Cr(VI) (Lyu et al. 2018).

3.2.3  The effect of different materials on soil pH, SOM, 
and CEC

Detecting the changes in soil properties is a significant part 
of evaluating the remediation ability of nZVI/BC. The soil 
pH increased after remediation by the three materials. Com-
pared with CK (pH: 6.73), the pH of BC, nZVI, and nZVI/
BC treatments increased by 0.17, 0.65, and 0.64, respec-
tively (under a dose of 8 g/kg for nZVI/BC) (Fig. 4a). More-
over, the pH values increased with higher material dosage. 
The impact of BC on soil pH depended on the acidity or 
alkalinity of BC (Wang et al. 2021). In our research, the pH 
values of BC is 8.52, which was helpful for increasing the 
pH of soil. Moreover, compared with alkaline soil, the acidic 
soil had lower buffering capacity, such that the soil pH was 
increased after addition of BC (Baragaño et al. 2020). As for 
nZVI or nZVI/BC particles, during the reaction between  Fe0 
and Cr(VI),  H+ could be consumed, thereby increasing the 
pH values, which is in agreement with other studies (Gil-
Díaz et al. 2016; Vasarevičius et al. 2019).

With the dose of 2, 4, and 8  g/kg, the SOM contents 
were 11.81, 11.94, and 11.36 g/kg after nZVI/BC treatment, 
respectively, which were higher than those of CK (10.72 g/
kg) (Fig. 4b). The use of BC significantly increased soil SOM 
contents. This observation was consistent with a previous work 
(Wang et al. 2021). Being a material with high carbon content, 
BC can significantly increase the total organic carbon of the soil 
(Herath et al. 2017). Meanwhile, the small organic molecules 
can be adsorbed during the remediation process, thus promot-
ing the formation of SOM (Liang et al. 2009). The application 
of nZVI did not affect the SOM content in our study.

Figure 4c shows the changes in CEC values before and 
after treatment by the three materials. The application of BC 
increased the soil CEC at a higher dosage. Compared with CK 
(6.33 cmol/kg), the soil CEC values were 7.29, 8.73, and 8.86 
cmol/kg with three different doses of BC. The usage of nZVI/
BC also increased the CEC values. While for nZVI treat-
ments, the CEC values did not change. The negative charge 
generated by the abundant oxygen-containing functional 
groups on the surface of BC increases the adsorption capac-
ity of cations, thereby increasing the CEC values (Randolph 
et al. 2017). The results showed that the application of BC 
and nZVI/BC could change the soil properties in a short time.  
However, these changes were mainly related to the physico-
chemical properties of BC.

3.3  Characterization of remediation materials

In our research, the nZVI/BC particles were separated by 
using the magnetic properties of nanocomposites. The 
separation efficiency was about 60%. By comparing the 
SEM–EDS images of BC (Fig. 5a, b) and nZVI/BC (Fig. 5c, 
d), we found that the pore structure of BC was well devel-
oped and contained a variety of elements, which was related 
to the abundance of elements in the MSS. NZVI nanopar-
ticles were dispersed uniformly on the BC surface. As a 
carrier, BC could improve the reduction and adsorption 
ability of nZVI by alleviating the agglomeration effect of 
nanoparticles (Shang et al. 2017). However, in our research, 
some nZVI particles were still aggregating in chains, which 
might be explained by the excessive loading of nZVI on the 
surface of BC (nZVI loads: 407.4 mg/g). After incubation, 
we could see that the nZVI content on the surface of BC 
was significantly reduced, which was caused by the release 
of iron in soil. Moreover, some flocculent clusters covered 
on the nZVI surface, which was related to the generation of 
(hydr)oxide of Cr(III) (Fe(III)) during remediation process 
(Zhou et al. 2015). EDS analysis also confirmed the pres-
ence of Cr after incubation (Fig. 5f), which was consistent  
with the fraction analysis.

As shown in Fig. 6a, the typical peak of  Fe0 (2θ = 44.6°) 
revealed the successful loading of nZVI. Compared with 
nanocomposites, the unsupported BC showed several peaks 

Fig. 3  The changes in Cr fraction before and after remediation
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of  SiO2, which was related to the composition of MSS, while 
these peaks were hardly be observed after nZVI loading. 
This phenomenon indicated that the nZVI were made of 
crystals and covered the surface of BC (Fu et al. 2013).

As shown in Fig. 6b, the broad peak at around 3420  cm−1 
represents O–H structure for both samples (Bing et  al. 
2018). The peak appeared at 1638  cm−1 reflects the stretch-
ing vibrations of C = O or the vibration of aromatic C = C 
(Amezquita-Garcia et al. 2013; Xu et al. 2017). The small 
peak at about 1380  cm−1 could be attributed to the C = C 
stretching in aromatic ring carbons (Peng et  al. 2016). 
The peak appeared at 1070  cm−1 and 1110  cm−1 could be 
assigned to C–O stretching vibration. However, the change 
in wave number might be owed to the attachment of oxygen 
with adjacent carbon elements during synthesis of nZVI/
BC (Lu et al. 2021). Moreover, it was worth noting that 
the –OH groups in nZVI/BC were wider and stronger than 
those of BC, which could be explained by the combination 
of iron with oxygen elements after nZVI loading (Xue et al. 
2018). Both C–O and –OH groups played a significant role 
in adsorption of Cr(VI) and surface complexation of Cr(III), 
which was helpful for Cr immobilization (Lyu et al. 2017).

3.4  Probable reaction mechanism between Cr(VI) 
and nZVI/BC in soil system

The XPS analysis was applied for evaluating the reaction 
mechanism between Cr(VI) and nZVI/BC. The wide-scan 
XPS analysis showed that the Cr species (at about 580.0 eV) 
appeared on nZVI/BS surface after 30-day incubation 
(Fig. 7a). The area percentage of Cr 2p after incubation 
was 0.73%, while no Cr species were detected before reme-
diation. As we can see from Fig. 7b, the peaks observed at 
529.0 eV and 530.3 eV corresponded to the binding energies 
of  O2− (Wang et al. 2020; Yin et al. 2014). However, a slight 
shift occurred with two corresponding peaks, which was due 
to the oxygen-containing functional groups were involved 
in the formation of Cr(III)/Fe(III) oxides/hydroxides (Wang 
et al. 2020). The peak appeared at about 531.2 eV could 
be assigned to the OH groups (Yin et al. 2014), which was 
consistent with the FTIR analysis. As shown in Fig. 6c, the 
peaks appeared at about 725.0 and 711.0 eV were related to 
the binding energies of Fe (hydr)oxide (Geng et al. 2009). 
The XPS spectra for Fe 2p3/2 could be divided into two 
peaks at 709.5 and 711.2  eV, which correspond to the 

Fig. 4  The PH values (a), SOM contents (b), and CEC values (c) in soil
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binding energies for  Fe2+ and  Fe3+, respectively (Bae et al. 
2016). The peak which assigned to  Fe0 (at about 706.0 eV) 
could not be observed in our research. This phenomenon 
could be explained by the oxidation that occurred on the 
surface of the nZVI (Zhou et al. 2015). However, the surface 
oxidation endowed nZVI with a special core–shell struc-
ture, which enables it to possess strong adsorption, coor-
dination, and reduction capabilities (Yan et al. 2010). The 
peak at 718.2 eV was assigned to the shakeup satellite over-
lap in oxidized iron (2p3/2) (Li and Zhang 2007). The Cr 
2p3/2 proportion was composed of two peaks at 578.1 and 
576.0 eV (Fig. 7d), which assigned to the Cr(VI) and Cr(III) 
(Lv et al. 2012). The result suggested that both adsorption 

and reduction were included in the remediation process, 
which was also in agreement with our experimental result.

Compared with aqueous solution, the process of material 
migration and transformation in soil system was more com-
plicated, but the reaction mechanism between nZVI/BC and 
Cr(VI) was almost the same in both water and soil environ-
ment (Fig. 8). Combined with the results of Cr fraction analy-
sis, the probable reaction mechanism between Cr(VI) and 
nZVI/BC could be summarized as follows: as a material with 
a well-developed porous structure and rich in surface func-
tional groups, BC has strong adsorption capacity for Cr(VI). 
Moreover, it also provided conditions for the uniform loading 
of nZVI particles, thereby increasing the reaction site. NZVI 

Fig. 5  SEM–EDS images of BC (a, b), nZVI/BC (c, d), and nZVI/BC after incubation (e, f)
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mainly contributed to the reduction of Cr(VI) through redox 
reaction, and the  Fe2+ generated by oxidation also played a 
role in Cr(VI) reduction (Eqs. (2) and (3)). The newly gener-
ated Cr(III) could combine with Fe(III) and co-precipitated 

on the surface of the nanomaterials (Eq. (4)), or precipitated 
in the form of Cr(OH)3 (Eq. (5)). Plus, a normalization reac-
tion could occur between nZVI and  Fe3+ (Eq. (6)), thus mak-
ing the treatment process more thorough.

Fig. 6  XRD patterns (a) and FTIR spectra (b) of BC and nZVI/BC

Fig. 7  Wide-scan XPS analysis of nZVI/BC before and after 30-day incubation (a), narrow scan of O 1 s (b) and Fe 2p (c) before and after incu-
bation, and narrow scan of Cr 2p (d) after incubation
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4  Conclusion

The research investigated the remediation efficiency of 
nZVI/BC on Cr(VI)-polluted soil. The nZVI/BC particles 
which were prepared by liquid phase reduction method 
exhibited superior remediation capacity than bare nZVI and 
BC, with significant reductions in TCLP-leachable Cr(VI) 
concentrations. Moreover, the addition of nZVI/BC effec-
tively transformed the fraction of Cr from unstable to stable, 
thereby reducing the toxicity of Cr. The addition of nZVI 
could not affect the soil properties in a short term. However, 
as a carbon-rich solid, BC contained a variety of functional 
groups, with high specific surface area, which is benefi-
cial to properties of the soil. The reduction and adsorption 
process might be the main reaction mechanism for Cr(VI) 
immobilization by nZVI/BC. Overall, the nZVI/BC parti-
cles combined the advantages of BC and nZVI, which was 
more suitable for the immobilization of Cr(VI) in soil.
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