
Vol.:(0123456789)1 3

Journal of Soils and Sediments (2023) 23:831–844 
https://doi.org/10.1007/s11368-022-03373-y

SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED 
OR DEGRADED LANDS • RESEARCH ARTICLE

Environmental factors affecting soil organic carbon, total nitrogen, 
total phosphorus under two cropping systems in the Three Gorges 
Reservoir area

He‑Shuang Wan1 · Wei‑Chun Zhang1 · Wei Wu2 · Hong‑Bin Liu1 

Received: 25 April 2022 / Accepted: 24 October 2022 / Published online: 3 November 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Purpose  The present study aimed to reveal the spatial distribution of soil nutrients in southwest China and to quantitatively 
evaluate the effect of environmental factors on spatial variability of soil nutrients under different cropping systems.
Methods  Semivariogram, random forest (RF), and partial dependence plots (PDP) were applied to investigate the relation‑
ships between environmental factors and soil nutrients variability. A total of 142 samples were collected from topsoil under 
rice and maize cropping systems in southwest China.
Results  Soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the topsoil of the study area were higher 
than their corresponding background and geochemical baseline values of China. Semivariogram analysis indicated that SOC 
and TN have weak spatial dependence, and TP has strong spatial dependence. The soil nutrient contents were predicted well 
by the RF models. The mean absolute error, root mean square error, and coefficient of determination were 0.14–0.47 g/kg, 
0.19–3.67 g/kg, and 0.30–0.46, respectively. For different soil nutrients, the relative importance of environmental variables 
varied greatly. Cropping system, topographic wetness index (TWI), and slope were critical factors that controlled SOC vari‑
ability. Cropping system, TWI, and mean annual temperature explained most variation of TN. Soil pH, aspect, and cropping 
system were dominant factors affecting TP variability.
Conclusion  In this study, SOC and TN had weak spatial autocorrelation, while TP had strong spatial autocorrelation. Mean‑
while, cropping system and topography had greatly impact on the variability of soil nutrients, which should be considered 
in formulating agricultural measures in the future.

Keywords  Nutrient variation · Cropping system · Relative importance · Random forest · Partial dependence plot

1  Introduction

Soil is a crucial component of the terrestrial ecosystem, 
providing nutrients for the growth and development of 
plants (Wang et al. 2018b). Soil organic carbon (SOC), 
total nitrogen (TN), and total phosphorus (TP) are usually 

regarded the most critical soil nutrients and play an impor‑
tant role in adjusting soil fertility and biomass production 
(Elser et al. 2010; Wang et al. 2014). Soil nitrogen (N) and 
SOC are mainly derived from plant residues and litter, and 
soil phosphorus (P) is mostly sourced from the weather‑
ing of primary rock mineral (Wan et al. 2021), and they 
are tightly related to each other through a stable proportion 
in soil and organism (Fang et al. 2019; Liu et al. 2021b). 
SOC is a key indicator of soil fertility, which influence 
the structure, function and productivity of ecosystem (Liu 
et al. 2021a). Furthermore, SOC is the largest carbon pool 
in terrestrial ecosystem, and its decomposition and seques‑
tration can obviously affect the atmospheric greenhouse 
gas (CO2) dynamic (Scharlemann et al. 2014). TN and TP 
also represent essential parts in building soil fertility, and 
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deficiency of them will affect the yield and quality of crops,  
while excessive TN and TP may do harm to the environ‑
ment (Gao et al. 2019; Liu et al. 2015). For example, soil N  
and P entering surface water or groundwater through leach‑
ing or runoff will cause non-point source pollution (Wang 
et al. 2009). Therefore, a comprehensive knowledge of the 
shifts and driving factors of SOC, TN, and TP contents is 
significant for accurately evaluating the soil fertility status 
and protecting the environment.

Numerous studies have revealed that the nutrient dynam‑
ics of surface soil are affected by many environmental factors 
such as anthropogenic activities, topography, climate, and soil 
properties, with strong spatial variability (Gao et al. 2014; Liu 
et al. 2021a). Cropping systems may be the primary anthro‑
pogenic influence factor that control soil nutrient dynamics. 
Under different cropping systems, distinct crop covers and 
agricultural management practices can lead to vast differ‑
ences in SOC, TN, and TP contents(Wang et al. 2012). For 
example, Han et al. (2020) found that crop residues under rice 
and maize monocultures significantly changed the microbial 
community and increased the contents of SOC, mineralized N 
and available P in topsoil (0-20 cm). Meanwhile, Zhang et al. 
(2022) noted that compared with rice-maize rotation systems, 
rice monoculture favored the soil nutrient contents due to the 
lower decomposition rate and nutrient loss. Topographic fac‑
tors (i.e., slope, aspect, and topographic wetness index [TWI]) 
can modify vegetation cover and local microclimate by regu‑
lating the distribution of hydrothermal resources, thus affect‑
ing the dynamics of SOC, TN, and TP (Zhang et al. 2015; 
Hu et al. 2021; Li et al. 2021). Studies showed that aspect is 
associated with solar radiation, and higher SOC and TN are 
generally found on shady northern aspect rather than southern 
aspect (Bangroo et al. 2017). TWI is an important indicator of 
soil wetness (Hu et al. 2021). Studies reported that high TWI 
value indicates high soil water content, which is conducive 
to the accumulation of SOC and TN (Liu et al. 2020; Hu 
et al. 2021). Slope mainly affects the degree of soil erosion 
to change the SOC level (Wei et al. 2010). Climate variables, 
including mean annual temperature (MAT) and mean annual 
precipitation (MAP), are usually related to plant growth and 
litter decomposition, and have a great influence on soil nutri‑
ent cycling process (Li et al. 2018; Tan et al. 2021). Soil pH 
regulates nutrient status by controlling microbial activity, and 
too high or too low pH values have a negative effect on the 
decomposition of soil organic matter (Penn and Camberato 
2019; Wan et al. 2021). However, most of these studies are 
based on linear relationships, and quantitative assessment of 
the relative importance of environmental variables based on 
non-linear relationships is insufficient.

Random forest (RF) is an advanced machine learning algo‑
rithm that is commonly applied in various fields as its good  

predictive performance and importance ranking of variables 
(Ishwaran and Lu 2019; Jin et al. 2020). Compared with tra‑
ditional data analysis methods, RF can handle both linear and  
nonlinear relationships between variables, providing the 
possibility of more accurate estimation of prediction results 
(Blyth 1994; Yang et al. 2016; Zeraatpisheh et al. 2019). 
However, the weak interpretation of its black-box operational 
model hinders further research (Apley and Zhu 2020). To 
address this shortcoming, partial dependency plots (PDP) 
were introduced by Friedman (2001) to visualize the impact 
of predictors, which is a popular approach for improving the 
explanatory power of machine learning models (Apley and 
Zhu 2020). Unlike traditional correlation analysis, PDP takes 
into account the non-linear relationship between variables, and 
it specifically shows how the model's predictions are influ‑
enced by one or two variables (Friedman 2001; Inglis et al. 
2022). For instance, Berk and Bleich. (2013) combined RF 
with PDP technology to predict the crime risk and provide 
useful information for judicial decision-making. Based on the 
boosted regression trees model, Elith et al. (2008) used PDP 
model to illustrate how different environmental factors affect 
the distribution of freshwater eels in New Zealand. Although 
there are numerous studies (Friedman 2001; Elith et al. 2008; 
Berk and Bleich 2013; Yang et al. 2016) have been conducted 
to explore the applications of RF and PDP in various fields, 
few researches use RF and the associated PDP to study the  
relationship between soil nutrients and environmental factors.

The influencing factors of soil nutrients vary greatly in 
different regions, and previous studies have mainly focused 
on the northwest arid region, while few on the southwest  
part of China (Liu et  al. 2017; Yu et  al. 2020b). The  
“Three Gorges Reservoir” (TRG) area accompanied by seri‑
ous soil erosion is one of the most fragile ecological zones 
in southwest China (Teng et al. 2017). The reservoir area is 
characterized by complex topography, with hills and moun‑
tains interspersed, which provides an excellent condition to 
study the influence of environmental factors on soil nutrients 
(Wang et al. 2018a; Sun et al. 2021). The typical cropping 
systems in the region are rice monoculture and maize mono‑
culture, which also exist across southwest China. Rice and 
maize are two major food crops, understanding their soil 
nutrient status is important for maintaining national food 
security (Lu et al. 2015).

Therefore, the specific objectives of this study are to (1) 
reveal the contents and spatial distribution characteristics of 
SOC, TN, and TP under rice and maize cropping systems 
(2) identify the main environmental variables and their rela‑
tive importance related to soil nutrients distribution by the 
random forest (RF) model; and (3) visualize the specific 
effects of environmental variables on soil nutrient variation 
by partial dependence plots (PDP). Information obtained 
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from this study can provide a theoretical basis for optimiz‑
ing agricultural activities in the southwest China.

2 � Materials and methods

2.1 � Study area

The study area is located in the northeast of the Three Gorges 
Reservoir area (30°49′-31°41′N, 107°55′-108°54′E), which is 
in the Kaizhou County, Chongqing, Southwest China (Fig. 1). 
The elevation ranges from 118 to 1214 m, with the terrain 
being high in the northeast and low in the southwest. The 
climate of this area is subtropical monsoon humid climate 
with an average annual temperature of 17 °C and annual aver‑
age precipitation of 1244 mm. Predominant soil types in the 
area are Luvisols and Cambisols (IUSS Working Group WRB 
2006). The main strata are Jurassic system Shaximiao forma‑
tion (J2s), Jurassic system Suining formation (J3p), Jurassic 
system Penglaizhen formation (J3sn), and Jurassic system 
Ziliujing formation (J1-2z). Soil samples were collected in 
the south of the study area, where the cropping systems are 
rice monoculture and maize monoculture with over 10 years 
of planting. The soil testing and formulated fertilization 

technology was adopted in the study area. The fertilizer was 
recommended based on the grade of the cultivated land qual‑
ity and target yield. In the study area, the average cultivated 
land quality grade is 3–5, and the target yields of rice and 
maize are about 7273–8333 kg/ha and 6060–7273 kg/ha, 
respectively. So the N:P2O5 of 16:12 was recommended for 
rice monoculture and of 18:12 for maize monoculture.

2.2 � Soil sampling and chemical analysis

In 2016, a total of 142 soil samples (0–20 cm) were collected 
after crop harvest (Fig. 1). Among them, 74 soil samples 
were from paddy fields and 68 soil samples were from dry 
land. At each site, five subsamples were randomly collected 
within a 10-m radius, and then they were mixed to form a 
representative sample (Zhang et al. 2018). The spatial loca‑
tion information (longitude and latitude) of each sampling 
site was registered with Global Positioning System (GPS 
MAP 76, Garmin Ltd, USA).

All samples were air-dried and passed through a 2-mm soil 
sieve in the laboratory. After removing stones and litter, they 
were stored in polyethylene plastic bottles for further analy‑
sis. Soil pH was measured in a soil to water of 1:2.5 with pH 
meter (Bao 2000). SOC content was measured by potassium 

Fig. 1   Location of the study area and the distribution of sampling sites
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dichromate oxidation method (Nelson and Sommers 1983). 
TN content was determined using the Kjeldahl acid-digestion 
method (Gallaher et al. 1976). TP content was measured by 
a colorimetric method with an alkaline oxidation-digestion 
procedure (Bao 2000).

2.3 � Environmental variables

The environmental variables are composed of classification 
variables (cropping systems, stratum) and numerical vari‑
ables (soil property, topography and climate), which were 
selected based on Jenny's model of soil formation factors 
(Jenny 1994). The cropping systems were introduced to rep‑
resent the human factor (Haileslassie et al. 2005). Stratum 
and cropping systems were recorded during sampling. Soil 
texture were acquired from the dataset named “soil particle-
size distribution in China” (Shangguan et al. 2012). Topo‑
graphic factors, such as elevation, slope, aspect, topographic 
wetness index (TWI), and valley depth, were calculated 
with SAGAGIS 7.2.0 by a 30-m × 30-m grid digital eleva‑
tion model (DEM), which was obtained from NASA Shuttle 
Radar Topography Mission (SRTM) 1 Arc-Second Global 
(https://​www.​usgs.​gov/). The climate data including mean 
annual precipitation and mean annual temperature (30 years, 
from 1970 to 2000) were downloaded from the WorldClim 
Database (https://​www.​world​clim.​org), and the resolu‑
tion of it is 1 km. The TWI was defined as (Moore et al.  
1991):

where M and α are the cumulative upslope area draining 
through a point and the slope angle at the point, respectively.

2.4 � Data analysis

2.4.1 � Statistical analysis

Descriptive statistical analysis (i.e., mean, max, min, and 
coefficient of variation [CV]) was performed to describe the 
characteristics of SOC, TN, and TP. Before data analysis, the 
homogeneity of variance was tested by Levene’s test, and 
the normality of data was checked by Kolmogorov–Smirnov 
test. One-way analysis of variance (ANOVA) with Tukey’s 
post hoc test (p < 0.05) was performed to analyze the effects 
of stratum, and independent t-test was used to detect the 
differences in soil nutrient contents under different crop‑
ping systems. Spearman correlation analysis and redundancy 
analysis (RDA) were adopted to examine correlations among 
soil nutrients and environmental factors.

(1)TWI = ln(
M

tan�
)

2.4.2 � Semivariogram analysis

The spatial dependence of SOC, TN, and TP were evaluated 
by semivariogram with GS + 9.0 (Gamma Designs Software, 
Plainville, MI, USA). The semivariogram describes the spatial 
variability of factors by three major parameters (i.e., nugget 
value [C0], sill value [C0 + C], and range [A0]) (Duan et al. 
2020). C0 and C represent the variation explained by ran‑
dom factors and structural factors, respectively. C0/(C0 + C) 
represents the strength of spatial autocorrelation for factors. 
A0 describes the maximum distance of spatial autocorrela‑
tion, and when beyond the range the variables have no spatial 
autocorrelation (Okin et al. 2008). The variable has strong or 
weak spatial dependency when C0/(C0 + C) is < 0.25 or > 0.75, 
respectively, otherwise, the variable has moderate spatial 
dependency (Duan et al. 2020).

2.4.3 � Random forest and partial dependence plot

Random forest (RF) model was conducted to determine the 
relative importance of environmental factors. RF was devel‑
oped as an extension of the classification and regression tree, 
which is an advanced machine learning method (Breiman 
2001). As RF can prevent overfitting and simplify operation, 
it has been widely adopted to predict soil properties and iden‑
tify factors importance (Wiesmeier et al. 2011; Zhang et al. 
2021). Partial dependence plots (PDPs) were implemented to 
visualize the pattern of influence of individual environmental 
variables on soil nutrient changes. It is an important visualiza‑
tion tool of machine learning models, which can reveal the lin‑
ear and nonlinear relationship between variables and improve 
the explanatory power of machine learning models (Friedman 
2001; Apley and Zhu 2020). For RF model, 80% samples were 
randomly selected as training sets and 20% as verification sets 
in this research. RF model performance is assessed by three 
widely used accuracy indices, mean absolute error (MAE), 
root mean square error (RMSE), and coefficient of determi‑
nation (R2) (Wang et al. 2018c). MAE and RMSE estimate 
the accuracy and stability of the models, and R2 measures the 
strength of the linear relationship between observed and pre‑
dicted values. The three accuracy indices were defined as:

(2)MAE =
1

n

∑n

j=1

|

|

|

Qj − Pj
|

|

|

(3)RMSE =
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where Qj and Pj are the observed and predicted values of 
the jth soil sample, respectively. Q and n are the mean value 
of the measurements and the samples number, respectively.

Basic descriptive statistics and data analysis were con‑
ducted using SPSS 25.0 software. Environmental variables 
were extracted using Sagagis7.2.0. RDA was processed 
in Canoco 5. RF and PDP were implemented in PyCharm 
3.6.8. The spatial variation of soil nutrients was analyzed 
in GS + 9.0. Figures were plotted with Origin 8.5 software.

3 � Results

3.1 � Characteristics of soil nutrients

Table 1 presents the basic statistics of soil nutrients. In the 
whole study area, the overall mean contents of SOC, TN, 
and TP in topsoil were 9.83 g/kg (range 2.10–25.00 g/kg), 
1.12 g/kg (range 0.30–2.99 g/kg), and 0.70 g/kg (range 
0.29–1.85 g/kg), respectively. The coefficients of varia‑
tion (CV) of soil nutrient contents decreased in the order 
of SOC (45.75%) > TN (41.93%) > TP (36.42%). All of 
them showed moderate variation (CV = 25–75%).

Under rice monoculture, the average contents of SOC and 
TN were 11.92 g/kg (range 4.70–25.00 g/kg) and 1.36 g/
kg (range 0.72–2.99 g/kg), respectively, which were higher 
than that under maize monoculture (SOC = 7.55 g/kg and 
TN = 0.87 g/kg) (Table 1). The mean content of TP was 
0.59 g/kg under rice monoculture, which was lower than that 
under maize monoculture (TP = 0.82 g/kg) (Table 1). The 
CVs of SOC, TN, and TP were smaller under rice monocul‑
ture than under maize monoculture (Table 1), indicating that 
they were more stable under rice monoculture than under 
maize monoculture.

3.2 � Spatial variations in soil SOC, TN, and TP 
contents

The semivariogram analyses (Fig. 2) reveal the spatial autocorre‑
lation of SOC and TN contents were weak (Co/[Co + C] > 75%), 
which indicated that their spatial variability was mainly caused 
by random factors (e.g. cropping systems, fertilization). The spa‑
tial autocorrelation was strong (Co/[Co + C] < 25%) for TP con‑
tent, showing that its spatial variability mainly came from and 
structural factors (e.g., soil properties, topography). The spatial 
autocorrelation ranges of SOC and TN (32,409 m) were greatly 
larger than that of TP (190 m), implying that the distribution of 
SOC and TN was more homogeneous than TP in the study area.

3.3 � Relationships among nutrient contents 
and environmental factors

The one-way ANOVA presents that there was no signifi‑
cant difference in soil nutrient contents among different 
stratum (Fig. S1), which may be due to sampling on the 
topsoil of cultivated land (Wang et al. 2019), while inde‑
pendent t-test shows that cropping systems had significant 
influence on SOC, TN and TP contents (Fig. 3). Compared 
with the cropping system of maize, rice monoculture had 
higher contents of SOC and TN, but comparatively lower 
TP content (Fig. 3). Table 2 shows the spearman correlation 
coefficients for soil nutrient contents and environmental fac‑
tors. SOC, TN, TP were found to be significantly correlated 
with sand, clay and soil pH (p < 0.01), but their correlations 
with other environmental factors were weak. The RDA 
results further confirmed that cropping systems and soil pH 
greatly affected soil nutrient contents (Fig. 4). SOC and TN 
were positively correlated with aspect, topographic wetness 
index (TWI), and valley depth (VD), and negatively corre‑
lated with mean annual precipitation (MAP), mean annual 

Table 1   Summary statistics 
of topsoil soil organic carbon 
(SOC, g/kg), total nitrogen (TN, 
g/kg), and total phosphorus (TP, 
g/kg) contents in the study area

Rice rice monoculture; Maize maize monoculture; Min minimum; Max maximum; CV coefficient of varia‑
tion; Skew skewness; Kurto kurtosis

Area Items Min Max Mean CV(%) Skew Kurto

Total (n = 142) SOC 2.10 25.00 9.83 45.75 1.15 1.34
TN 0.30 2.99 1.12 41.93 1.29 2.22
TP 0.29 1.85 0.70 36.42 1.27 2.91

Rice (n = 74) SOC 4.70 25.00 11.92 37.96 1.11 0.82
TN 0.72 2.99 1.36 34.94 1.36 1.84
TP 0.29 1.14 0.59 30.25 0.76 0.68

Maize (n = 68) SOC 2.10 18.6 7.55 42.2 1.25 1.91
TN 0.30 1.82 0.87 35.67 1.03 0.99
TP 0.43 1.85 0.82 33.48 1.19 2.48
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temperature (MAT), slope and elevation (Fig. 4). TP was 
positively correlated with MAT and negatively correlated 
with VD, aspect and elevation (Fig. 4).

3.4 � Model performance and importance ranking

RF models were constructed to explore the relationships 
between environmental factors and soil nutrient contents. 
The values of model accuracy indices (MAE, RMSE, and 

R2) are shown in Table S1. In terms of the above three indi‑
cators, the RF model provided the best estimations of TN 
content (R2 = 0.53, MAE = 0.24 g/kg, RMSE = 0.32 g/kg) 
and the relatively low estimations of TP content (R2 = 0.30, 
MSE = 0.14 g/kg, RMSE = 0.19 g/kg).

The RF results show that cropping system followed by 
TWI and slope was the most primary factor for explaining 
the variation in SOC (Fig. 5a). The spatial variability of TN 
was mainly explained by cropping system, TWI and MAT 
(Fig. 5b). Soil pH followed by aspect and cropping system 
was the most important factor for explaining the variation 
in TP (Fig. 5c).

The PDP results (Fig. 6) are basically consistent with 
the correlation analysis results (Table 2, Fig. 4). However, 
considering the nonlinear relationship, it can more specifi‑
cally reveal how the top three factors in RF affect the predic‑
tion results. For SOC, the relative importance of environ‑
mental factors was ranked in the order of cropping system 
(13.20%) > TWI (12.06%) > slope (10.55%). Compared with 
maize monoculture, rice monoculture system contained 
more SOC. Meanwhile, the content of SOC increased with 
the increase of TWI, whereas decreased with the increase of 
slope (Fig. 6a–c). For TN, the relative importance of envi‑
ronmental factors is ranked in the order of cropping system 
(20.72%) > TWT (14.23%) > MAT (12.25%). Compared 
with maize monoculture, rice monoculture system contained 
more TN, and the TN content increased with the increase of 
TWI, whereas decreased with the increase of MAT (Fig. 6d-
f). For TP, the relative importance of environmental fac‑
tors is ranked in the order of soil pH (22.35%) > aspect 
(12.70%) > cropping system (10.60%). The TP content 
increased with the increase of soil pH, whereas decreased 
with the increase of aspect, in addition, compared with 
maize monoculture, rice monoculture system contained less 
TP (Fig. 6g–i).

4 � Discussion

4.1 � Comparison of soil nutrient content and spatial 
variation

This study revealed the contents of SOC, TN, and TP under dif‑
ferent cropping systems in southwest China. According to the 
soil nutrient classification standard in China, SOC, TN, and TP 
contents were classified as grades 4 (9.83 g/kg), 3 (1.12 g/kg), 
and 5 (0.7 g/kg) (NSSO, 1998) respectively, which were higher 
than their corresponding background and geochemical baseline 
values of China (Wang et al. 2016), suggesting that SOC, TN, 
and TP were relatively abundant in topsoil of the study area. The 
relatively abundant levels of soil nutrient contents in the study 
area may be related to the high intensity of fertilizer application 
and the remarkable atmospheric N deposition in southwest China 

Fig. 2   Semivariograms of soil organic carbon (SOC) (a), total nitro‑
gen (TN) (b), and total phosphorus (TP) (c) contents
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(Rodrigues et al. 2021; Turmel et al. 2015; Jiang et al. 2017). 
Compared with other areas in the Three Gorges reservoir area, 
the TN and TP in the study area are basically the same as those 
in other areas, but the SOC content is lower than that in other 
areas (Zhang et al. 2017; Sun et al. 2021). This result might be 
attributed to the fact that the study area is agricultural land and 
frequent agricultural practices will cause a lot of nutrient loss 
(Chen et al. 2019). The spatial autocorrelation range of SOC 
and TN is similar and far larger than that of TP in our study, 
which is consistent with previous research (Zhang et al. 2010; 
Wang et al. 2017; Cao et al. 2021). This may be due to a highly 
coupled relationship between SOC and TN, but a decoupled 

relationship between SOC and TN and TP (Finzi et al. 2011; 
Müller et al. 2017). At the same time, the correlation analysis 
(Table 2) also confirms that SOC and TN are highly correlated 
(r = 0.88, p < 0.01), while the correlation between SOC and TP 
(r =  − 0.12) and between TN and TP are weak (r =  − 0.09).

4.2 � Impact of the identified important factors 
on SOC content

The random forest (RF) model showed cropping system was 
the most important factor for SOC content in the study area 
(Fig. 5a). Previous studies have demonstrated that cropping 

Fig. 3   Distributions of soil 
organic carbon (SOC), total 
nitrogen (TN), total phospho‑
rus (TP) in different cropping 
systems

Table 2   Spearman correlation coefficients among soil nutrient contents and environmental factors (n = 142)

SOC soil organic carbon; TN total nitrogen; TP total phosphorus; pH soil pH; MAP mean annual precipitation; MAT mean annual temperature; 
TWI topographic wetness index; VD valley depth; Ele elevation; levels of statistical significance: *P < 0.05, **P < 0.01

Factors Clay Sand Silt pH MAP MAT Aspect Slope TWI VD Ele SOC TN TP

Clay 1
Sand -0.97** 1
Silt -0.25** -0.19** 1
pH 0.14 -0.15 0.02 1
MAP 0.11 -0.13 -0.23** 0.09 1
MAT 0 -0.02 0.13 0.15 -0.18* 1
Aspect -0.08 0.10 -0.05 -0.06 0.15 -0.16 1
Slope 0.12 -0.07 -0.18* 0.03 0.03 -0.34** 0.19** 1
TWI -0.10 0.09 0.14 -0.02 0 0.32 ** -0.08 -0.40** 1
VD -0.03 0.01 0.06 -0.04 -0.12 0.38** 0.03 0.02 0.33** 1
Ele -0.01 0.02 -0.13 -0.13 0.13 -0.95** 0.13 0.32** -0.41** -0.53** 1
SOC -0.30** 0.31** 0.28** -0.25** -0.11 -0.02 0.14 -0.13 0.15 0.05 -0.01 1
TN -0.29** 0.29** 0.26** -0.27** -0.06 0.06 0.09 -0.13 0.14 0.02 -0.04 0.88** 1
TP 0.29** -0.28** 0.02 0.42** 0.07 0.15 -0.12 0.01 0.01 -0.03 -0.14 -0.12 -0.09 1
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system has a great influence on SOC (Zheng et al. 2016; 
Zhang et al. 2022). For example, Zheng et al. (2016) found 
that flooding conditions increase the number and activity of 
reducing bacteria in the soil under the rice cropping system, 
which led to the decrease of decomposition of organic matter 
and contributed to SOC accumulation. Zhang et al. (2022) 
reported that cropping system was the main factors linked 
to the stratification ratio of the SOC and rice-upland crop 
rotation systems had significantly higher stratification ratio 
than rice monoculture and upland crop rotation systems. 
Our analyses revealed the superiority of the soil under rice 
monoculture in sequestering SOC compared to maize mono‑
culture (Fig. 6a), confirming the previous reported effect 
of cropping system on soil nutrients (Zheng et al. 2016). In 
this study, rice is mainly planted in paddy fields with flat 
topography, and maize is mostly distributed in dry lands 
with sloping fields. Under rice monoculture, abundant water 
and low topography resulted in high soil fertility; in addi‑
tion, the large amount of crop residue in the paddy fields 
was favorable to retain SOC (Deng et al. 2016). Therefore, 
the accumulation of SOC in paddy field is relatively high. 
The low SOC content in maize fields may be caused by the 
following reasons: (1) compared with the natural ecosystem, 
the long-term and repeated tillage in maize planting areas 
promoted the aggregate destruction, and thus accelerated C 
mineralization (Wu 2011; Song et al. 2014); (2) the steep 
terrain of maize planting area made soil erosion more seri‑
ous, leading to higher SOC loss (Li et al. 2012; Chen et al. 
2019).

Topographic wetness index (TWI) and slope were other  
factors exerting important impacts on SOC content (Fig. 5a). 

They were the main topographic factors, which affect plant 
growth, soil erosion, and litter accumulation by chang‑
ing hydrothermal conditions(Sun et  al. 2015; Yu et  al. 
2020a). In general, the content of SOC decreased with the 
increase of slope, whereas increased with the increase of 
TWI (Fig. 6b–c). The results may be attributed to soil ero‑
sion, which can transport litters and topsoil from a higher 
slope to a lower slope, resulting in a higher SOC content 
at the bottom of the slope (Wei et al. 2010; Zhang et al. 
2015). Besides, slope can significantly affect SOC content 
by changing soil pH (Zheng et al. 2021). TWI was often 
used to quantitatively simulate soil moisture conditions in 
a region. Relatively high moisture leads to strong chemical 
weathering of parent materials and consequently massive 
production of secondary clay minerals, plus high vegetation 
cover of this area, resulting in relatively high SOC content 
(Liu et al. 2020).

4.3 � The main controlling factors on TN content

Numerous studies have indicated that cropping system was 
an extremely important factor controlling TN content (Ren 
et al. 2019; Zhang et al. 2022). The results of the RF model 
also revealed the importance of cropping system on TN 
dynamics (Fig. 5b). Moreover, in our study, TN under rice 
monoculture was significantly higher than that under maize 
monoculture (Fig. 6d), which is consistent with the results 
of previous studies (Ren et al. 2019). This may be due to rice 
mainly distributed in low-lying paddy fields, and its flooding 
condition can slow down the mineralization of N and the 
transformation of biomass, thus increase the accumulation 
of TN (Xue et al 2015; Zheng et al. 2021). The lower TN 
content under maize monoculture may be explained by the 
fact that maize is planted in dry land soil with purple par‑
ent material, where intense physical disturbance and steep 
topography promote soil N loss (Guo et al. 2011).

Topographic wetness index (TWI) was generally regarded 
as a major factor for TN content (Fig. 5b), which was used 
to characterize soil wetness at different landscape positions 
(Wang et al. 2012, 2018c). In this study, TN content raised 
with TWI increase (Fig. 6e). A similar finding was observed 
in previous report (Kumar and Singh 2016; Liu et al. 2020). 
For example, Kumar and Singh. (2016) showed that TWI 
was one of the topographic parameters most related to TN 
content. Liu et al. (2020) reported that TWI can influence 
TN content by affecting rock weathering. One possible rea‑
son was that TWI will affect water conditions, higher TWI 
indicates higher soil water content, which can reduce the 
decomposition rate of organic matter and promote mineral 
weathering, thus increasing TN content (Liu et al. 2020; Hu 
et al. 2021).

Mean annual temperature (MAT) also had relatively high 
explanatory ability to the spatial variability of TN in this study 

Fig. 4   Redundancy analysis ordination diagrams of environmental 
factors (red line and triangle) and soil nutrients (blue line)
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(Fig. 5b), and TN content raised with MAT decrease (Fig. 6f). 
Temperature is the key factor to control the transformation and 
migration of soil N (Wang et al. 2021). Generally, higher TN 
content was expected to be accumulated in low temperature 
environment (Liu et al. 2021a; Wang et al. 2021). The reason 
why temperature influences soil TN is that the content of TN 
was mainly determined by microbe N-fixation, soil N miner‑
alization, and plant N uptake (Li et al. 2018; Tan et al. 2021), 
which were affected by temperature. High temperature can 
accelerate plant biochemical rate, thus increasing the absorption 
of N (Ngaba et al. 2019). Meanwhile, increased temperature 
will lead to high microbial N-fixation and soil N mineralization 
by enhancing microbial activity (Tan et al. 2021).

4.4 � Dominant factors influencing the content of TP

The RF model showed that soil pH was a most important factor 
for TP (Fig. 5c). In this study area (4.5 < pH < 8.3), there was a  

significant positive correlation between TP content and soil pH 
(Fig. 6g). This was different with previous report that the con‑
tent of TP dominated by inorganic P was independent of soil 
pH (Liu et al. 2021a). One possible reason is that the current 
study area is agricultural land, phosphorus fertilizer is the main 
source of TP in soil, whereas pH will affect the effectiveness  
of phosphorus fertilizer (Liao et al. 2017; Maharajan et al. 
2021). However, some studies have also shown that the TP 
decreased with increasing soil acidity (pH) (Niederberger et al. 
2019). This decrease may be explained by that the solubility 
and fixation of soil P is strongly affected by soil pH (Adhikari 
et al. 2017; Maharajan et al. 2021). Topsoil pH is generally 
between 4.5 and 8.5, which is conducive to the fixation of P 
and reduce the absorption of phosphorus by plants (da Cerozi 
and Fitzsimmons 2016). Meanwhile, in agricultural systems 
with high human activity interference, ongoing acidification 
and nitrogen deposition may lead to nutrient imbalances that 
affect TP content (Talkner et al. 2009).

Fig. 5   Factor relative importance rankings produced by random forest for (a) SOC, (b) TN, and (c) TP contents
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Aspect and cropping system were also the dominant factors 
that affect the soil TP content (Fig. 5c). Our results showed 
that higher TP content on the shady slope in comparison to 
the sunny slope (Fig. 6h), which was in line with some reports 
(Måren et al. 2015). Aspect can affect the solar radiation of 
a place and thus temperature and moisture conditions, which 
affects plant growth and soil biochemical processes (Hoylman 
et al. 2018). On the sunny slope, there is sufficient water and 
heat, and the vegetation absorbs more P from the soil to satisfy 
its own growth. Additionally, owing to the difference of soil 
moisture and vegetation cover, soil erosion may vary between 

sunny slope and shady slope, resulting significant differences in 
TP content among distinct slope aspects (Beullens et al. 2014; 
Chen et al. 2019).The content of TP under maize monoculture 
was markedly higher than that under rice monoculture (Fig. 6i). 
This was probably attributed to the fact that the intensive P 
fertilization along with low P utilization efficiency under maize 
monoculture (Rodrigues et al. 2021). Relatively low TP con‑
tent under rice monoculture can be explained by that the paddy 
field was flooded and created continuous anaerobic conditions, 
resulting in slower decomposition rate of mineral phosphorus 
(Han et al. 2020).

Fig. 6   Partial dependence plot between environmental factors and predicted SOC (a, b, c), predicted TN (d, e, f), predicted TP (g, h, i)
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4.5 � Factors with low impact of soil nutrient 
variability

Stratum is the basis for soil development and soil texture 
controls the formation of agglomerates (Zhou et al. 2020). 
Previous studies found that the soil texture and stratum com‑
monly exerted a strong impact on SOC, TN, and TP contents  
(Wang et al. 2019; Zhou et al. 2020; Liu et al. 2021b).  
However, in our study, the effects of soil texture and stratum 
on the soil nutrients were inferior to the cropping systems 
and topography. This may be ascribed to the frequent agri‑
cultural activities and the complex topography of the study 
area weakens the influence of stratum and soil texture on 
soil nutrients.

5 � Conclusions

In this study, the spatial distribution of soil nutrients in the 
fragile ecological zone of southwest China was revealed and 
the specific effects of environmental factors on soil nutri‑
ents under different cropping systems were quantitatively 
analyzed. The contents of SOC and TN in this study area 
showed abundant characteristics, with weak spatial depend‑
ence. TP content was enriched and it had strong spatial 
dependence. Meanwhile, compared with maize monoculture, 
rice monoculture contained higher SOC, TN, and lower TP 
contents.

Cropping system, pH, TWI, slope, MAT, soil texture,  
and stratum all contributed to the spatial variation in soil 
nutrients. However, for different soil nutrients, the relative 
importance of these factors varied greatly. Cropping sys‑
tem, TWI, and slope were the dominant factors affecting  
SOC variability. Cropping system, TWI, and MAT greatly 
contribute to the spatial variation of TN. Soil pH followed  
by aspect and cropping system explained most variation of 
TP. In summary, understanding the influence of different 
environmental factors on spatial variation of soil nutrient can 
provide theoretical reference for optimizing agricultural man‑
agement practices, especially in ecologically fragile areas.
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