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Abstract
Purpose Mountains have unique microclimates and rich plant diversity, resulting in different patterns and dynamics of soil 
organic carbon (SOC) across plant communities and elevations. Nevertheless, few studies have systematically reviewed the 
drivers of the dynamics of global SOC in mountainous regions.
Materials and method Here, we collected relevant published literature to analyze the main drivers of the dynamics of global 
SOC at different elevations and plant communities. Specifically, we analyzed the impact of natural variability and human 
activity on SOC.
Results and discussion We found that natural factors mainly included climate change, plant succession, and wildfires. Anthro-
pogenic factors mainly included land use changes and grazing practices. SOC stocks at low elevations were more susceptible 
to grazing, precipitation, and land use changes. Conversely, higher elevations were more susceptible to warming and plant 
community succession. Notably, montane forests and permafrost, which are important terrestrial carbon sinks, were more 
easily regulated by wildfires and climate change. However, grazing had different effects on SOC in montane grasslands.
Conclusions This review highlights the synergy of multiple drivers that should be fully considered when investigating 
mechanisms underlying montane SOC. We recommend that future work explore the impact of extreme weather events on 
montane SOC.
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1 Introduction

Mountains play an important role in carbon cycling of ter-
restrial ecosystems. Mountains cover 25% of the world's 
land area and provide habitat for 33% of the world's ter-
restrial plant species (Antonelli et al. 2018; Notarnicola 
2020). Mountains not only provide ecosystem services, 
including water supply and food for surrounding and down-
stream human communities (Gret-Regamey and Weibel 
2020; Immerzeel et al. 2020; Korner et al. 2017) but are 
also important regulators of global climate, carbon, and 
nitrogen (Payne et al. 2017; Wang et al. 2022b). Differences 

in elevation and hydrothermal combinations lead to remark-
able differences in plant communities (Zhang et al. 2021b), 
which, in turn, leads to substantial spatial heterogeneity in 
SOC stocks. Mountain forests and alpine permafrost store 
large amounts of SOC and are important for reducing atmos-
pheric  CO2 and mitigating climate change (Alekseev and 
Abakumov 2022; Merabtene et al. 2021). Mountain grass-
lands are also important carbon sinks, and their carbon 
stocks are regulated by human activity and climate change 
(Ingrisch et al. 2018). Mountains are also often biodiversity 
hotspots, making them ideal regions for investigating global 
terrestrial soil carbon dynamics.

Climate change may drive mountain soil-carbon dynam-
ics. Alpine regions are one of the most vulnerable to climate 
change (Seddon et al. 2016). Warming has already caused 
widespread thawing of permafrost at high elevations. Thaw-
ing permafrost causes large amounts of previously stored 
SOC to be decomposed by microorganisms and released 
into the atmosphere in the form of  CO2 (Chang et al. 2021, 
2022; Fouche et al. 2020; Perez-Mon et al. 2022). Warming 
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has accelerated the shift of forests to higher elevations in 
some mountains worldwide (Jiang et al. 2021a; Lu et al. 
2021), which then alters primary productivity. Warming 
increases the altitudinal range of thermophilic species, while 
decreasing the altitudinal range of cold-adapted species  
and increasing alpine species richness (Rumpf et al. 2018; 
Steinbauer et al. 2018). Warming accelerates the retreat of 
alpine glaciers, which provides space for encroachment by 
alpine vegetation (Hohensinner et al. 2021). Thus, in the 
context of climate change, mountain plant community com-
position and primary productivity may alter the balance of 
SOC stocks.

Human activity may counteract the direction of changes 
in mountain SOC. The rapid development of the urban 
economy has led to a large number of residents migrating 
from the surrounding mountains to cities (e.g., western 
Europe), which is conducive to restoration of natural veg-
etation on abandoned lands and the invasion of woody 
plants (Ameztegui et  al. 2021; Carboni et  al. 2018). 
Large-scale afforestation is a sustainable method to reduce 
atmospheric  CO2. Afforestation may increase carbon sinks 
in mountain vegetation and soils (Li et al. 2018b; Piao 
et al. 2020). While deforestation increases the area of ara-
ble land (e.g., tropical mountains), it also reduces above-
ground plant biomass and litter mass (Kindermann et al. 
2008). Grazing also alters soil physicochemical properties 
and litter input, which in turn changes SOC stocks (Conant 
et al. 2017; Godde et al. 2020).

The main purpose of this review is to analyze the main 
factors affecting mountain SOC. The study areas of this 
review include major global mountain systems across dif-
ferent climatic regimes. The study sites were distributed 
across different elevations and plant communities and 
contained both natural and human factors. Hence, these 
results are representative and universal and can help us 
understand the factors influencing mountain SOC.

2  Geographical distribution of studies

To better understand the factors driving the dynamics of 
global mountain SOC, we searched the relevant published 
literature on the Web of Science platform (https:// www. 
webof scien ce. com/ wos/ woscc/ basic- search) and included 
three selection criteria: (1) mountain biomes at different 
elevations were the main research objects, and the scope 
of the study covered major global mountain systems (e.g., 
Alps and Tianshan Mountains); (2) changes in SOC were the 
main research objectives; and (3) findings must encompass 
the main drivers of SOC dynamics.

A total of 80 published articles met our research crite-
ria. We have summarized the main driving factors affecting 
mountain SOC, including natural and anthropogenic factors 
(Fig. 1). Specifically, natural factors mainly include: (1) cli-
mate change, (2) succession of plant communities, and (3) 
wildfires. Human factors included: (1) land-use change and 
(2) grazing practices. In addition, the study sites included 
major global mountain systems and continents (except Ant-
arctica), ensuring that these findings are representative and 
universal.

3  Natural changes

3.1  Climate change

3.1.1  Direct effects of warming

Warming enhanced soil respiration rate (Rs). Mountain SOC 
stock is the result of the long-term balance between organic 
carbon input and output, and SOC is eventually released into 
the atmosphere in the form of  CO2 through soil respiration 
(Li et al. 2020b). Soil respiration is an important regulator 

Fig. 1  Geographic distribu-
tion of study sites. Dots with 
different colors represent dif-
ferent driving factors of SOC 
dynamics. The background map 
is colored according to global 
SOC stock (units: kg/m2) in 
0–30 cm depth. SOC stock data 
from Zenodo (https:// zenodo. 
org/)
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of SOC dynamics in terrestrial ecosystems, and abnormal 
changes in Rs can change the initial stock balance, which in 
turn leads to an increase or decrease in montane SOC stock 
(Wang et al. 2019). Rs changes are affected by air tempera-
ture, soil moisture, and soil physicochemical properties. Of 
these, the effect of warming on Rs has received the most 
attention (Carey et al. 2016; Lei et al. 2021; Nyberg and 
Hovenden 2020). Anthropogenic climate change has dramat-
ically increased mountain temperatures (Gutierrez-Salazar 
and Medrano-Vizcaino 2019), and warming enhances Rs 
at different elevations in mountains, which, in turn, leads 
to positive feedback between soil respiration and climate 
warming (Zhang et al. 2015). However, the sensitivity of Rs 
to warming in different mountain biomes is not uniform, and 
there are significant differences as a function of elevation.

The loss of SOC in different mountain plant communities 
is accelerated with increasing temperature. The loss of SOC 
is not only affected by the magnitude of warming but also 
regulated by native temperature and initial SOC content. 
On a regional scale, the Q10 (sensitivity of soil respiration 
to temperature) of forest soils in cold regions was signifi-
cantly higher than that in warm regions (Fig. 2a), which 
may lead to a higher loss of forest SOC in cold regions than 
in warm regions (Whitby and Madritch 2013; Yang et al. 
2022; Zhang et al. 2021a). Additionally, Q10 is positively 
correlated with initial SOC content, suggesting that warm-
ing may lead to higher SOC losses in soils with high initial 
SOC content (Moriyama et al. 2013; Prietzel et al. 2016). 
In addition to native temperature and initial SOC content, 
SOC stock is also affected by differences in elevation and 
plant community structure and composition. For example, 
Q10 and Rs increase significantly with elevation (Fig. 2b) 
(Badraghi et al. 2021; Kong et al. 2022; Li et al. 2017). 

Nevertheless, there is no consensus on differences in Q10 of 
different mountain plant communities. Some regional stud-
ies have shown that the Q10 of subtropical mountain conif-
erous and broad-leaved forests are 4.49 and 3.56, respec-
tively, while the Q10 of coniferous and broad-leaved forests 
in temperate regions are 1.50 and 1.67, respectively (Ma 
et al. 2019; Zhang et al. 2021a). This difference may be due 
to differences in native temperature.

Permafrost warming may release more SOC. Low tem-
peratures, humid environments, and acidic soils limit decom-
position by microorganisms, which explains why over 50% 
of global SOC is held in permafrost (Mishra et al. 2021). 
However, warming causes large amounts of SOC in mountain 
permafrost to be decomposed and released by microorgan-
isms, which produces a large amount of carbon dioxide and 
methane, thereby promoting a positive feedback on climate 
warming and increased soil respiration (Biskaborn et al. 
2019; Jin and Ma 2021; Jones et al. 2017; Li et al. 2020a; 
Yang et al. 2021). It is worth noting that some incubation 
temperature experiments have shown that Q10 in perma-
frost regions are also regulated by mineral protection and 
microbial properties. Specifically, weak organo-mineral asso-
ciations and high microbial abundance correspond to high 
Q10 values, whereas high microbial diversity corresponds 
to low Q10 values (Jiang et al. 2020; Qin et al. 2021; Song 
et al. 2021). After that, warming alters the microbial com-
munity structure of high-elevation lichens and mosses and 
forms a highly active microbial community that accelerates 
the decomposition of microbial necromass carbon (a source 
of SOC), which may temporarily enhance climate warming 
(Donhauser et al. 2021).

Warming may be a factor causing SOC loss in differ-
ent mountain plant communities. Elevation causes plant 

Fig. 2  Sensitivity of soil respiration to temperature (Q10) across different climates and different altitudes. (a) Q10 for different forest types 
(Zhang et al. 2021a), (b) Q10 across different altitudes (Kong et al. 2022)
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communities to respond differently to changes in SOC 
decomposition rates. In general, high-elevation plant com-
munities have a higher initial SOC and lower native tempera-
tures, which may lead to a higher rate of SOC loss in these 
regions than in low-elevation regions.

3.1.2  Precipitation change

Precipitation is also a significant factor affecting the dynam-
ics of SOC stocks. Plant growth, photosynthesis, and NPP 
(net primary production) are closely related to precipitation 
(Felton et al. 2021). In addition, changes in precipitation 
also affect Rs and soil moisture, thereby changing the mag-
nitude and direction of the mineralization rate of SOC (Han 
et al. 2019; Zhao et al. 2017). In recent decades, regional 
precipitation has undergone significant changes, and the fre-
quency and intensity of extreme droughts and precipitation 
have increased significantly, which may alter the accumula-
tion and release of mountain SOC stocks (Guan et al. 2022; 
Zhang et al. 2022).

Precipitation is the main regulator of organic carbon 
input and output. Specifically, increased precipitation leads 
to an increase in aboveground biomass and NPP in dry-
land, which increases litter inputs and rhizodeposition in 
dryland soils (Li et al. 2021; Zhang and Xi 2021). In con-
trast, prolonged drought can result in reduced plant growth 
or death, resulting in a decline in plant carbon input to soil 
(Machado-Silva et al. 2021; Nanzad et al. 2021). However, 
in long-term drought-stressed mountain plant communi-
ties (e.g., desert steppe), heavy precipitation alleviates the 
drought stress of soil microorganisms, and soil microbial 
activity rapidly increases (within hours or days), thereby 
rapidly increasing Rs (known as the wetting pulse) (Hou 
et al. 2021; Jeong et al. 2017; Jiang et al. 2021b; Singh et al. 
2021). Additionally, a study in Central European mountains 
also reported that the SOC content of relatively dry forests 
(3.28 g·100  g−1) was significantly higher than that of humid 
forests (1.32 g·100  g−1) when litter input and rhizodeposi-
tion changes were stable (Fekete et al. 2021). Furthermore, 
some subtropical montane forests have also reported short-
term declines in SOC content owing to heavy precipitation 
(Table 1) (Chen et al. 2016b).

Taken together, heavy precipitation increased Rs and 
reduced SOC content in the short term. However, in the 
long term, a wetter climate can promote an increase in NPP 
in dryland, which in turn is conducive to the accumulation 
of SOC. Furthermore, we suggest that light droughts may 
increase SOC stocks.

3.2  Succession in plant communities

Economic development and climate change have changed 
the natural landscape of mountains. Rapid economic 

development of cities has led to a large number of residents 
abandoning traditional farming and animal husbandry 
activities and migrating to cities and towns (Haddaway  
et al. 2014; MacDonald et al. 2000). The dramatic reduc-
tion in mountain population density relieves the pressure 
of human activity on the local natural environment and 
promotes the restoration and succession of natural vegeta-
tion, which may change prior stocks of SOC (Urbina et al. 
2020). Additionally, alpine warming promotes the migra-
tion of thermophilic species to higher elevations (e.g., an 
upward shift of the treeline and meadow), which leads to 
more complex alpine plant communities and affects SOC 
(Gatti et al. 2019; Zhang et al. 2021b). Increased warm-
ing and decreased human activity may affect the succes-
sion of natural vegetation, which may alter the quality and  
quantity of leaf litter and soil physicochemical properties, 
thereby changing SOC content.

Long-term succession of plant communities change SOC 
stocks in low- and mid-elevation mountains. The weakening 
of agro-pastoral activities promotes secondary succession of 
natural vegetation on largely abandoned pastures and culti-
vated lands. In general, succession consists of three stages: 
(1) the initial stage is dominated by herbaceous vegetation; 
(2) many shrubs grow during the intermediate stage; and 
(3) trees become dominant in the final stage (Fino et al. 
2020). Increased plant biomass in low- and mid-elevation 
mountains during long-term succession results in increased 
surface (0–10 cm) SOC stocks (Fig. 3a), and the SOC stock 
of secondary forests is slightly higher than that of virgin 
forests (Fig. 3b) (Lasanta et al. 2020; Sokolowska et al. 
2020). However, there may be differences in the magnitude 
of increases in SOC during the final stages of secondary suc-
cession. Regional studies show that SOC stock (0–70 cm) 
increased more in broadleaf forests (278.55 Mg·ha−1) than 
coniferous forests (171.55 Mg·ha−1) (Pellis et al. 2019). In 
addition, the transition from the initial succession stage 
(Birch forest: 77.69 Mg·ha−1) to the climax succession stage 
(Larix gmelinii: 130.50 Mg·ha−1) significantly increased sur-
face (0–40 cm) SOC stock in secondary forests (Duan et al. 
2020). This suggests that succession in secondary forests 

Table 1  Effects of different precipitation treatments on SOC in sub-
tropical forests (Chen et al. 2016b)

Forest type Treatment SOC 
content 
(g·kg−1)

Broadleaf forest Double precipitation 25.04
Natural precipitation 29.06

Mixed forest Double precipitation 24.99
Natural precipitation 27.69

Coniferous forest Double precipitation 16.90
Natural precipitation 18.99
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(from broad-leaved to coniferous forests) may enhance soil 
carbon sequestration.

Upward encroachment of low-elevation species alters 
high-elevation SOC. Climate warming drives forest expan-
sion to higher elevations and increases forest cover in the 
ecotone between forests and meadows (tundra), which 
increases aboveground biomass and SOC (Bojko and Kabala 
2017; Kammer et al. 2009). However, high-elevation warm-
ing leads to the intrusion of alpine grasslands into alpine 
meadows, which weakens the soil carbon sink capacity 
(e.g., − 6.0 kg·m2 in Qinghai-Tibetan Plateau) of alpine 
meadows (Huang et al. 2022; Liu et al. 2016b). The effect 
of plant invasion on SOC depends on the productivity of the 
invasion and the amount of litter input.

Collectively, a secondary succession of abandoned arable 
land (pasture) may increase SOC, but the magnitude of SOC 
increase is regulated by plant biomass and litter input in 
the final succession stage. Succession in secondary forests 
increases the proportion of litter decomposition products 
transferred to the soil, which increases forest SOC (Xiong 
et al. 2020). At high elevations, differences in productivity 
and biomass between invasive and native species were the 
main factors influencing the changes in SOC after invasion.

3.3  Wildfire

Warming and drying may increase wildfire frequency  
and spatial extent. Mountain forests often have relatively 
thick organic layers that provide abundant fuel for wild-
fires (Tran et al. 2020). Accordingly, wildfires are regarded  
as an important factor in forest disturbance (Buma et al. 
2020). Heat waves, extreme drought, and the frequent 
occurrence of dry lightning have increased the frequency 
and intensity of wildfires, which have burned large areas  

of forest (e.g., forests in southern Australia) and released 
large amounts of greenhouse gases (Canadell et al. 2021; 
Walker et al. 2019). Wildfires also alter physicochemi-
cal properties of the topsoil, microbial composition, and  
amount of litter, which causes changes in SOC (Miesel  
et al. 2015; Solomun et al. 2021).

Changes in SOC are closely related to the intensity of 
wildfires. Forest wildfires often result in partial or complete 
degradation of the organic layer and the formation of a pyro-
lytic layer containing pyrogenic carbon (Talucci et al. 2020). 
With gravitational water infiltration, pyrogenic carbon is 
transferred from the pyrogenic horizon to the mineral soil, 
which increases the total carbon content of the soil (Reisser 
et al. 2016). Remarkably, pyrogenic carbon in mineral soils 
is a stable soil carbon pool owing to its long turnover time 
(Abney et al. 2019; Santos et al. 2021; Singh et al. 2012). 
However, different levels of wildfire may lead to an increase 
or loss of SOC. Specifically, low- to moderate-intensity 
wildfires increased forest SOC content, but not immediately 
(Fig. 4a) (Dymov et al. 2021; Gibbon et al. 2010). In general, 
the surface SOC content may increase after several leaching 
seasons (Cui et al. 2014). However, a high-intensity wildfire 
(e.g., > 400 ℃) will significantly reduce the concentration 
of topsoil SOC (Fig. 4b) (Armas-Herrera et al. 2016; Fultz 
et al. 2016; Li et al. 2020c), but in years to decades after the 
fire, SOC will gradually recover owing to plant succession 
(Dunnette et al. 2014; Guenon et al. 2011). In addition to fire 
intensity, repeated burning at short intervals also reduces 
SOC content (Pellegrini et al. 2021).

Low- to moderate-intensity wildfires can increase SOC in  
montane forests. However, high-intensity and high-frequency  
fires may accelerate SOC loss. This loss may be temporary  
because vegetation restoration increases litter input. Pyrogenic  
carbon from burning vegetation can be stored in mineral soils  

Fig. 3  SOC stocks and standard deviation at different plant successional stages. (a) SOC stocks of three succession stages (Lasanta et al. 2020), 
(b) SOC stocks of different forest types (Sokolowska et al. 2020)
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for thousands of years, and may be an important global carbon  
sink (Jones et al. 2019).

4  Human activities

4.1  Land use change

Land-use change is a potential factor affecting SOC stocks. 
Population growth, accompanied by increased food demand, 
results in the conversion of large amounts of mountain for-
ests and grasslands to arable land and pastures (Zeng et al. 
2021). Increased demand for paper, fuel, and building mate-
rials has also led to deforestation of large areas of virgin 
forests (Sandel and Svenning 2013). Human disturbances 
have disrupted the primary productivity of mountain for-
ests and grasslands, which may weaken the natural carbon 
sequestration capacity of forest or grassland soils (Santini 
et al. 2020). Restoration of natural vegetation (e.g., large-
scale afforestation) is regarded as an important means of 
enhancing mountain ecosystem services and carbon sink 
capacity (Hunziker et al. 2019). Additionally, afforestation 
can not only change plant community composition and local 
microclimate, but also increase the yield of plant biomass 
and litter, which may disrupt the balance of SOC (Hong 
et al. 2020; Ortiz et al. 2016).

The conversion of forests to croplands and pastures 
reduces SOC. In some mountainous regions, the expansion 
of arable land has led to the disappearance of large areas of 
forest, and deforestation not only reduces aboveground bio-
mass but also changes the physicochemical properties of for-
est soils, which in turn affects the carbon dynamics of forest 
soil. (Fujisaki et al. 2015; Tolimir et al. 2020). Specifically, 

when the forest is converted to cultivated land, the bulk den-
sity of the forest soil increases, soil acidity decreases, and 
litterfall also decreases, which is not conducive to the accu-
mulation of SOC (Fang et al. 2014; Vanacker et al. 2022). 
Previous studies have reported varying degrees of SOC loss 
when montane forests were converted to croplands and pas-
tures (Table 2) (Falahatkar et al. 2014; Fusaro et al. 2019; 
Yimer et al. 2007). Conversely, SOC stocks increased when 
cropland and grassland were converted to forest (Table 2) 
(Justine et al. 2020; Zhang et al. 2014).

Afforestation of abandoned croplands and pastures 
increases SOC. Afforestation increases soil water content 
and porosity, while decreasing soil bulk density and pH (e.g., 
input of acidic litter), which favors SOC accumulation (Chen 
et al. 2016a). Hence, afforestation can increase the carbon 
storage of mountain ecosystems, which further indicates that 
afforestation has great potential for reducing atmospheric 
 CO2 concentrations and alleviating global warming (Bastin  
et al. 2020). In addition, many afforestation practices glob-
ally show that planted forests significantly increase SOC 

Fig. 4  Mineral SOC content and standard deviation with different 
burning stages and burning intensity. (a) low intensity wildfire and 
includes three combustion stages: BF (unburnt soil), DF (during fire) 

and 1AF (one year after fire) (Dymov et al. 2021), (b) different burn-
ing intensities (Li et al. 2020c)

Table 2  Effects of land use changes on SOC stock

Depth (cm) Conversion type SOC stock References

0–15 Arable land to grass-
land

 + 25.0% Zhang et al. (2014)

0–40 Forest to rangeland  − 14.5% Falahatkar et al. 
(2014)

0–60 Forest to grassland  − 37.7% Justine et al. (2020)
0–60 Grassland to Forest  + 27.4%
0–100 Forest to arable land  − 30.9% Yimer et al. (2007)
0–100 Grassland to Forest  + 50.43% Zhang et al. (2021c)
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stock in abandoned farmland and pastures (Campo et al. 
2019; Chiti et al. 2018; Li et al. 2016; Zhang et al. 2021c). 
However, SOC decreases in early stages and gradually recov-
ers decades later (Li et al. 2015; Menichetti et al. 2017). Dif-
ferent tree species and afforestation methods also affect SOC 
dynamics. For example, the selection of coniferous species 
or mixed afforestation can further enhance carbon sequestra-
tion capacity (Han et al. 2021; Niu et al. 2015).

Deforestation usually reduces the input of aboveground 
biomass and litter, thereby resulting in SOC loss. How-
ever, afforestation, especially on abandoned farmland and 
pastures, can improve soil physicochemical properties and 
increase primary productivity, further enhancing soil car-
bon sequestration. The increase or loss of SOC caused by 
land use change is a long-term and slow process. SOC stock 
changes caused by different land use patterns may take dec-
ades or even centuries to reach a new equilibrium (Li et al. 
2018a).

4.2  Grazing practices

Grazing is one of the most globally extensive forms of land 
use and affects SOC in approximately 25% of ecosystems 
(Chen et al. 2015). Mountain grazing is mainly distributed 
in montane grasslands and alpine meadows and provides 
important ecological services, including meat and milk to 
surrounding low-elevation cities (Xun et al. 2018). Graz-
ing, especially overgrazing, owing to increased human 
demand for food, has extensive and far-reaching implica-
tions for montane ecosystems. Different grazing intensities 
and patterns change grassland biodiversity, biomass, and 
soil physicochemical processes, which affect the direction 

and magnitude of SOC changes (Zhang et al. 2020b). How-
ever, the response of SOC to grazing is not immediate and 
is closely related to additional factors, including elevation, 
grassland management, and regional climate (Wang et al. 
2022c).

The response of SOC to grazing is regulated by several 
factors. High-intensity grazing reduces primary productiv-
ity and aboveground biomass in grasslands, resulting in 
less litter and SOC stocks (Fig. 5a) (Goenster-Jordan et al. 
2021; Vaieretti et al. 2021; Yang et al. 2018; Yuan and Hou 
2015; Zhang et al. 2018). In addition to grazing intensity, 
regional climate differences lead to different responses to 
grazing. Grazing in warm and humid climates increase SOC, 
whereas SOC decreases in cold and wet climates (Abdalla 
et al. 2018). The effects of grazing on SOC in montane 
grasslands also differ as a function of elevation. The loss 
of topsoil SOC in low-elevation desert steppe is higher than 
that in alpine meadow under different grazing intensities, 
and grazing leads to seasonal changes in SOC concentration 
in alpine meadows (Norton et al. 2014; Wang et al. 2022a). 
Grazing also enhances soil respiration, resulting in higher 
 CO2 effluxes than in ungrazed lands (Gao et al. 2018; Liu 
et al. 2016a).

Grazing strategies play a key role in the dynamics of 
grassland carbon stocks. At low and medium intensities 
of grazing, free grazing reduces plant diversity, soil poros-
ity, and vegetation coverage, thereby reducing SOC and 
microbial biomass (Lu et al. 2017; Wang et al. 2012; Zhao 
et al. 2019). However, compared to free grazing, fenced 
grazing increased above- and below-ground biomass and 
SOC content at soil depths of 0–100 cm (Fig. 5b) (Bi et al. 
2020; Hewins et al. 2018; Zhang et al. 2020a). After that, 

Fig. 5  Effects of grazing intensity and grazing strategy on SOC. (a) 
Effects of different grazing intensities on SOC stocks (Vaieretti et al. 
2021), (b) effects of grazing strategies on SOC content; G, F15, and 

F30 represent free grazing, 15 years in fenced, and 30 years in fenced, 
respectively (Zhang et al. 2020a)
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rotational fence grazing can alleviate soil disturbance and 
increase plant biomass, which can further increase surface 
SOC (Baronti et al. 2022).

Overall, the dynamics of SOC stocks in montane grass-
lands are influenced by grazing intensity, regional climate, 
and grazing management strategies. Differences in the natu-
ral environments of different regions lead to more complex 
responses. Notably, when SOC is regulated by multiple fac-
tors, the relative contributions of different factors require 
further investigation.

5  Summary

In this paper, we reviewed the main factors affecting moun-
tain SOC stock. Mountain SOC dynamics are affected by 
both natural and anthropogenic factors. Natural factors 
include climate change, plant community succession, and 
wildfire. Specifically, warming and heavy precipitation 
enhance soil respiration rates, which then accelerate the loss 
of SOC stocks. However, long-term wetting trends increase 
plant NPP in dryland, which favors SOC accumulation. Fur-
thermore, the magnitude of the increase in soil respiration 
rate was regulated by the initial SOC, native temperature, 
elevation, and vegetation type. Plant succession in aban-
doned cultivated lands or pastures increased SOC content, 
and the magnitude of the increase was dependent on plant 
primary productivity at the final succession stage. Warming 
also caused some plant species to shift upward along eleva-
tion gradients and affected SOC in new areas. Moreover, 
the direction of change in SOC was mediated by differences 
in productivity between invasive and native species. Moun-
tain forests are also vulnerable to wildfire. High-intensity 
wildfires reduce forest SOC, whereas moderate- and low-
intensity wildfires increase soil total carbon content.

Human factors mainly include land use change and graz-
ing. Specifically, deforestation reduces SOC. In contrast, 
afforestation of abandoned farmlands and pastures increases 
the quality and quantity of leaf litter, which increases the 
SOC stock. Grazing practices can affect SOC in montane 
grasslands. Notably, differences in climate, elevation, and 
grazing management strategies alter the direction and mag-
nitude of changes in SOC.

6  Future perspectives

Mountain SOC is affected by both natural and anthropogenic 
factors. We found that most studies focused on the influ-
ence of a single factor on mountain SOC, while ignoring 
the synergistic effects of multiple factors. It is necessary to 
quantitatively analyze the relative contributions of multiple 
factors. Furthermore, studying the future trends of dominant 

factors is crucial for predicting SOC dynamics in mountain 
ecosystems.

Anthropogenic climate change has significantly increased 
the intensity, frequency, and duration of extreme weather 
and climate events globally (Ummenhofer and Meehl 2017). 
Extreme weather events can lead to large losses of carbon 
stocks in terrestrial ecosystems over short periods of time. 
For example, during the European heatwave in 2003, the 
loss of soil carbon stocks in Western Europe was equivalent 
to the amount of carbon sequestered from the atmosphere 
over three to five years under normal climatic conditions 
(Vetter et al. 2008). Additionally, extreme precipitation can 
lead to a large amount of particulate organic carbon entering 
aquatic ecosystems within a short period of time (Goldsmith 
et al. 2008). Several studies have reported increasing trends 
in extreme weather events (e.g., extreme precipitation, heat 
waves, and extreme wildfires) (Bonekamp et al. 2021; Coop 
et al. 2022; Nandargi and Dhar 2011; Shi and Durran 2015). 
Extreme weather or climate events can affect the function 
and structure of mountain ecosystems, thereby affecting the 
soil carbon cycle of different plant communities and caus-
ing some ecosystems to switch from carbon sinks to carbon 
sources (Frank et al. 2015). Therefore, understanding the 
impact of extreme weather and climate events on SOC in 
mountain ecosystems is critical to improve our ability to 
predict future changes in mountain SOC stocks.
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