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Abstract
Purpose  Traditional measurement for soil properties is time-consuming and costly, while visible–near-infrared spectroscopy 
enables the rapid prediction of soil properties. In this study, visible–near-infrared spectroscopy was used to predict these 
four soil properties including OC (organic carbon) content, TN (total nitrogen) content, pH value, and clay content in rare 
earth mining areas based on different spectral transformation and calibration methods.
Materials and methods  A total of 232 soil samples were collected from unexploited, in situ leaching, and heap leaching 
mining areas in southern Jiangxi Province, China. The chemical properties and reflectance spectra of air-dried samples were 
measured. Spectral transformations including first-order derivative (FOD), continuum removal (CR), and continuous wavelet 
transform (CWT) were selected to improve the prediction accuracy of the model. Partial least-squares regression (PLSR), 
the support vector machine (SVM), and extreme gradient boosting (XGBoost) were used to construct prediction models.
Results and discussion  The highest prediction accuracies in terms of the coefficient of determination (R2), root mean square 
error (RMSE), and relative prediction deviation (RPD) were obtained using CWT spectra with XGBoost for organic carbon 
content (R2 = 0.89, RMSE = 0.24, RPIQ = 4.67), total nitrogen content (R2 = 0.86, RMSE = 0.01, RPIQ = 4.14), and pH value 
(R2 = 0.73, RMSE = 0.19, RPIQ = 1.66). The best prediction result for clay content was obtained using CWT spectra with 
the SVM (R2 = 0.67, RMSE = 6.45, RPIQ = 2.75).
Conclusions  The CWT coupled with a non-linear model, such as XGBoost, is an effective method for the accurate prediction 
of soil properties in rare earth mining areas.
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1  Introduction

Rare earths, also known as industrial vitamins, are vital 
strategic resources widely used in many fields, such as the 
military, petrochemicals, and textile (Yang et al. 2013). 
Locations with ion-absorption rare earth deposits, such as 
Ganzhou, Jiangxi Province, China, are commonly charac-
terized by a warm and humid climate, and low undulating 
hilly landforms. Owing to disorderly activity and outdated 
technology in the earlier stages of mining, substantial aban-
doned tailings are present in rare earth mining areas, result-
ing in serious eco-environmental problems that need to be 
solved urgently. In particular, the soil properties in rare earth 
mining areas are seriously affected by the leaching process 
(Yang et al. 2013).

The major soil type of rare earth mining area is red soil 
in Ganzhou. With a hot and rainy conditions, the process of 
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desilicification and allitization during the formation of red 
soil results in a high content of iron and aluminum oxide 
in the soil. And clay minerals composed of halloysite and 
kaolin are formed to provide a good environment for the 
accumulation of rare earth elements (Li and Zhou 2020). 
There are three typical types of rare earth mining areas 
namely unexploited, in situ leaching, and heap leaching 
mining areas. The unexploited mining area is less affected 
by human activity and has high vegetation coverage. The 
in situ leaching and heap leaching areas extract rare earth 
elements by chemical methods, but the degree of impact 
on the environment is different. As for the in situ leach-
ing mining area, overall damage to the mountain is minor, 
with greater damage to the soil and vegetation due to mining 
mainly occurring around the injection wells and collection 
ditch. The heap leaching mining area is mainly covered by 
rare earth tailings, and the soil shows severe desertification 
with only a few Pinus massoniana plants. Collecting soil 
samples in these three types of mining areas can conduct a 
more comprehensive study of the soil in rare earth mining 
areas in order to deal with the eco-environmental problems.

As a sink for atmospheric carbon dioxide, soil plays an 
important role in achieving global carbon neutrality (Paustian 
et al. 2016). The impact of human activities on changes in 
soil properties is a long-term and complicated process (Gu 
et al. 2021). The extraction process of rare earth elements by 
using (NH4)2SO4 negatively affects soil properties, the most 
important of which are organic carbon (OC) content, total 
nitrogen (TN) content, pH value, and clay content. Soil OC 
and TN influence soil functions related to water and nutrient 
retention, while also providing nutrients for plant growth. 
When using (NH4)2SO4, NH4

+ replaces Ca2+ adsorbed on 
soil colloids, which destroys the soil aggregate structure 
and causes a subsequent loss of soil OC and TN. Soil pH is 
related to the growth and development of animals and plants, 
with the low pH values in rare earth mining areas found to 
affect soil health. The NH4

+ replaces H+ on soil colloids, 
which will increase H+ in soil, leading to soil acidification 
and compaction (Guo et al. 2010). Soil clay plays an essen-
tial role in soil that affect many soil properties and process 
(Song et al. 2021); it also acts as “glue” to hold soil particles 
together (Bronick and Lal 2005). Rare earth elements are 
adsorbed and enriched by clay minerals in ionic form. The 
usage of (NH4)2SO4 results in the replacement of rare earth 
ions on clay minerals with H+ and NH4

+ and the destruc-
tion of soil binding agent (clay). Therefore, these four soil 
properties in rare earth mining areas should be monitored 
in a timely manner to provide support data for soil erosion 
control and ecological restoration.

Traditionally, soil properties are measured using physical 
and chemical methods in the laboratory (Greenberg et al. 
2020). Although accurate results can be obtained, traditional 
soil testing methods require substantial labor, materials, and 

financial resources. Furthermore, these methods have limita-
tions in large-scale monitoring owing to spatial variability 
in soil properties. The emergence of visible–near-infrared 
spectroscopy provides a powerful tool for the rapid monitor-
ing of soil properties (Chen et al. 1989), based on acquiring 
soil spectral data using a ground spectroradiometer. Studies 
have shown the potential of soil spectra to predict soil prop-
erties. For example, Kovačević et al. (2010) successfully 
used the Gaussian kernel with the support vector machine 
(SVM) to predict soil pH values. Zhang et al. (2019) pre-
dicted the soil TN content using feature bands and the SVM 
method. Ji et al. (2019) combined data from four soil spec-
tral sensors to predict soil organic matter (SOM) and pH, 
and the concentrations of soil ions, including phosphorus, 
potassium, and calcium. Tsakiridis et al. (2020) found that 
the convolutional neural network method performed well in 
predicting the soil clay, silt, and sand contents, pH value, 
cation exchange capacity (CEC), and OC, CaCO3, and N 
contents in the LUCAS topsoil database. The mechanisms 
for predicting soil properties based on visible–near-infrared 
spectroscopy depend on different spectral interactions of the 
main soil chromophores (Vohland et al. 2011).

Extracting useful information from the original soil spec-
trum is difficult owing to spectral overlaps occurring in the 
visible and near-infrared range (Stenberg et al., 2010; Chen 
et al. 2020). Therefore, spectral transformation methods are 
used for spectral pre-processing to reduce the influence of 
environmental noise and enhance the useful information. 
The first-order derivative (FOD) can remove interference 
from linear or nearly linear background noise to improve 
analysis accuracy (Ben-Dor et al. 1997). The continuum 
removal (CR) generally magnifies the absorption and reflec-
tion characteristics in spectra, and the spectra are normalized 
to a consistent spectrum background, which is beneficial 
to identify feature bands (Clark and Roush 1984; Tziolas 
et al. 2020). As an effective signal processing method, the 
continuous wavelet transform (CWT) is able to decompose 
the original spectrum into multi-scale wavelet coefficients 
through operations such as scaling and translation. This 
decomposition process can enhance certain information 
in the spectrum, including the location and nature of high-
frequency features (narrow absorption features, spikes, and 
noise), or the size and shape of continuous features on a 
large scale (Vohland et al. 2016).

Soil spectralanalysis commonly uses linear and non- 
linear calibration methods. As a linearmultivariate regres-
sion method, partial least-squares regression (PLSR) issu-
perior to other regression methods, such as stepwise multi-
ple regression(SMLR) and principal component regression 
(PCR), in processingmulti-dimensional collinearity data 
(Conforti et  al. 2015; Shi et  al. 2013).However, soil is 
formed under the effects of multiple factors, such as parent-
material, topography, and climate. Owing to the complex 
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composition of soil,the relationship between soil spectra 
and soil properties might not be a simplelinear relationship  
(Vohland et al. 2011). Non-linear methods might outper-
formlinear methods in dealing with such issues. For exam-
ple, the SVM is a usefultool for solving non-linear prob-
lems with multi-dimensional data and smallsample sizes 
(Nawar et al. 2016). Based on soil spectroscopy, the SVM 
has beensuccessfully used to predict soil properties. Nawar 
and Mouazen (2017) foundthat the SVM and multivariate 
adaptive regression splines (MARS) outperformedPLSR and 
achieved similar accuracy for predicting soil TN, total car-
bon (TC),and water content at different geographical scales. 
Furthermore, extremegradient boosting (XGBoost) based 
on the gradient descent algorithm can solveclassification, 
regression, and sorting issues (Chen and Guestrin 2016), 
but israrely used to predict soil properties based on spec-
troscopy. Wei et al. (2019)found that XGBoost performed 
well in estimating the arsenic (As) content insoil, suggesting 
that this method has potential to predict other soilproperties.

Recently, owing to the emergence of data mining and 
deep-learning methods, a growing number of studies 
have focused on the prediction of soil properties using 
large spectral libraries (Tsakiridis et al. 2020; Zhong et al. 
2021). Although a model with high overall accuracy can 
be obtained, its applicability might not be high when the 
prediction is downscaled to a single soil type in a specific 
area, owing to the large coverage scale of the soil samples. 
Therefore, the aims of this study were (1) to verify the feasi-
bility of using visible–near-infrared spectroscopy to predict 
the OC content, TN content, pH value, and clay content of 
soil in rare earth mining areas; and (2) to select the opti-
mal spectral transformation method (FOD, CR, and CWT) 
coupled with different calibration methods (PLSR, SVM, 
and XGBoost) for predicting soil properties based on vis-
ible–near-infrared spectroscopy.

2 � Materials and methods

2.1 � Study area and sampling

The study area, located in Longnan, Dingnan, and Xinfeng 
Counties, Jiangxi Province, China, was rich in ionic rare 
earth ores. This area has a mid-subtropical humid climate, 
with a mean annual rainfall of 1500–1600 mm and a mean 
annual temperature of 19.0 °C. The elevation is in the range 
of 200–400 m, and the major landform is low hills, with 
forestland as the dominant land-use type. The soil type in 
the study area is mainly red soil (Alumi-Ferric Alisols) and 
the clay minerals mainly consist of kaolinite.

Nine typical mining sites representing unexploited, in-
situ leaching, and heap leaching mining areas (three sites 
each) were selected in the study area (Fig. 1). Considering 

the danger of sampling in the mountains, soil samples of 
the unexploited mining area were mainly collected on both 
sides of the mountain road (> 5 m distance from the road). 
In the in situ leaching mining area, soil sampling was mainly 
conducted near the injection wells. Soil sampling points in 
the heap leaching mining areas were evenly distributed.

A total of 232 topsoil samples (depth, 0–20 cm) were 
collected using a five-point sampling method in June and 
July 2020. The center position of each sample was recorded 
using a handheld global positioning system (Fig. 1). After 
removing plant roots and stones by hand, all soil samples 
were kept in resealable bags and labeled. The samples were 
then air-dried, ground, and passed through a 10-mesh sieve 
(2 mm). Each sample was equally divided into three parts 
for the determination of soil properties, measurement of soil 
spectra, and further use.

2.2 � Chemical analysis

The OC and TN contents of soil samples passed through a 
100-mesh sieve (0.149 mm) were determined using a Vario 
MACRO cube elemental analyzer (Elementar, Hanau, Ger-
many) based on the combustion–oxidation method (Wang 
et al. 2020). As the measured soil pH values were strongly 
acidic, the samples contained nearly no inorganic carbon, 
and the OC content was considered to be equal to the TC 
content. The pH values of soil samples (2 mm) were meas-
ured using a potentiometric method with a water–soil ratio 
of 2.5:1 (v/w) (Kovačević et al. 2010). The clay content of 
the soil samples (2 mm) was measured using the pipette 
method (Kilmer and Alexander 1949).

2.3 � Spectral measurement and pre‑processing

An ASD FieldSpec 4 spectroradiometer (Analytical Spec-
tral Devices Inc., Boulder, CO, USA) was used to obtain 
the spectral reflectance of soil samples in the range of 
350–2500 nm. The spectral sampling resolutions of the 
instrument were 3 nm (at 700 nm) and 10 nm (at 1400 and 
2100 nm). The spectra were resampled to 2-nm intervals 
and 2151 bands were exported for each spectrum. Spectral 
measurements were conducted in a dark room to reduce 
interference from external light sources. Soil samples were 
placed in a black sample container kept in the slot at the 
top of the MugLite instrument (Analytical Spectral Devices 
Inc.) and measured with the built-in light source. A white 
Spectralon panel (Analytical Spectral Devices Inc.) was used 
to calibrate the instrument every 10 min. Each soil sample 
was scanned five times and the mean of the spectra was used 
as the final spectrum for each sample.

The splice correction function in ViewSpecPro v6.0 
(Analytical Spectral Devices Inc.) was used to eliminate 
the effects of breakpoints generated by the instrument when 
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measuring soil spectra. The sections at 350–399 nm and 
2451–2500 nm, which were considerably affected by the 
instrument and environmental noise during the measure-
ment, were removed. The Savitzky–Golay filter was then 
used to smooth the spectrum and remove noise caused by the 
instrument and environment, while maintaining the original 
spectral characteristics (Savitzky and Golay 1964).

2.4 � Spectral transformation methods

The first-order derivative (FOD), continuum removal (CR), 
and continuous wavelet transform (CWT) were selected to 
compare with the original reflectance.

The Mexican hat (Torrence and Compo 1998) was 
selected as the mother wavelet function for CWT, and 
transformed it into a set of wavelet coefficients on different 
scales (Mallat 1989). The decomposition scales were set at 
21, 22, 23, …, and 210 to prevent data redundancy (Cheng 
et al. 2011).

2.5 � Calibration methods

2.5.1 � Partial least‑squares regression

PLSR is a linear multivariate regression method that pro-
jects the independent (X) and dependent (Y) variables into 

Fig. 1   Locations of the study area and soil sampling points in Jiangxi Province, China
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a new space and identifies the relationship between them to 
construct a prediction model (Viscarra Rossel and Behrens  
2010; Wold et al. 2001). PLSR is able to extract the main 
information from multiple independent variables by reduc-
ing the dimensionality and effect of multicollinearity in the 
independent variables. The correlation between independent 
and dependent variables is also considered, with the depend-
ent variables predicted through several latent variables 
extracted from multiple independent variables. This method 
is suitable for situations where the number of samples is 
less than the number of independent variables (Kuang et al. 
2015). In this study, the number of latent variables in the 
PLSR model was determined by ten-fold cross-validation, 
and model construction was implemented in The Unscram-
bler X v10.4 (CAMO, Oslo, Norway).

2.5.2 � Support vector machine

The SVM is a non-linear model in machine learning that 
projects the input data into a feature plane and finds an opti-
mal plane that can minimize the distance from all samples 
to the plane (Wang et al. 2019). To reduce the complexity 
of the calculation and prevent dimensional disaster, the ker-
nel function is introduced, which can solve high-dimension 
problems by calculating them under low dimensions (Smola 
and Schölkopf 2004). In this study, the radial basis function 
(RBF) kernel was used to construct the SVM model. Two 
main parameters, C (cost parameter) and γ (kernel param-
eter), must be optimized in the construction of the SVM 
model (Hong et al. 2018; Dong et al. 2021). Therefore, a grid 
search with ten-fold cross-validation was used to optimize 
the C and γ values. The SVM model was constructed using 
Matlab R2017b (MathWorks Inc.).

2.5.3 � Extreme gradient boosting

XGBoost (Chen and Guestrin 2016) is a scalable end-to-
end tree boosting system algorithm inspired by the gradi-
ent enhancement algorithm (Friedman 2001). XGBoost not 
only uses the first derivative of the loss function, but also 
performs a second-order Taylor expansion of the loss func-
tion by accounting for the second derivative information. 
Consequently, the model converges quickly and its operat-
ing efficiency is improved (Friedman et al. 2000). In this 
study, the root mean square error (RMSE) was used as the 
loss function to evaluate the optimal objective function. A 
regular term was added to the calculation process of the 
model objective function, which can improve the generaliza-
tion ability to prevent over-fitting of the prediction model. 
When encountering a situation with a large amount of data, 
a multi-threaded parallel method was used to improve the 
computational efficiency (Wei et al. 2019).

For a given dataset of n samples and m independent vari-
ables, the objective function of XGBoost can be defined as 
follows:

where l is the loss function. yi and ŷi are the measured and 
predicted value of the number i sample, respectively. ft is the 
number t tree. 

∑T

t=1
Ω(ft) is the sum complexity of t trees, 

which is used as a regular term in the objective function.
Expanding the objective function according to Taylor’s 

formula, the second-order Taylor expression of the loss func-
tion after t iterations can be obtained, which can be approxi-
mately expressed as follows:

where gi = �ŷ(t−1) l(yi, ŷ
(t−1)) and hi = �2

ŷ(t−1)
l(yi, ŷ

(t−1)) are the 
first-order and second-order partial derivatives of the loss 
function, respectively.

In the XGBoost model, grid search was used to optimize 
hyperparameters, and the hyperparameters were tuned as 
follows: the maximum depth of the tree was set to 7; learning 
rate was set to 0.1 to control length of each iteration step; 
and the number of trees (n-estimators) was set to 80. The 
XGBoost model was constructed using the xgboost package 
in Python v3.7 (https://​www.​python.​org/).

2.6 � Model accuracy evaluation

The accuracy of the constructed prediction models was eval-
uated using the coefficient of determination (R2), RMSE, 
and ratio of performance to inter-quartile distance (RPIQ). 
Larger R2 or RPIQ values and a smaller RMSE value indi-
cated better prediction accuracy. The prediction perfor-
mance of models was divided into four categories accord-
ing to the RPIQ values, as follows: excellent (RPIQ ≥ 4.05); 
good (3.37 ≤ RPIQ < 4.05); approximately quantitative 
(2.70 ≤ RPIQ < 3.37); distinguishing between high and low 
values (2.02 ≤ RPIQ < 2.70); and unsuccessful (RPIQ ≤ 2.02) 
(Saeys et al. 2005; Ludwig et al. 2017).

2.7 � Statistical analysis

Statistical analysis was conducted using IBM SPSS Statistics 
v22.0 (IBM Corp., Armonk, NY, USA) and Microsoft Excel 
v2019 (Microsoft Corp., Redmond, WA, USA). Graphical 
drawing was performed using ArcGIS v10.5 (ESRI Inc., 
Redlands, CA, USA) and OriginPro v2021 (OriginLab 
Corp., Northampton, MA, USA).

(1)Obj(�) =

n
∑

i

l(yi, ŷi) +

T
∑

t=1

Ω(ft)

(2)L(t) =

k
∑

i=1

[l(yi, ŷ
(t−1)) + gift(xi) +

1

2
hift

2(xi)] + Ω(ft)
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The FOD, CR, and CWT spectral transformations were 
performed using OriginPro v2021 (OriginLab Corp., North-
ampton, MA, USA), ENVI Classic v5.5 (Harris Geospatial 
Inc., Bloomfield, CO, USA), and Matlab R2017b (Math-
Works Inc., Natick, MA, USA), respectively.

3 � Results

3.1 � Descriptive statistics of soil properties

The obtained 232 soil samples were divided into two parts 
by the Kennard–Stone method (Kennard and Stone 1969), 
namely, the calibration dataset (N = 174) and the validation 
dataset (N = 58). Descriptive statistics of the measured soil 
OC content, TN content, pH value, and clay content for the 
whole, calibration, and validation datasets are summarized 
in Table 1. It could be observed that the OC content, TN 
content, pH value, and clay content of the whole dataset 
ranged from 0.04 to 2.08%, 0.01 to 0.18%, 3.90 to 5.84%, 
and 3.82 to 47.30%, respectively. The CV (coefficient of 
variation) of OC content, TN content, and clay content were 
higher than 35%, whereas the CV of pH value was below 
15%, which meant that the pH value of the study area had 
little variability according to Wilding (1985).

The mean, SD (standard deviation), and CV of the 
whole, and calibration and validation datasets were sim-
ilar. And Levene’s test (Levene 1960) was conducted to 
prove the reliability of the method used to split datasets. 
The p-values of the four soil properties from Levene’s test 
were 0.011, 0.298, 0.666, and 0.759 (significance level, 
α  = 0.01), respectively, indicating that the calibration and 
validation datasets had equal variances and could represent 
the whole dataset.

3.2 � Soil spectra and transformations

Figure 2a shows the original (OR) spectrum after averaging 
the obtained 232 soil spectra. The soil spectrum increased 
rapidly in the visible range, showing a steep slope. Slight 
changes were observed from 800 to 1300 nm and from 1500 
to 1800 nm, while the spectrum exhibited a slow downward 
trend in the range of 2200–2450 nm.

Figures 2b–d show the soil spectra after three different 
transformations. When transformed using the FOD, the 
spectrum mainly fluctuated near 0, and bands, such as those 
at 500, 1400, 1900, and 2200 nm, became more distinct. 
After CR transformation, absorption valleys were observed 
in the spectrum at approximately 500, 900, 1400, 1900, and 
2200 nm. The range of wavelet coefficients obtained by the 
CWT increased with increasing scale. The wavelet coeffi-
cients at scales 1–6 had a small variation range, fluctuat-
ing between − 1 and 1. The wavelet coefficients at scales 
7–10 exhibited a remarkable expansion of the value range. 
At scale 8, two wavelet coefficient peaks appeared near 800 
and 2200 nm, respectively, while at scales 9 and 10, the 
curves were smooth with a convex center at approximately 
1400 nm.

3.3 � Correlation between soil properties and spectra

Pearson correlation analysis was used to measure the rela-
tionship between soil properties (OC, TN, pH, and clay) and 
soil spectra (OR, FOD, CR, and CWT). Bands in the range 
of 600–800 and 2000–2400 nm were highly correlated with 
the OC content (Fig. 3). The highest correlation with the 
OC content was observed at 793 nm for FOD spectra, and 
at 2110, 1290, and 1945 nm for OR, CR, and CWT1 spec-
tra, respectively. The OR spectra were negatively correlated 

Table 1   Descriptive statistics of soil properties in the study area

OC organic carbon, TN total nitrogen, SD standard deviation, CV coefficient of variance

Soil property Dataset Sample number Min Max Mean SD CV Skewness Kurtosis

OC Whole 232 0.04% 2.08% 0.66% 0.57% 86.58% 0.69  − 0.69
Calibration 174 0.04% 2.08% 0.67% 0.54% 81.44% 0.62  − 0.69
Validation 58 0.05% 2.03% 0.65% 0.66% 101.80% 0.81  − 0.80

TN Whole 232 0.01% 0.18% 0.06% 0.04% 63.90% 0.73  − 0.27
Calibration 174 0.01% 0.18% 0.06% 0.04% 64.44% 0.75  − 0.23
Validation 58 0.01% 0.14% 0.06% 0.04% 62.05% 0.59  − 0.73

pH Whole 232 3.90 5.84 4.55 0.37 8.07% 0.95 0.78
Calibration 174 3.90 5.84 4.56 0.37 8.11% 0.89 0.69
Validation 58 3.97 5.65 4.53 0.36 7.99% 1.17 1.34

Clay Whole 232 3.82% 47.30% 20.08% 11.26% 56.17% 0.52  − 1.05
Calibration 174 3.82% 47.30% 20.56% 11.29% 54.90% 0.45  − 1.09
Validation 58 5.34% 42.12% 18.63% 11.17% 60.05% 0.79  − 0.77
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with the OC content over the full wavelength range, with 
almost all bands passing the significance test. The correla-
tion coefficients between FOD, CR, or CWT spectra and 
the OC content fluctuated between positive and negative 
values (Fig. 3a). The highest correlation between soil spec-
tra and the TN content was found at 793 nm in the FOD 
spectra, with the correlation coefficient being higher than 
the corresponding coefficient between soil spectra and the 
OC content. However, the number of bands that passed the 
significance test was slightly smaller for the TN content than 
for the OC content (Fig. 3b).

The soil pH value showed a relatively low correlation 
with the OR, FOD, and CR spectra. The CWT spectra 
showed a high correlation with the pH value, mainly at 
approximately 400, 1000, and 2400 nm at low decomposing 
scales, with the highest correlation observed at 1011 nm in 
the CWT2 spectra (Fig. 3c). The clay content of soil showed 
a lower correlation with the OR spectra compared with the 
OC content. Bands in transformed spectra in the range of 
400–500, 1600–1700, and 2000–2450 nm showed a rela-
tively high correlation with the clay content, with the high-
est correlation observed at 1672 nm in the FOD spectra. 

For the CWT spectra, bands from 400 to 500 nm at scales 
1–4 appeared as narrow features, while bands from 2000 to 
2450 nm at scales 7–9 appeared as broad features (Fig. 3d).

3.4 � Prediction of soil properties

For calibration dataset, the prediction accuracy of the 
XGBoost method for soil properties were higher than the 
PLSR and SVM method. The best results of the OC content, 
TN content, pH value, and clay content for the calibration 
dataset were obtained using XGBoost based on CWT spectra 
(OC: R2 = 0.99, RMSE = 0.05; TN: R2 = 0.99, RMSE = 0.01; 
pH: R2 = 0.97, RMSE = 0.07; clay: R2 = 0.99, RMSE = 1.54; 
Table 2).

To evaluate the influence of different spectral transforma-
tion and calibration methods on the prediction of soil proper-
ties, RPIQ value was added to calculate for the validation 
dataset. For the OC content, nearly all models constructed 
based on FOD and CWT spectra outperformed the mod-
els based on OR spectra (Table 3 and Fig. 4). In particu-
lar, the best results with CWT spectra were obtained using 
SVM (R2 = 0.88, RMSE = 0.26, RPIQ = 4.37) and XGBoost 

Fig. 2   a Soil spectral curves of original reflectance (OR) and (b–d) transformed reflectance
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(R2 = 0.89, RMSE = 0.24, RPIQ = 4.67). Models based on 
CR spectra yielded the worst result when coupled with SVM 
(R2 = 0.62, RMSE = 0.45, RPIQ = 2.44). Compared with 
the OC content, the prediction accuracy for the TN content 
was lower, with the best result obtained using CWT spec-
tra with XGBoost (R2 = 0.86, RMSE = 0.01, RPIQ = 4.14). 
For each calibration method, the results obtained with OR, 
FOD, and CWT spectra had higher accuracy than those 
obtained with CR spectra (Table 3 and Fig. 5). The model 
based on CWT spectra performed well with the SVM and 
XGBoost methods. For OR and FOD spectra, the models’ 
accuracies obtained using SVM and XGBoost methods 
were similar, and lower than those based on CWT spectra. 
The best prediction result for soil pH value was obtained 
using CWT spectra with XGBoost (R2 = 0.73, RMSE = 0.19, 
RPIQ = 1.95). However, each prediction model had an RPIQ 
value below 2.02, indicating that the model could not suc-
cessfully predict soil pH value (Table 3 and Fig. 6). For clay 

content, the best result was obtained with CWT spectra and 
the SVM method (R2 = 0.67, RMSE = 6.45, RPIQ = 3.12). 
The models constructed with original or transformed spec-
tra and different calibration methods were mostly able to 
approximately quantitative the clay content (Table 3 and 
Fig. 7).

4 � Discussion

4.1 � Features of soil spectra and transformations

For the original soil spectra (OR), five absorption features 
were observed at approximately 400–600, 900, 1400, 
1900, and 2200 nm, respectively. The absorption feature 
at approximately 400–600 nm was associated with hum-
mus and iron (Palacios-Orueta and Ustin 1998; Stoner 
and Baumgardner 1981). The broad absorption band at 

Fig. 3   Correlations between soil properties (a OC, b TN, c pH, and d clay) and spectra. Pearson correlation coefficients that pass the p = 0.01 
significance test are shown
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approximately 900 nm was primarily attributed to ferric ion 
(Stoner and Baumgardner 1981). The absorption valleys at 
1400, 1900, and 2200 nm were associated with O–H groups 
(Viscarra Rossel and Behrens 2010; Whiting et al. 2004). 

Specifically, the valley at 1400 nm was attributed to the 
O–H stretching of water and clay minerals. The absorption 
at 1900 nm was dominated by hygroscopic water and lattice 
water retained in the air-dried soil samples. The absorption 

Table 2   Comparison of the 
prediction accuracy for soil 
properties using different 
spectral transformation and 
calibration methods based on 
the calibration dataset (N = 174)

ST spectral transformation, OR original reflectance, FOD first-order derivative, CR continuum removal, 
CWT​ continuous wavelet transform, PLSR partial least-squares regression, SVM support vector machine; 
XGBoost extreme gradient boosting, R2 determination of coefficient, RMSE root mean square error

Soil property ST PLSR SVM XGBoost

R2 RMSE R2 RMSE R2 RMSE
OC OR 0.82 0.23 0.59 0.37 0.97 0.10

FOD 0.91 0.16 0.93 0.16 0.99 0.06
CR 0.68 0.31 0.74 0.30 0.99 0.06
CWT​ 0.77 0.26 0.98 0.08 0.99 0.05

TN OR 0.75 0.02 0.43 0.03 0.95 0.01
FOD 0.85 0.02 0.83 0.02 0.99 0.01
CR 0.65 0.02 0.66 0.03 0.93 0.01
CWT​ 0.75 0.02 0.95 0.01 0.99 0.01

pH OR 0.68 0.21 0.58 0.25 0.86 0.14
FOD 0.57 0.30 0.73 0.30 0.96 0.08
CR 0.29 0.33 0.75 0.31 0.94 0.10
CWT​ 0.63 0.22 0.94 0.10 0.97 0.07

Clay OR 0.73 5.90 0.51 7.98 0.96 2.51
FOD 0.75 5.62 0.80 5.24 0.93 3.22
CR 0.64 6.76 0.57 7.47 0.96 2.58
CWT​ 0.70 6.17 0.93 3.12 0.99 1.54

Table 3   Comparison of the 
prediction accuracy for soil 
properties using different 
spectral transformation and 
calibration methods based on 
the validation dataset (N = 58)

RPIQ ratio of performance to inter-quartile distance 
a excellent (RPIQ ≥ 4.05) 
b good (3.37 ≤ RPIQ < 4.05) 
c approximately quantitative (2.70 ≤ RPIQ < 3.37)
d distinguishing between high and low values (2.02 ≤ RPIQ < 2.70)
e unsuccessful (RPIQ ≤ 2.02)

Soil property ST PLSR SVM XGBoost

R2 RMSE RPIQ R2 RMSE RPIQ R2 RMSE RPIQ
OC OR 0.80 0.33 3.35c 0.69 0.43 2.56d 0.76 0.35 3.17c

FOD 0.84 0.28 4.00b 0.88 0.28 4.02b 0.77 0.32 3.45b

CR 0.69 0.39 2.85c 0.62 0.45 2.44d 0.69 0.37 2.98c

CWT​ 0.77 0.35 3.17c 0.88 0.26 4.37a 0.89 0.24 4.67a

TN OR 0.67 0.02 2.76c 0.66 0.02 2.59d 0.67 0.02 2.81c

FOD 0.75 0.02 3.24c 0.77 0.02 3.21c 0.71 0.02 2.96c

CR 0.53 0.03 2.34d 0.55 0.03 2.32d 0.51 0.03 2.28d

CWT​ 0.67 0.02 2.77c 0.84 0.02 3.91b 0.86 0.01 4.14a

pH OR 0.50 0.25 1.46e 0.44 0.28 1.34e 0.64 0.22 1.72e

FOD 0.35 0.30 1.23e 0.34 0.31 1.18e 0.67 0.21 1.78e

CR 0.09 0.35 1.07e 0.31 0.32 1.14e 0.52 0.25 1.48e

CWT​ 0.41 0.28 1.34e 0.71 0.20 1.90e 0.73 0.19 1.95e

Clay OR 0.60 7.03 2.87c 0.50 7.85 2.57d 0.51 7.99 2.52d

FOD 0.61 6.96 2.89c 0.62 6.89 2.92c 0.52 7.85 2.56d

CR 0.61 6.97 2.89c 0.49 8.19 2.46d 0.37 8.88 2.27d

CWT​ 0.59 7.08 2.85c 0.67 6.45 3.12c 0.63 6.78 2.97c
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Fig. 4   Scatter plot of OC content models based on a OR, b FOD, c 
CR, and d CWT spectra with partial least-squares regression (PLSR, 
left), support vector machine (SVM, middle), and extreme gradient 
boosting (XGBoost, right) methods using the validation dataset. The 

soil samples from unexploited, in  situ leaching, and heap leaching 
mining areas are in red, green, and blue colors, respectively (the same 
below)
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Fig. 5   Scatter plot of TN content models based on a OR, b FOD, c CR, and d CWT spectra with PLSR (left), SVM (middle), and XGBoost 
(right) methods using the validation dataset
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Fig. 6   Scatter plot of pH value models based on a OR, b FOD, c CR, and d CWT spectra with PLSR (left), SVM (middle), and XGBoost (right) 
methods using the validation dataset
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Fig. 7   Scatter plot of clay content models based on a OR, b FOD, c CR, and d CWT spectra with PLSR (left), SVM (middle), and XGBoost 
(right) methods using the validation dataset

2418 Journal of Soils and Sediments  (2022) 22:2406–2421



at 2200 nm was attributed to Al–OH bending and stretching 
in clay minerals (Bishop et al. 1994).

Many studies have explored the relationship between soil 
properties and spectra. Dalal and Henry (1986) reported that 
soil OC and TN contents have the same feature bands at 
approximately 1870 and 2052 nm. Shi et al. (2013) found 
that bands at 1450, 1850, 2250, 2330, and 2430 nm were 
essential for predicting the soil TN content. Jiang et al. 
(2017) observed 400–800, 1900, and 2000–2350 nm as 
essential band ranges for predicting soil OC and TN con-
tents. The range of bands highly correlated with soil OC 
and TN contents was fairly similar, mainly concentrated at 
600–800 and 2000–2400 nm. However, there is no consen-
sus on whether the TN content in soil is predicted by its 
correlation with the OC content or based on its own spec-
tral features (Jiang et al. 2017; Zhang et al. 2019). Despite 
this, the TN content clearly has a close relationship with 
the OC content of soil, because most nitrogen in the topsoil 
is organic and generally accounts for one-tenth of the OC 
carbon content in soil (Stenberg et al. 2010). In the present 
study, the OC and TN contents showed a significant corre-
lation (r = 0.84, p < 0.01), and their correlation coefficients 
with OR spectra were similar, despite the slight variation in 
coefficient values (Fig. 3a and b).

The mechanisms used to predict soil pH based on  
visible–near-infrared spectroscopy are mainly related to 
organic materials, iron oxides, and clay minerals (Viscarra 
Rossel and Behrens 2010). Vašát et al. (2014) found that, 
in the range of 350–2500 nm, no band was highly corre-
lated with soil pH, while bands at 400, 800, 1400, 1850, 
and 2300 nm recognized by PLSR might be correlated with 
soil color, OC content, and clay minerals. The results of our 
study also showed that bands at 400, 1000, and 2300 nm 
were highly correlated with soil pH, in partial agreement 
with previous studies. Furthermore, Peng et al. (2014) attrib-
uted bands at 410–572, 1400, 1900, 2200, and 2300 nm to 
iron, water, O–H stretching, aluminum, and magnesium in 
clay minerals. Nawar et al. (2016) observed that bands at 
1900, 2000, and 2200 nm in CR spectra showed strong cor-
relations with the clay content of soil. Similarly, the results 
of our study showed absorption features attributed to clay 
content at approximately 400–500 and 2000–2450 nm.

4.2 � Comparison of prediction models

Three calibration methods (PLSR, SVM, and XGBoost) 
were used to compare the prediction accuracy of models 
constructed based on OR, FOD, CR, and CWT spectra for 
soil properties in the study area.

For spectral transformations, compared with OR, FOD 
and CWT had a better improvement in prediction accuracy, 
while the accuracy of CR decreased. The effectiveness of 
CR transformation has been reported by Vašát et al. (2014). 

However, in the present study, CR was the worst spectral 
transformation method for predicting soil properties. For CR 
spectra, the most prominent objects in the data normaliza-
tion process were feature peaks and troughs. Other detailed 
information in the data might not be displayed well, leading 
to reduced prediction accuracy. FOD transformation could 
remove baseline drift and enhance absorption features, 
thereby improving prediction accuracy (Hong et al. 2018). 
CWT was the optimal spectral transformation method for 
predicting the soil properties in the present study. Decom-
posing the spectrum at multiple scales provided more pos-
sibilities for predicting soil properties and capturing useful 
information hidden in the spectrum. As the decomposing 
scale increases, the width of the adsorption features cor-
related with soil properties also increases.

For calibration methods, SVM and XGBoost outper-
formed PLSR in predicting soil properties. Nawar et al. 
(2016) and Yang et al. (2019) all proved that non-linear 
models are superior for predicting soil properties based 
on visible–near-infrared spectroscopy. The linear regres-
sion method, PLSR, might not be able to integrate a large 
amount of information and extract effective information, 
while the non-linear methods, SVM and XGBoost, could 
solve this problem well (Zhang et al. 2019). Previously, 
Viscarra Rossel and Behrens (2010) found that the pre-
diction accuracy of the non-linear model was positively 
correlated with the number of variables used for modeling. 
When there were more variables, the model could extract 
more features.

The best prediction accuracy for OC and TN were 
obtained using CWT spectra with XGBoost, and the RPIQ 
values were both higher than 4.05, indicating excellent 
results. Furthermore, although XGBoost outperformed 
the PLSR and SVM methods in predicting pH value, all 
of the constructed models were unsuccessfully to predict 
it (RPIQ < 2.02). For prediction of the clay content, most 
constructed models could approximately quantify it.

The OC has broad absorption bands in the visible range, 
while the TN has almost the same feature bands. TN in soil 
is closely related to organic matter, most of the N is organic 
and stored in nitrogen-containing compounds (Stenberg 
et al. 2010). The clay is negatively correlated with soil 
spectral and is mainly affected at 1400, 1900, and 2200 nm 
(Peng et al. 2014). However, the pH has no direct spectral 
response in the visible-near-infrared range, the previous 
studies reported the prediction mechanisms for pH value 
might be due to other soil properties (Viscarra Rossel and 
Behrens 2010; Vašát et al. 2014). Furthermore, the varia-
tion of the sample source is also an important factor affect-
ing the prediction accuracy of the models (Stenberg et al. 
2010). The greater the variation of the soil sample dataset, 
the better the prediction accuracy. The CV of pH value was 
below 10%, which might influence the prediction accuracy.
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5 � Conclusions

In this study, three spectral transformation methods (FOD, 
CR, and CWT) were used to predict soil OC content, TN 
content, pH value, and clay content in rare earth mining 
areas based on visible–near-infrared spectroscopy. The accu-
racies of the prediction models constructed using different 
calibration methods (PLSR, SVM, and XGBoost) were com-
pared. Spectral transformations based on FOD and CWT 
were useful for predicting the soil properties. Overall, the 
models based on CWT spectral transformation coupled with 
XGBoost calibration outperformed other models in predict-
ing the OC content, TN content, and pH value. However, the 
optimal model for clay content estimation was CWT spec-
tra coupled with SVM. Soil spectra used in this study were 
measured in the laboratory, resulting in less disturbance 
from the external environment compared with field spectra. 
In future research, we will explore the potential of field and 
satellite spectra in predicting large-area soil properties.
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