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Abstract
Purpose  The purposes of this study are to characterize the relationship between basal soil respiration at 0 °C (R0) and the 
temperature sensitivity (Q10) of soil respiration and climate, soil, and vegetation factors and to establish R0 and Q10 models.
Materials and methods  We compiled R0 and Q10 and variables (i.e., climate factors, soil properties, and vegetation charac-
teristics) that were measured in various terrestrial ecosystems.
Results and discussion  The results showed that both R0 and Q10 could generally be fitted by a normal distribution curve 
across various ecosystems, but they varied greatly among the different ecosystems. The lowest median R0 and Q10 appeared 
in the desert, while the highest median R0 and Q10 appeared in the deciduous broad-leaf forest and deciduous needle-leaf 
forest ecosystems, respectively. The relationship between R0 and Q10 across different soil depths varied among the dif-
ferent ecosystems, with the highest and lowest R2 occurring in the cropland (R2 = 0.701) and evergreen needle-leaf forest 
(R2 = 0.095), respectively. A model that included Q10, fine root production and the ratio of soil organic carbon to total nitro-
gen (TN) explained 75.0% (R2 = 0.750) of the variation in R0, with a P value less than 0.001. Q10 was further expressed as a 
model (R2 = 0.663, P < 0.001) including annual precipitation, mean air temperature, TN, bulk density, and leaf area index.
Conclusions  Our R0 models can potentially be used to improve terrestrial carbon cycle models by considering the compre-
hensive effects of Q10 and soil and vegetation factors.

Keywords  Basal respiration · Carbon quality · Temperature sensitivity (Q10) · Climate · Soil properties · Vegetation 
characteristics

1  Introduction

Global warming due to greenhouse gas emissions has raised 
worldwide concern (Canadell et al. 2007). CO2 is one of 
the most important greenhouse gases, and the increase in 
atmospheric CO2 is related to the disturbance of the global 

carbon (C) cycle (Friedlingstein et al. 2014). Soil respira-
tion, second to gross primary productivity, is the largest C 
flux from soils to the atmosphere and an important compo-
nent of the global C cycle (Raich and Schlesinger 1992). 
Temporal fluctuations in soil respiration may impact the 
magnitude of terrestrial-atmosphere C budgets and thus the 
CO2 concentrations in the atmosphere (Bond-Lamberty et al. 
2018). Modelling the seasonal patterns in soil respiration 
may help to investigate the processes of the global C cycle. 
Field-measured soil respiration is generally divided into het-
erotrophic and autotrophic components, which are mainly 
influenced by soil microorganisms and roots, respectively 
(Bhanja et al. 2019; Haghighi et al. 2021).

The main determinant of the temporal variations in 
soil respiration is soil temperature, which is often meas-
ured when measuring soil respiration (Nottingham et al. 
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2020). Numerous studies have shown that an exponential 
model adequately explains the seasonal variations in soil 
respiration in most ecosystems (Johnston and Sibly 2018). 
The basal soil respiration at 0 °C (R0) in the exponential 
model has been considered an indicator of soil C qual-
ity, while Q10 is the soil temperature sensitivity of soil 
respiration and can be calculated by the parameter of the 
exponential term (Conant et al. 2008a; Xu et al. 2012). The 
“C quality–temperature” theory points out the relation-
ship between R0 and Q10 (Bosatta and Ågren 1999; Fierer 
et al. 2005). This theory is based on the temperature- and 
enzyme-associated first-order kinetics equation and indi-
cates that recalcitrant organic C has higher temperature 
sensitivity as well as for soil respiration at low temperature 
than for soil respiration at a higher temperature. A negative 
relationship between the quality of soil C respired and Q10 
is expected since the enzyme-associated reactions metabo-
lizing simple soil C substrates generally have a lower net 
activation energy than the reactions involved in complex 
and low-quality C substrates (Fierer et al. 2006; Reichstein 
et al. 2000). Several studies have confirmed the negative 
relationship between R0 and Q10 in individual and regional 
studies (Conant et al. 2008b, 2011; Ding et al. 2016). R0 
and Q10 may be potentially impacted by the balance of var-
ious soil C pools of different quantities (Bahn et al. 2008; 
February et al. 2020). However, the relationship between 
R0 and Q10 across various terrestrial ecosystems remains 
unknown, which may limit the applicability of terrestrial 
C models to simulate seasonal C dynamics. In addition, an 
increasing temperature due to global warming can cause 
substantial C emissions from terrestrial soils. Character-
izing the relationship between R0 and Q10 may improve the 
accuracy of temperature-associated soil respiration models 
under the scenario of global warming.

Although the climate and soil factors (e.g., temperature, 
precipitation, and soil C) that potentially control the spatial 
and temporal variations in Q10 have been examined in sev-
eral previous studies (Bailey et al. 2018; Haaf et al. 2021; Xu 
et al. 2015), knowledge of the magnitude of R0 and its key 
controlling factors is still lacking. A large number of meas-
urements focusing on soil respiration and relevant climate, 
soil, and vegetation factors have been carried out globally, 
which enable us to compare R0 and Q10 and explore their key 
controls across different ecosystems. R0 may be influenced 
by controlling factors that are different from soil respiration, 
as respiration at 0 °C reveals relatively low soil biological 
reactivity. Water and nutrient availabilities, which are mainly 
influenced by precipitation and soil conditions in the field, 
respectively, may exert less effect on R0 at the freezing point 
than at higher temperatures (Hursh et al. 2017; Wang et al. 
2021). The comprehensive effects of climate, soil, and veg-
etation variables on the coupling relationship between R0 
and Q10 have not been well investigated.

We compiled the basal respiration at 0 °C and the Q10 
value of the seasonal variations in annual soil respiration and 
relevant driving variables (i.e., site information and climate 
factors, soil properties, and vegetation characteristics) that 
were measured in various terrestrial ecosystems. The reason 
for the criterion that annual soil respiration should be meas-
ured is that the R0 and Q10 models established in this study 
can potentially be used for modelling the seasonal variations 
in soil respiration over a whole year. The first objective of 
this study was to investigate the distribution patterns of R0 
and Q10 in the different ecosystems. The second objective 
was to analyze the relationship between R0 and Q10 in the 
different ecosystems and to model R0 and Q10 based on the 
potential climate, soil, and vegetation controlling factors.

2 � Materials and methods

2.1 � The dataset

The dataset of the R0 and Q10 values of the annual variations 
in soil respiration was collected from the literature published 
in the journals of the Science Citation Index in English and 
China National Knowledge Infrastructure in Chinese. The 
dataset has been updated based on a global soil respiration 
dataset (Chen et al. 2010, 2020). The collected soil respira-
tion data were obtained from the annual field measurements 
across ten terrestrial ecosystem types: broad-leaf and needle-
leaf mixed forest (BNMF), cropland, deciduous broad-leaf 
forest (DBF), deciduous needle-leaf forest (DNF), desert, 
evergreen broad-leaf forest (EBF), evergreen needle-leaf for-
est (ENF), grassland, shrubland, and tundra. Wetlands were 
not included in the dataset because anaerobic soil conditions 
are required to produce CO2 under water compared with 
nonwetland soils, and the water layer may impede CO2 emis-
sions from soils to the atmosphere (Nishimura et al. 2008). 
The site information and climate, soil, and vegetation factors 
are shown in Table S1. As shown in Table S1, most studies 
used infrared gas analyzer (IRGA) and gas chromatography 
methods for measuring soil respiration. The IRGA and gas 
chromatography methods are classical and have been widely 
used to determine soil respiration (e.g., Davidson et al. 1998; 
Franco-Luesma et al. 2020; Wang and Wang 2003). The 
alkali absorption method was used in a few measurement 
sites, and this method has been calibrated by authors in 
their studies (e.g., Raich 1998). Therefore, the instruments 
and methods for measuring soil respiration were generally 
consistent over 20 years. The soil and vegetation factors 
used in this study were compiled based on the soil physi-
cal and chemical properties and vegetation characteristics 
at the soil respiration measurement sites in the literature. 
These soil and vegetation factors were common in the field 
of soil and vegetation investigations and could be measured 
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using relatively easy methods. Therefore, the methods used 
to determine the soil and vegetation factors could be consid-
ered to be consistent.

The R0 and Q10 of the annual variations in soil respiration 
are calculated on the basis of an exponential model [Eq. (1)] 
(Lloyd and Taylor 1994).

Rs_s and ST_s in the model represent the seasonally meas-
ured soil respiration and soil temperature, respectively, and 
a is a parameter. R0 is basal respiration at 0 °C (i.e., C qual-
ity) (Fierer et al. 2005). Q10 is calculated based on Eqs. (1) 
and (2):

As shown in Table S1, R0 and Q10 were classified into 
three main categories according to the depths (i.e., 5 cm, 
10 cm, and other depths) where the soil temperature was 
measured. Other information on the measurement sites 
included the geographical location, measurement period, 
annual soil respiration, climate, soil properties, and veg-
etation characteristics, and these variables are compiled in 
Table S1. The abbreviations of the variables are shown in 
Table 1. If the climate factors AP and MAT were unavailable 
in the literature, they were obtained from the University of 
Delaware precipitation and air temperature database (https://​
psl.​noaa.​gov/​data/​gridd​ed/​data.​UDel_​AirT_​Precip.​html).

2.2 � Data analysis

The R0 and Q10 at 5 cm, 10 cm, and other depths where 
the soil temperature was measured were fitted by a normal 
curve to characterize the distribution patterns of the two 
variables. The R0 and Q10 at all depths in each ecosystem 
were compared using a box-and-whisker plot. The Duncan 
test was used to compare the significance of R0 and Q10 
differences between the different ecosystems. The relation-
ships between R0 and Q10 in each ecosystem were analyzed 
by a nonlinear or linear regression model across the differ-
ent soil depths. The relationships between R0 and poten-
tial influential factors (i.e., Q10, FR, LF, soil respiration, 
C/N, and PD) in all ecosystems across the different soil 
depths were analyzed using a nonlinear or linear regres-
sion model, as these six variables among the climate, soil, 
and vegetation factors were mostly correlated with R0. The 
relationships between variables R0, Q10, climate, soil, and 
vegetation factors in all ecosystems were explored using 
a heatmap of Pearson’s correlations. R0 was modelled 
based on the controlling factors Q10, FR, and C/N using a 
multiple regression analysis. A model including potential 
controlling factors using multiple regression analysis was 
further used to model Q10. A bootstrap method was used 

(1)Rs_s = R0e
aST_s

(2)Q10 = e10a

to estimate the modelling errors of the multiple regression 
analysis. The threshold of variance inflation factors to test 
the multicollinearity of potential controlling factors was 
less than 5.0, and the tolerance was greater than 0.18. The 
modelling performance was evaluated by a linear regres-
sion relationship between the observed and modelled R0 
or Q10 values (Pineiro et al. 2008). The R2, P, RMSE (root 
mean squared error), ME (model efficiency), MAE (mean 
absolute error), AIC (Akaike information criterion), and 
BIC (Bayesian information criterion) (Burnham 2011; 
Janssen and Heuberger 1995; Schwarz 1978) were also 
used to evaluate the modelling performance of the R0 and 
Q10 models. The RMSE, ME, MAE, AIC, and BIC are 
calculated using the equations in Table 2. We used struc-
tural equation modelling to estimate causal relationships 
among the key controlling factors and R0 and Q10 across 
all ecosystems (Pearl 2000).

3 � Results

3.1 � The variations in R0 and Q10

Both R0 and Q10 could be generally fit by a normal 
distribution curve (Fig. 1a, b). The µ and σ values for 
the normal distribution curve of R0 were 0.708 and 
0.431 µmol  m−2  s−1, respectively. The µ and σ values 
for the normal distribution curve of Q10 were 2.471 
and 0.995, respectively. The median R0 was 0.536, 
0.604, 0.684, 0.526, 0.296, 0.549, 0.691, 0.460, and 
0.571 µmol m−2 s−1 in the BNMF, cropland, DBF, DNF, 
desert, EBF, ENF, grassland and tundra, and shrubland 
ecosystems, respectively (Fig. 1c). The median Q10 was 
2.390, 1.750, 2.233, 3.100, 1.323, 2.109, 2.145, 2.753, 
and 2.946 in the BNMF, cropland, DBF, DNF, desert, 
EBF, ENF, grassland and tundra, and shrubland ecosys-
tems, respectively (Fig. 1d). The desert had the lowest 
median R0 and smallest range (0.259 µmol m−2 s−1) across 
the different ecosystems, while the DBF had the highest 
median R0 and largest range (3.355 µmol m−2 s−1). Similar 
to R0, the median Q10 was lowest in the desert. The DNF 
had the highest median Q10 and largest range (3.894). The 
Duncan test indicated that the mean R0 was significantly 
(P < 0.05) higher in the DBF than in the grassland and 
tundra and desert. The mean R0 in the desert was low-
est among the different ecosystems. The mean Q10 was 
significantly (P < 0.05) higher in the DNF than in other 
ecosystems except for grassland and tundra and shrub-
land. The mean Q10 was significantly (P < 0.05) higher 
in the BNMF than in the EBF, cropland and desert. The 
mean Q10 was significantly (P = 0.006) higher in the EBF 
than in the desert.
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3.2 � The relationship between R0 and Q10 
in the different ecosystems

The relationship between R0 and Q10 varied among the dif-
ferent ecosystems (Fig. 2a–i). The relationship between 
R0 and Q10 in the BNMF (R2 = 0.545, P < 0.001), DBF 
(R2 = 0.202, P < 0.001), and EBF (R2 = 0.362, P < 0.001) 
ecosystems was explained by a power model (Fig. 2a, c, 
f). The relationship between R0 and Q10 in the cropland 
(R2 = 0.701, P < 0.001) and grassland and tundra (R2 = 0.387, 
P < 0.001) was explained by an exponential model (Fig. 2b, 
h). R0 was also significantly (P < 0.05) correlated with Q10 
in the DNF, ENF, and shrubland (Fig. 2d, g, i). Although 

the models that simulated the variations in R0 were different 
in the different ecosystems, R0 decreased with the increase 
in Q10 in each ecosystem. As shown in Fig. 2a–i, the R0 at 
different depths, particularly at 5 and 10 cm, had similar 
decreasing patterns with increasing Q10.

3.3 � Variables controlling the variations in R0

A power model based on Q10 explained 16.3% (R2 = 0.163) 
of the variation in R0, with a P value less than 0.001 
(Fig.  3a). The relationship between R0 and FR was 
explained by a logarithmic model (R2 = 0.245, P < 0.001) 
(Fig. 3b). R0 was also correlated with LF, soil respiration, 

Table 1   Categories of site 
information and climate, soil 
and vegetation factors compiled 
in the database

We hypothesized that annual soil temperature (ST) and moisture (SM) data could be fitted with a sinusoid 
curve, as many sites were located in monsoon climate zones. Moreover, nearly all of the soil temperature 
and moisture measurements in the literature were evenly spaced. Therefore, we used the digitized maxi-
mum and minimum values of ST and SM to generally estimate the annual mean values, although these 
values are not very accurate

Abbreviation Variables Unit

AP Annual precipitation m
MAT Mean annual temperature °C
SOC Soil organic carbon stock kg C m−2

TN Soil total nitrogen stock kg N m−2

C/N Ratio of carbon to nitrogen None
pH Soil pH None
CLA Soil clay content %
SAN Soil sand content %
STP Soil total phosphorus g kg−1

SAP Soil available phosphorus mg kg−1

SAK Soil available potassium mg kg−1

BD Soil bulk density g cm−3

CEC Cation exchange capacity cmol kg−1

FR Fine root production kg C m−2 yr−1

LF Litter fall biomass kg C m−2 yr−1

Rs Soil respiration kg C m−2 yr−1

Rh Heterotrophic respiration kg C m−2 yr−1

R0_5 cm Basal soil respiration at 5 cm µmol m−2 s−1

R0_10 cm Basal soil respiration at 10 cm µmol m−2 s−1

R0_? cm Basal soil respiration at other depths µmol m−2 s−1

Q10_5 cm Soil (5 cm) temperature sensitivity of soil respiration None
Q10_10 cm Soil (10 cm) temperature sensitivity of soil respiration None
Q10_? cm Soil (other depths) temperature sensitivity of soil respiration None
EL Elevation m
TA Tree age yr
PD Plant (tree) density no. hm−2

DBH Diameter at breast height cm
TH Tree height m
BA Basal area of tree m2 hm−2

LAI Leaf area index m2 m−2

ST Mean annual soil temperature °C
SM Mean annual soil moisture V V−1
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C/N, and PD, and a nonlinear or linear model including 
one of these variables explained the variations in R0, with 
a P value less than 0.001 (Fig. 3c–f).

In addition to Q10, FR, LF, soil respiration, C/N, and 
PD, a heatmap of Pearson’s correlation indicated that R0 
was significantly (P < 0.05) correlated with other variables 
(i.e., SOC, heterotrophic respiration, and DBH) (Fig. 3g). 
Q10 was significantly (P < 0.05) correlated with climate 
(i.e., AP and MAT), soil (i.e., SOC, TN, and BD), and 
vegetation (i.e., LF, PD, TH, BA, and LAI) factors and 
soil temperature and moisture. It was obvious that two 
variables (i.e., LF and heterotrophic respiration) were 
positively and significantly (P < 0.05) correlated with R0 
but were negatively and significantly (P < 0.05) correlated 
with Q10. A number of variables in Fig. 3g were signifi-
cantly (P < 0.05) correlated with each other. Therefore, not 
all potential controlling factors could be used to establish 
the R0 and Q10 models. Our dataset also reflects a high 
variability in the controlling factors for R0 and Q10. Moreo-
ver, the driving factors of soil respiration differed in the 
different ecosystems (Table S2). AP and MAT were key 
factors controlling the variations in soil respiration in most 
ecosystems. Soil respiration was significantly (P < 0.05) 
correlated with soil factors (i.e., SOC, TN, and C/N) and 
FR rather than AP and/or MAT in the DBF. Soil respira-
tion was significantly (P < 0.05) correlated with soil fac-
tors (e.g., SOC, TN, and C/N) in most ecosystems and was 
significantly (P < 0.05) correlated with vegetation factors 
(e.g., FR, TA, DBH, and BA) in the cropland, DBF, DNF, 
EBF, and grassland and tundra ecosystems.

A model [Eq.  (3)] that included Q10, FR, and C/N 
explained 75.0% (R2 = 0.750, P < 0.001) of the variation 
in R0:

A model expressed as Eq. (4) further explained 66.3% 
(R2 = 0.663, P < 0.001) of the variation in Q10. This model 
in which the key controlling factors (i.e., AP, MAT, TN, BD, 
and LAI) were included satisfactorily simulated Q10 across 
all ecosystems.

Figure 4a indicates that the relationship between the 
observed and modelled R0 was well fitted with a linear 
regression function and the slope of the regression line was 
very close to the 1:1 line. The RMSE, ME, MAE, AIC, 
and BIC for Eq. (3) were 0.338, 0.750, 0.503, -117.676, 
and -109.435, respectively. The relationship between the 
observed and modelled Q10 was also well fitted with a linear 
regression function, with a slope of the regression line very 
close to the 1:1 line (Fig. 4b). The RMSE, ME, MAE, AIC, 
and BIC for Eq. (4) were 0.545, 0.663, 0.667, -58.511, and 
-46.148, respectively. Structural equation modelling indi-
cated that FR and C/N were more important in predicting the 
variations in R0 than Q10 (Fig. 5a). When the comprehensive 
effects of the three controlling factors on R0 in the structural 
equation modelling were considered, the effect of Q10 was 
negative, but the effects of FR and C/N were positive. Struc-
tural equation modelling showed that TN and BD were more 
important in predicting the variations in Q10 than climate 
factors (i.e., AP and MAT) (Fig. 5b). The effect of LAI was 
also more important than that of AP.

4 � Discussion

4.1 � Relationship between R0 and Q10 
in the different ecosystems

We analyzed the R0 and Q10 values of soil respiration based on 
the soil temperature at 5 cm, 10 cm and other depths, which are 
widely used to measure soil respiration and establish soil res-
piration models (Hursh et al. 2017; Jian et al. 2021; Stell et al. 
2021). Our study showed wide variability in R0 in most eco-
systems. The soils with poor nutrient conditions in the desert 
exhibited low R0, indicating competing C accessibility. Mean-
while, deserts usually appear in warm regions (i.e., temperate, 
subtropical and tropical zones), which may decrease Q10.

Our analyses provide evidence for the “C quality-
temperature” hypothesis, which indicates that the CO2 
emissions of low-quality substrates have a higher Q10 
than the CO2 emissions of more labile substrates (Fierer 

(3)
R0 = 1.215e−0.549Q10+0.804FR+0.043C∕N

(R2 = 0.750, n = 58,P < 0.001)

(4)
Q10 = 4.444e0.437AP−0.044MAT+0.348−0.609BD+0.006LAI

(R2 = 0.663, n = 58,P < 0.001)

Table 2   Equations for calculating RMSE, ME, MAE, AIC, and 
BIC. The RMSE, ME, MAE, AIC, and BIC represent the root mean 
squared error, model efficiency, mean absolute error, Akaike infor-
mation criterion, and Bayesian information criterion, respectively. 
Yc_MOD and Yc_OBS are the modelled and observed R0 or Q10 values, 
respectively; Yc_OBS is the mean of Yc_OBS_i ; n is the sample capacity; 
SSE is the sum of squares for error; and p is the number of predictors 
in the model

Statistics Equations

RMSE
�

∑n

i=1(Yc_MOD_i−Yc_OBS_i)
2

n

ME
�
∑n

i=1

�
Yc_OBS_i−Yc_OBS

�2

−
∑n

i=1(Yc_MOD_i−Yc_OBS_i)
2

�

�
∑n

i=1

�
Yc_OBS_i−Yc_OBS

�2
�

MAE ∑n

i=1�Yc_MOD_i−Yc_OBS_i�
n

AIC nLn(SSE) + 2 × (p + 1) − nLn(n)
BIC nLn(SSE) + (p + 1) × Ln(n) − nLn(n)
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Fig. 1   The distribution patterns of R0 a and Q10. a, b Normal distri-
bution curves for R0 and Q10, respectively, across the different soil 
depths (5 cm, 10 cm, and other depths) and the different ecosystems. 
c, d Box-and-whisker plots for R0 and Q10, respectively, across the 
different soil depths (5  cm, 10  cm and other depths). BNMF, CL, 

DBF, DNF, DS, EBF, ENF, GL and TD, and SL represent broad-leaf 
and needle-leaf mixed forest, cropland, deciduous broad-leaf forest, 
deciduous needle-leaf forest, desert, evergreen broad-leaf forest, ever-
green needle-leaf forest, grassland and tundra, and shrubland, respec-
tively
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et al. 2006). Previous field studies have shown an inverse 
relationship between C quality and Q10 (Knorr et  al. 
2005; Fierer et al. 2006; Luan et al. 2018). A process-
based model has predicted the relationship between C 
quality and Q10 (Liski et al. 1999), and a long-term soil 
experiment involving incubation and land conversion 
studies also supports the “C quality-temperature” theory 
(Giardina and Ryan 2000). Karhu et al. (2010) found that 
older soil C had a lower R0 than younger C from root exu-
dates and plant litter. A higher Q10 value of CO2 emissions 

in the humus layer than in the litter layer was reported for 
a Pinus resinosa plantation, which may be attributed to the 
fact that the humus layer has more recalcitrant forms of C 
(Malcolm et al. 2009).

The models based on Q10 explaining the variations in 
R0 had different R2 values that varied from 0.095 to 0.701 
(Fig. 2a–i), indicating the complexity of the relationship 
between R0 and Q10 in various ecosystems. For instance, 
cropland exhibited an obvious decreasing pattern of R0 with 
the increase in Q10. Vegetation influences soil C accessibility 

Fig. 2   Relationship between R0 and Q10 in the different ecosystems. 
a–i BNMF, CL, DBF, DNF, DS, EBF, ENF, GL and TD, and SL, 
respectively. BNMF, CL, DBF, DNF, DS, EBF, ENF, GL and TD, 
and SL represent broad-leaf and needle-leaf mixed forest, cropland, 

deciduous broad-leaf forest, deciduous needle-leaf forest, desert, 
evergreen broad-leaf forest, evergreen needle-leaf forest, grassland 
and tundra, and shrubland, respectively
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through above- and belowground litter inputs and root exu-
dates (Hereş et al. 2021; Mujica et al. 2021). Different eco-
systems differ in vegetation characteristics, such as FR and 
LF, resulting in different amounts and components of C 
inputs from plants to soils, which may influence microbial 
activity and C quality (R0) (Bradford et al. 2019; Fierer et al. 
2005).

4.2 � Modelling R0 using climate, soil, and vegetation
 factors

Figure 3a–f indicate the potential effects of Q10, FR, LF, soil 
respiration, C/N, and PD on R0. There were two main seasons in 
which these factors were potentially influencing factors related 
to R0. First, R0 has been suggested to be negatively correlated 
with Q10 according to the “C quality–temperature” theory 
(Bosatta and Ågren 1999; Fierer et al. 2006; Hashimoto 2005). 
Soil respiration determines the magnitude of R0 across different 
ecosystems (Phillips et al. 2016). Second, FR, LF, and PD are 
vegetation characteristics that reveal the amount of substrates 
that are provided by vegetation to basal soil respiration (Dusza 

et al. 2020; Shi et al. 2019). The soil factor C/N is related to the 
quality of substrates for basal soil respiration (Davidson and 
Janssens 2006; Malek et al. 2021). The model based on Q10, 
FR, and C/N to simulate R0 suggested that the variations in R0 
across different ecosystems were controlled by a combination 
of Q10 and other vegetation and soil factors. Here, FR, rather 
than LF and PD, was included in the R0 model because FR 
was a more direct variable that was related to belowground 
basal soil respiration and had a greater correlation coefficient 
than LF and PD (Fig. 3b, c, f). C/N was chosen in the model 
because it was highly significantly correlated with R0 (Fig. 3e, 
g). FR and C/N interacted with Q10 and drove the variations 
in R0, while soil (i.e., TN and BD) and vegetation (i.e., LAI) 
factors interacted with precipitation and temperature when Q10 
was modelled. Only a small part (25.0%) of R0 was controlled 
by variables other than Q10, FR, and C/N. Similar to R0, only 
33.7% (R2 = 0.337) of the variation in Q10 was controlled by 
variables other than AP, MAT, TN, BD, and LAI. The relation-
ship between Q10 and temperature contributes to uncertainty 
in predicting the response of the terrestrial SOC pool to future 
climate warming. A significant negative correlation between 

Fig. 3   Relationships between R0 and Q10 across the different soil 
depths (5 cm, 10 cm and other depths) and the different ecosystems 
and a heatmap of Pearson’s correlations between the variables R0, 
Q10, latitude (Lat), Rs, AP, MAT, SOC, TN, C/N, BD, FR, Rh, TA, 
PD, DBH, TH, BA, LAI, ST, and SM (abbreviations as indicated in 

Table  1). a–f Explanatory variables Q10, FR, LF, Rs, C/N, and PD, 
respectively. g Heatmap of Pearson’s correlations. The colors in 
g reveal the correlation coefficients, and the numbers in the boxes are 
P values
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Q10 and MAT has been reported by several previous studies, 
suggesting that the increase rates of soil respiration with the 
increase in temperature may decrease under a warmer environ-
ment (Hursh et al. 2017; Peng et al. 2009; Rustad et al. 2001; 
Zheng et al. 2009). Similar to what was shown in our study, 
Feng et al. (2018) found correlations between Q10 in grassland 
and AP and between Q10 and aboveground biomass, which is 

related to LAI (Ribeiro et al. 2008). Moreover, the correlations 
between Q10 and TN and BD indicated that soil nutrients and 
physical properties regulated the responses of soil respiration to 
temperature (Davidson and Janssens 2006; Yu et al. 2017). As 
shown in the Q10 model, soils with rich TN and low BD may 
facilitate the improvement of soil microbial activity and may 
thus result in a higher Q10. Q10 has been considered a constant 

Fig. 4   Relationship between the observed and modelled R0 and that 
between the observed and modelled Q10. a,  b R0 and Q10, respec-
tively. RMSE, ME, MAE, AIC, and BIC represent root mean squared 

error, model efficiency, mean absolute error, Akaike information cri-
terion, and Bayesian information criterion, respectively

Fig. 5   Structural equation modelling of R0 and Q10. a, b R0 and Q10, 
respectively. The correlations among variables based on the covari-
ance matrix are indicated in the structural equation modelling. The 
variables used for modelling R0 across the different soil depths (5 cm, 

10 cm, and other depths) and the different ecosystems were Q10, FR, 
and C/N (abbreviations as indicated in Table 1). The variables used 
for modelling Q10 were AP, MAT, TN, BD, and LAI

777Journal of Soils and Sediments (2022) 22:769–781



1 3

with a value of 2 in most terrestrial models (Jenkinson et al. 
1991; Lenton and Huntingford 2003; Schimel et al. 2000). Our 
study showed the great variability in Q10 and modelled Q10 
using AP, MAT, TN, BD, and LAI. The Q10 model included 
more variables and had a higher R2 than the models in previous 
studies (Peng et al. 2009; Zheng et al. 2009), which provided a 
basis for simulating the seasonal variations in soil respiration.

Table S1 also reflects a high variability in the control-
ling factors of R10 and Q10. Although not all data that we 
collected in this study were obtained through absolutely 
identical approaches and minimized the existing errors, the 
measurements of a key variable soil respiration in the dif-
ferent sites used common and comparable methods (Bekku 
et al. 1997; Wang and Wang 2003). However, random errors 
for measuring some soil and vegetation factors in the differ-
ent sites may exist. Most researchers do not point out the 
detailed measurement methods to determine soil and vegeta-
tion factors, as they are shown as background site informa-
tion. It is difficult to obtain identically measured soil and 
vegetation factors based on the available data. Therefore, the 
existing errors in measuring soil and vegetation factors may 
partly contribute to the modelling uncertainty, which reduce 
the performance of the R0 and Q10 models.

Soil- and vegetation-associated variables are influenced 
by climate factors, particularly in climatic extremes (e.g., 
tropical and frigid zones), which strongly control the vari-
ations in Q10. This phenomenon is related to the lack of 
mineral stabilization of C in cold zones, resulting in a faster 
response of microorganisms to increasing temperature (Haaf 
et al. 2021). The decomposition rates of soil C were related 
to the temperature sensitivity of soil respiration, with a recal-
citrant C quality when Q10 was relatively high under cold 
conditions. Soil C decomposes faster in cold climates once 
temperature barriers are released during the warming pro-
cess compared with warm climates (Bradford 2013; Melillo 
et al. 2017).

Q10 is not a separate dominant controlling factor of R0, 
and climate factors have little impact on Q10 under moder-
ate climate conditions (Phillips et al. 2016). A wide range 
of soil properties controlled the variations in R0 across all 
of the ecosystems, leading to high heterogeneity. Our study 
allowed us to predict the temporal and spatial variations in 
R0 using Q10 and vegetation and soil factors, and Q10 could 
further be expressed as a function of climate, soil, and veg-
etation variables. The relatively high R2 value in the multiple 
regression models indicated that the interactions between R0 
and Q10 and other predictors were reliable. The models for 
R0 could be further used to explain the potential of different 
percentages of labile and recalcitrant C components in soils 
of different ecosystems to emit CO2. The variability in R0 
that was not explained by the vegetation and soil factors in 
this study may be partly due to the nutrient limitation strat-
egies in some ecosystems (e.g., desert), which reduced the 

effects of other factors, such as temperature, on microbial 
and root respiration (Monson et al. 2006; Stone et al. 2021).

Low temperature inhibits C mineralization under cold 
climate conditions, which may reduce soil activity. In cold 
climates, tree residues (e.g., stems, litter and roots) that are 
usually not mineralized are the main substrates and energy for 
microorganisms (Doetterl et al. 2015; Kramer and Chadwick 
2018). Soils in warmer climates have higher chemical reactiv-
ity and stabilization potential for C and respond less to increas-
ing temperature than those in cold climates (Meyer et al. 2018). 
The largest range of R0 in the DBF may be attributed to the 
diversity of C sources and C-associated energy (Cusack et al. 
2018; Kramer and Chadwick 2018). Specifically, the crop resi-
dues in the cropland in the warm climates are often composed 
of more similar C components during the mineralization pro-
cess than the tree residues in the cold climates, resulting in the 
strong correlation between R0 and Q10 in the cropland com-
pared with that in the DBF and DNF ecosystems (Fig. 2b, c, d). 
The R0 that varied substantially in the DBF may be partly due 
to the diversity of soil C stabilization controlled by the veg-
etation-associated soil development status (Bahn et al. 2010; 
Čater et al. 2020; Nghalipo and Throop 2021). The modelling 
of R0 provided the basis for modelling the temporal variations 
in soil respiration at the seasonal scale when the R0 model was 
coupled with the Q10 model, although the data points of predic-
tors in the models that were simultaneously measured are still 
lacking and need to be increased in the future.

Q10 was a key variable to predict R0 in this study, and the 
effects of Q10 on R0 interacted with other controlling factors. 
It has been widely reported that Q10 varies considerably in 
different ecosystems (Davidson et al. 2006; Morote et al. 
2021). We determined the variations and driving factors of 
Q10 and used this key variable to further simulate the varia-
tions of R0. The effects of climate, soil, or vegetation factors 
on Q10 have been found in previous studies (Gutierrez-Giron 
et al. 2015; Rodtassana et al. 2021; Wang et al. 2010, 2016). 
We also found comprehensive effects of these factors on 
Q10. The Q10 model including climate, soil, and vegetation 
factors provided a prerequisite to quantify the variations in 
R0, which made R0 predictable by using climate, soil, and 
vegetation factors.

5 � Conclusions

Our study showed great variability in R0 and Q10 among 
the different ecosystems. Our study confirmed the negative 
correlations between R0 and Q10 in the different ecosystems, 
but the best fitting models that explained the relationship 
between R0 and Q10 differed among these ecosystems. The 
fitting performance of the model to simulate R0 based on Q10 
was better in the cropland than in the DNF and DBF eco-
systems, indicating the difference in soil C sources derived 

778 Journal of Soils and Sediments (2022) 22:769–781



1 3

from crop and tree residues. A model that included Q10, FR, 
and C/N explained 75.0% (R2 = 0.750) of the variation in R0, 
and Q10 could further be expressed as a model (R2 = 0.663) 
based on AP, MAT, TN, BD, and LAI. This study provides 
reliable models to explain the spatial and temporal variations 
in R0, which can potentially be used to improve terrestrial C 
cycle models by considering the comprehensive effects of 
Q10 and soil and vegetation factors.
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