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Abstract

Purpose Suspended sediment transport, which represents the majority of the sediment load, has been studied across very
different scales and in a wide variety of regions and climates. Despite numerous studies, data for European watersheds are
generally limited and correspond to large rivers systems. Especially, in Belgium, little data is available outside the Belgian
loess belt. Moreover, the high heterogeneity of soil erosion and sediment transport makes it difficult to measure or model
at watershed scale. The purpose of this research is to estimate the median sediment yields in different geographical regions
and to detect their explanatory variables.

Materials and methods Gathering data from 1994 to 2016, more than 2000 measurements of suspended sediment concentra-
tion at 72 river stations mainly located in South-Belgium were sampled according to a flood-event-based manual methodol-
ogy. This allowed fast acquisition of data in watersheds ranging from 7 to 3600 km? in different geographical regions. Median
area-specific sediment yields (SSY) were calculated at watershed scale while looking for regional differences.

Results and discussion Median area-specific sediment yields computed for the period 1996-2018 show regional differences:
19.2 t km™2 year‘1 on sandy substrate (Lorraine), 24.9 t km™2 year‘1 on schisto-sandstone substratum (Ardenne), and up
to 119 t km™2 year™! in the loamy Brabant plateau, with a link to the agricultural land cover and, to a lesser extent, to the
watershed slope. The high temporal and spatial variability of rainfall has great effects on the SSY, necessitating the gathering
of more than 20 years of data to smooth the high variability of SSY. A multiple correlation of land cover variables and the
average slope of the watershed with SSY managed to explain 48% of the variance within the SSY observations.
Conclusions The agricultural land cover has an important effect on median SSY values. While the regionalization of Bel-
gium is largely based on lithology, soils, and altitude, the land use resulting from these physical and climatic characteristics
explains the differences in SSY. Field values of clogged dams and waterways confirm the matching of the SSY computation
from discrete samples, despite the high temporal variability of sediment transport.

Keywords Sediment yield - Suspended sediment concentration - Soil erosion rate - Meuse basin - Scheldt basin

1 Introduction century and measured with increasing accuracy due to
recent technological improvements (Asselman 2000;

The area-specific sediment yield (SSY), expressed in  Verstraeten and Poesen 2001; Ward 2008; Métadier and

t km~2 year™!, is the amount of sediment that is exported
out of a given watershed. The SSY of a large diversity of
watersheds has been studied worldwide since the nineteenth
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Bertrand-Krajewski 2012). These studies have been con-
ducted in a wide range of watershed scales, with different
lithologies and climates (Moatar et al. 2006; Dumas 2007,
Lefrancois et al. 2007; Picouet et al. 2009; Furuichi et al.
2009; Mano et al. 2009; Marttila and Klgve 2010; Oeurng
et al. 2010; Gao and Josefson 2012; Araujo et al. 2012;
Fortesa et al. 2021). They often showed a link between SSY
and land cover, amount, and intensity of rainfall as well
as the availability of fine sediment in the watersheds. For
instance, the effects on SSY of heavy summer precipita-
tion have been studied on the Mediterranean rim (Seeger
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et al. 2004; Nadal-Romero et al. 2008; Tena et al. 2011),
the temporal distribution of soil erosion examined in high
relief energy areas (Jansson 1996; Sadeghi et al. 2008;
Navratil et al. 2011), and the variability of sediment trans-
port analysed at spatial scale (Steegen et al. 1998; Lenzi
and Marchi 2000; Meybeck et al. 2003; Vanmaercke et al.
2012b; Gericke and Venohr 2012). Impacts of traditional
soil conservation practices were observed (Estrany et al.
2009), in terms of reducing soil erosion by an order of mag-
nitude. Also widely analysed were the effect of wildfires on
the increase of soil erosion (Lane et al. 2006; Warrick et al.
2015). Many sedimentary studies also showed the ecologi-
cal impacts of sediment accumulation on stream habitats
(Parkinson et al. 1999; Tramblay et al. 2010; Collins et al.
2011); some authors associated it to a decrease of biodiver-
sity in silt-clogged river beds (Vaessen et al. 2021), while
others to human impacts on sediment yield resulting in the
consolidation of riverbanks or an increase of flooding risks
(Dumas 2007; Vanmaercke et al. 2015).

In Europe, the analysis performed by Vanmaercke et al.
(2011, 2012a) combining data from 1794 watersheds in
Europe (area: 0.01-1,360,000 kmz) showed that the average
erosion rate observed in Europe was 341 t km~2 year™!, for
a median rate of 92 t km~2 year~™!, with six orders of mag-
nitude separating the minimum values (0.3 t km~2 year™")
from the maximum values (30,000 t km ™2 year‘l). These
differences were attributed to a combination of factors, such
as differences in climate, topography, lithology, and land use
(Vanmaercke et al. 2011).

This present study is intended to compensate for the lack
of published quantified data on suspended sediment trans-
port in rivers of the southern part of Belgium (Wallonia).
Because of the influx of fine sediments into the waterways
surrounding loamy soils, public river managers needed to
know, for a large number of stations, the quantity of trans-
ported sediments, and their geographical origin, identified
using reference stations in other regions with different lithol-
ogy, land cover, and physical characteristics.

Indeed, suspended sediment concentrations (SSC) and
SSY estimations have mainly been carried out, in Belgium,
on watersheds of medium size, from agronomic researches
at plot scale, up to watershed synthetic analyses (Steegen
et al. 1998; Verstraeten and Poesen 2001; Pineux 2018).
Vanmaercke et al. (2011) have highlighted the lack of sedi-
ment transport studies over long periods in large watersheds
in Belgium (often < 100 km? and mainly located in the
Scheldt basin in loamy environment). For instance, the Dyle
watershed showed SSY of 30 t km~2 year™! in 1959-1960
at Leuven (742 km?), 70 t km~2 year™! in 1985-1986 at
Bertem (730 km?), and 210 t km~2 year™! in 1998-2000
downstream of Leuven (820 km?) (Boardman and Poesen
2006). Other measurement campaigns were also carried out
since the end of the nineteenth century in the Meuse and

Scheldt watersheds (Spring and Prost 1884; Close-Lecocq
et al. 1982; Lemin 1984; Lemin et al. 1987; Ward 2008) or
some of their tributaries (Sine and Agneessens 1978; Petit
1985; Lemin et al. 1987; Lamalle et al. 1989; Perpinien
1998; Parkinson et al. 1999; Hombrouckx 2002; Monseur
2005). However, changes in land cover and agricultural
practices are known to have great effect upon soil erosion,
and therefore, updated SSY values encompassing rivers in
different geographical regions were of interest for managers.
A fairly rapid and inexpensive methodology was developed
during two successive research projects (between 2006 and
2011) on watersheds ranging in size from 7 to 3600 km?
to estimate SSY in rivers located in the southern part of
Belgium.

2 Materials and methods

2.1 Study location: geographical and geological
features

The 72 study sites correspond to gauging stations which
are located in Wallonia, the southern region of Belgium.
A total of 65 of them belong to the Meuse basin, 6 to the
Scheldt basin, and 1 to the Moselle basin (see Table 1;
Fig. 1). This area experiences a warm-temperate and
oceanic climate without a dry season (Cfb code in the
updated Koppen-Geiger classification) and encounters
annual rainfall ranging from 725 mm in westernmost Wal-
lonia to 1400 mm in the easternmost part of the region,
mainly in relation to the elevation gradient (Erpicum
et al. 2018). The selection of sites where SSY have been
quantified through SSC measurements has been guided by
the presence of flow gauging stations. After preliminary
results were acquired on major rivers, the sampling net-
work has been extended to watersheds of lesser area and/
or in other geographical regions while the set of installed
gauging stations was growing in Wallonia under the aegis
of the public service. The 72 stations are distributed as
shown in Fig. 1 in the different geographical regions. The
regional classification of stations depends on their loca-
tion and on the sedimentary setting and the hydrological
dynamics of the upstream area. The regional affiliation
of each station (Van Campenhout et al. 2020) is shown in
Table 2 as well as their geological substratum and loess
availability. The land cover proportion in each watershed
is derived from Copernicus Land Service and the Corine
Land Cover maps (Panagos et al. 2015; CORINE Land
Cover 2018). These 100-m resolution maps have been
reclassified to give the spatial proportion of forest, grass-
land, cultivated area, and impervious area at watershed
scale with the raw data available for the years 2000, 2006,
2012, and 2018 (Table 9 in Supplementary Material).
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Table 1 Characteristics of the studied watersheds

# River Location Basin area (km?) Q, (hourly data) (m*s71) Source of Q, (hourly datay VaIUES

ARDENNE

1 Aisne Erezée (L6690) 67.4 7.3 Houbrechts (2000)

2 Aisne Juzaine (L5491) 183 23.8 Houbrechts (2000)

3 Ambleve Targnon (S6671) 802.9 87.3 New obs.

4  Ambleve Martinrive 1,064.5 140 Houbrechts (2005)
Nonceveux (S6621) 992.8

5 Chavanne Vaux-Chavanne (ULiege data) 12 2.9 Houbrechts et al. (2015)

6  Eau Noire Couvin (L6350) 102 321 Computed Qg 4,5

7 Hédrée Hargimont (L6940) 45.1 13.8 Computed Qg 4,5

8 Hoégne Belleheid (S6526) 20 10 New obs. (2019)

9 Hoégne Theux (L5860) 189 36.8 Deroanne (1995)

10 Lembrée Vieuxville (L6300) 51 7.9 Houbrechts (2005)

11 Lesse Lessive (L6360 +L5080) 897 64.3 Computed Qg 45
Villers-sur-Lesse 1,090 99.5 Peeters et al. (2018)

12 Lesse Hérock (L6610) 1,156 105 Bioengineering techniques report

(2016)

13 Lhomme Grupont (L6360) 179.9 20 Franchimont (1993)

14 Lhomme Rochefort (L6650) 424.9 51.8 Computed Qg ¢»5

15 Lhomme Eprave (L6360) 478 60 Petit et al. (2015)

16 Lienne Lorcé (L6240) 147 21.3 Houbrechts 2005 and new obs. (2008)

17 Mellier Marbehan (L5500) 62 8.8 New obs. (2008)

18 Ourthe occidentale Amberloup (L6290) 109 13 New obs. (2020)

19 Ourthe orientale Houffalize (L5930) 179 21 Petit et al. 2015

20 Ourthe Méry 2,691 295 0,=0.1346 A%* (Petit et al. 2007)
Sauheid (S5857) 2,910 300 Pauquet and Petit (1993)

21 Ourthe Ligge (Angleur) 3,624 394 Q,=0.1346 A7 (Petit et al. 2007)

QSauheid + QChaudfomaine

22 Rulles Forét d'Anlier 16 1.3 Petit (1987)

23 Rulles Habay-la-Vieille (L5970) 96 11 Petit and Pauquet (1997)

24 Rulles Tintigny (L5220) 219 24.3 New. obs. (2008)

25 Salm Trois-Ponts (L6070) 202 24 Louette (1995)

26 Semois Tintigny (S9561) 380.9 40 Auth. obs. (2008)

27 Sire Martelange (L5610) 209 32 Peeters et al. (2018)

28 Vesdre Chaudfontaine (S6228) 683 120 Petit and Daxhelet (1989)

29 Vierre Suxy (L7140) 219.8 19 New obs. (2008)

30 Viroin Olloy-sur-Viroin (L6380) 491 55 New obs. (2011)

31 Viroin Treignes (L6760) 542.4 62 New obs. (2009)

32 Wamme Hargimont (old station L6370) 80 12.1 New obs. (2008)

33 Wayai Spixhe (L6790) 93.8 25 New estimate

HAINE BASIN

34 Anneau Marchipont (L6870) 78.2 73 Computed Qg 4,5

35 Grande Honnelle  Baisieux (L5170) 121 12.4 Computed Qg 4,5

36 R* desEstinnes  Estinnes-au-Val (L7080) 28.7 3.0 Computed Q) ¢»5

37 Trouille Givry (L6710) 55.7 42 Computed Qg 45

38 Trouille Harmignies (L6430) 79.9 4.1 Computed Qg 4,5

39 Trouille Spiennes (L6600) 93 3.6 Computed Qg 4,5

40 Trouille Hyon (S3643) 224 8.9 Computed Qg 4,5

CONDROZ

41 Bocq Spontin (L7320) 163.6 18.3 Petit et al. (2015)

42 Bocq Yvoir (L5800) 230 26.3 Peeters et al. (2020)
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Table 1 (continued)
# River Location Basin area (km?) Q, (hourly data) (m?s7!) Source of Q,, (hourly datay VaLUES
43 Somme Petite-Somme (ULiege data) 37.3 4 Houbrechts (2005) and new obs.
(2007)
ENTRE-VESDRE-ET-MEUSE
44 Berwinne Dalhem (L6390) 118 17 Houbrechts et al. (2015)
45 Bolland Dalhem (L6770) 29.3 34 New obs.
46 Gueule Sippenaeken (L6660) 121 16 Mols (2004)
47 Magne Prayon/Foret (L6780/L7600) 40.5 4.7 Computed Q45
FAGNE-FAMENNE
48 Biran Wanlin (L7190) 51.9 6.3 New obs. (2008)
49 Brouffe Mariembourg (S9111) 80 20 New obs. (2009)
50 Eau Blanche Aublain (L6530) 106.2 17 Peeters et al. (2021)
51 Hermeton Romedenne (L5060) 115 17.3 New obs. (2008)
52 Marchette Marche-en-Famenne (L7120) 48.9 7.2 Petit and Daxhelet (1989)
53 R™ d'Heure Baillonville (L6050) 68 14 Louette (1995) and new obs. (2020)
54 Wimbe Lavaux-Sainte-Anne (L6270) 93 15 New obs. (2020)
HESBAYE
55 Burdinale Lamontzée 7.2 0.8 Lamalle et al. (1989)
56 Burdinale Marneffe (L6461) 26.8 22 Computed Qg ¢
57 Geer Eben-Emael (1.6340) 452.3 11.9 Mabille and Petit (1987)(1987
58 Mehaigne Wanze (L5820) 352.1 11.2 Computed Qg 455
Moha 345 18.1 (Perpinien 1998)
59 Petite Gette Opheylissem (L6280) 134 4.8 Computed Qg ¢»5
60 Petite Gette Zoutleeuw (L09_154) 276 5.3(6.3) Computed Q) ¢,5 (Hombrouckx 2002)
61 Grande Gette Sainte-Marie-Geest (L5720) 135 8.7 (10) Computed Q) ¢,5 (New est., 2011)
62 Gette Halen (L09_152) 805 17.7 21) Computed Q) ¢,5 (Hombrouckx 2002)
LORRAINE
63 Chavratte Dampicourt (L7060) 559 2.4 Computed Qg 4,5
64 Semois Chantemelle (L5880) 89 11.1 New obs. (2001); Hallot (2010)
65 Semois Etalle (L6180) 123.9 15.2 New obs. (2008); Hallot (2010)
66 Ton Virton (L6440) 89 6.5 New obs. (2007)
67 Ton Harnoncourt (L5520) 293 27.6 New obs. (2008)
68 Vire Ruette (L5600) 104 21.3 DCENN/SPW and new estimate
(2009)
69 Vire Latour (L6030) 125 12 New obs. (2008)
BRABANT PLATEAU
70 Senne Quenast (~L5660) 169 19.5 New obs. (2011)
71 Dyle Florival (L6160) 430 20.5 New obs. (2011)
72 Samme Ronquiéres (S2371) 135 15 Denis et al. (2014)

NB: Site locations with double values (#4, #11, #20, and #58) are those where suspended sediment samples were taken with no gauging station

nearby. Discharge values of the closest station have been used instead

The average percentage of cultivated area greatly varies
with the region where the studied watersheds are located:
19% in Ardenne, 30% in Entre-Vesdre-et-Meuse, 37% in
Fagne-Famenne, 28% in Lorraine, 54% in the Condroz,
50% in the Brabant Plateau, 49% in the Haine basin, and
75% in Hesbaye, based on the Corine Land Cover map of
2006. Conversely, the average forested area ranges from
2% in Hesbaye to 55% in Ardenne.

2.2 Field sampling

2.2.1 Sampling methods

To estimate the concentration of wash load and suspended
sediment, a manual sampling methodology was set up to

allow a large number of sampling sites during flood periods,
with the sampling of a bucket of 5 1 of river water from a
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Fig.1 Location of sampling sites and simplified geological map
of Wallonia (according to de Bethune (1954) and Dejonghe (2007),

modified). Station numbering refers

bridge in the centre of the river. This method was chosen

for its speed of implementation

efficiency in obtaining reproducible results with different

area of each river studied is shown with its appurtenance to the main
basin (Scheldt, Meuse, and Moselle)
to Table 1. The sub-watershed

operators. Between 1994 and 2002, 250 samples were
taken during fieldwork for academic research master theses
(Perpinien 1998; Hombrouckx 2002; Monseur 2005). The

(Lemin et al. 1987) and its

Table 2 Regional affiliation of each station in terms of lithology and loess availability

# Region Geological substratum and loess availability

#1to#33  Ardenne Impervious schisto-sandstone substratum of Cambrian-Ordovician and lower Devonian formations

#34 to #40 Haine Basin Meso-Cenozoic sediments accumulated in an actively subsiding area, with Cretaceous chalk formations
surmounted by Eocene sands, covered by a thick layer of loess

#41t043  Condroz Appalachian structure with Carboniferous limestone formations in depressions and Upper Devonian sand-
stone formations on its ridges

#44 to #47 Entre-Vesdre-et-Meuse Devonian rocks, Cretaceous deposits and Meuse terraces area, with gravel-bed rivers on moderately
permeable substrates

#48 to #54 Fagne and Famenne Lithological depression eroded into the lower Famennian and Frasnian soft shales

#55 to #62 Hesbaye Cretaceous chalk covered by several metres of loess

#63 to #69 Lorraine Sandy-loaded rivers developed on Triassic and Lower Jurassic deposits of various kinds: marl and sand-
stone, limestone, and sandy limestone

#70 to #72 Brabant Plateau Cambrian-Ordovico-Silurian formations under sandy Eocene and loessic cover
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representativeness of the results obtained with this sampling
method has been validated across the cross section of several
rivers in Wallonia (Pironet 1995; Monseur 2005). After this
first phase of samplings, around 1300 samples were taken
between 2003 and 2010. Then 450 samples were collected
in the 2010-2016 intervals. The average number of samples
per study site was 40, with a coefficient of variation of 1.76.
Over the whole dataset, 25% were taken in rising limbs,
24% in recession limbs, with different and independent
events, and the other 51% were sampled during almost con-
stant flow rates between floods. Recent reproducibility tests
(2011-2014) were performed in the watersheds of the Gette,
Senne, and Dyle rivers in order to validate the method of
systematic subsurface sampling at the point where the flow
is the fastest, according to the morphology of the stream bed
(Van Campenhout et al. 2013).

2.2.2 Hydrologic series availability

Computing median sediment yield over years needs dis-
crete or continuous water concentration sampling and the
recording of discharge data at the same gauging station.
With the aim of comparing sediment transport from differ-
ent geographical regions, and due to the variability of SSY,
computations of median SSY at gauging stations have to
be compared over the same period of time in order to have
consistent results. Discharge data from the dataset do not
cover the same period at each location because their instal-
lation date varies. Figure 2 gives information about the mean

1973-2018
Mean= 1.58; Std.dev.= 2.07

B T T prepeepeegeegenyenennear

- Mean number of days > Q,
Number of stations with 90% completeness

o

ES

......................................................................

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

N

_______________________________

________________

Mean number of days above bankfull
discharge (68 stations out of 72)
w

-

1970 1975 1980 1985 1990

__________________________________________________________________________________________________

number of days per year where discharge is above bank-
full discharge (Q,,), which has been observed in the field or
computed from partial series with the methodology of Van
Campenhout et al. (2020). Figure 2 also shows the number
of stations with at least 90% of hourly discharge data avail-
able for a given year. Median SSY will be computed from
annual SSY interpolated data in the 1996 to 2018 intervals.
This time span maximizes the availability of discharge data
over most of the monitored stations, and is consistent with
the sampling period.

2.3 Laboratory analysis of the suspended sediment
particles

The concentration of suspended solids is measured by vacuum-
filtering the samples with 110-mm diameter Whatman GF/C
glass microfibers filters — mesh=1.2 um (Smith 2007) with
98% retention efficiency (Zimmermann et al. 2012). These
filters allow working with the huge concentrations that can
be attained in loamy rivers (up to 20 g 17!) and are compat-
ible with Loss On Fire procedure. The methodology is based
on the NF EN 872-2005 standard (Marttila and Klgve 2010).
The accuracy of the measurements depends on the mass of
the sediment-filled filter. Tests performed on precisely known
mass and volume samples indicate an error of the order of 10%
for samples < 100 mg 17!, of the order of 5% for samples of
500 mg 17!, and the order of < 2% for samples of 2000 mg 1-%.
Concentration values <10 mg 17! were rejected due to the
uncertainty, representing ~ 8% of samples.

. Period of common discharge data used in this study
) Mean= 1.35; Std.dev.= 1.89

TTTVTTTTTTR R R A R S S N R — 70

60

50

40

w
o

N
o

Number of stations with at least 90%
of recorded hourly data each year

-
o

1995 2000 2005 2010 2015

Fig.2 Average number of days above bankfull discharge (Q,) for studied gauging stations, availability, and representativeness of hydrologic data
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2.4 Sediment yield computations
2.4.1 Rating curves and logarithmic corrections

Water sampling strategies and sediment load calculation are
crucial to provide accuracy and reliability in results. Interan-
nual variability of sediment load complicates the mid- and
long-term estimations of the sediment yield (Syvitski et al.
2000). The sampling strategy used in our study was set up
as a first-line approach to obtain sediment transport data
for gauging stations that had never been the subject of sus-
pended sediment studies in Wallonia. While many fluvial
systems show a non-linearity behaviour in the relationship
between discharge and sediment concentration and high
uncertainty related with non-continuous monitoring (Webb
et al. 1997; Araujo et al. 2012), sampling campaigns were
first made to obtain flood water samples related to real-
time water level alerts. These flood water samplings were
augmented by other samples taken during recessions and
low water periods. The sampling regimen was, at most, one
sample per station per event in order to prevent intra-event
correlation. The campaigns lasted for at least 5 years in order
to cover as thoroughly as possible the observed discharges,
from low water to above bankfull discharge.

The instantaneous concentration of suspended solids
(C,) in a river with well homogenised flow is commonly
related to the instantaneous flow rate (Q) by a power func-
tion (Eq. 1), better known as the sediment rating curve
(Campbell and Bauder 1940), where a and b are two empir-
ical constants (Phillips et al. 1999; Meybeck et al. 2003; Li
et al. 2005; Rovira and Batalla 2006; Doomen et al. 2008;
Delmas et al. 2011).

C,=aQ’ ¢))

3 1

C, is generally expressed in mg 17! and Q in m® s™'.
Parameters a and b are computed by least squares regression
in logarithmic space formed by log C/log Q from measured
concentration and discharge values.

A key factor of the sediment rating curve is its statistical
significance. The coefficient of determination (R?) of the
curve, the standardized root-mean-squared error (RMSE),

referred to as RSR (RMSE-observations standard deviation
ratio, Eq. 2), the Nash—Sutcliffe efficiency coefficient (NSE,
Eq. 3), and the percent of bias (PBIAS, Eq. 4) have been
computed following the equations presented by Jung et al.
(2020) based on Moriasi et al. (2007) and shown in Table 3.

Z (C,(‘)bs _ Ciesz‘)z
_RMSE __ V&l

RSR = [
\/Z (Ciobs _ C;nean)2
i=1

] 2)

Oobs

n
Z (C;)bs _ Ciesl)z
NSE=1—[—. -] 3)
Z (C;)bs _ C;m)an)
i=1

2(CPs — €& 5 100
PBIAS = [=

] “

n

;(Cf-”")

Equations 2, 3, and 4 give the RSR, NSE, and PBIAS
calculations, respectively, where RMSE is the root-mean-
squared error, o, is the standard deviation of the observed
concentrations, Ci”’” is the observed concentration, Cf‘“ is the
estimated concentration for the same index i, and C;"e‘"’ is
the mean SSC observed concentration from »n observations.
The values of the NSE can range from — oo to 1 (optimal
value), where value between O and 1 are acceptable, and
those values smaller than O are not considered as usable. The
PBIAS measures the tendency of the estimated concentra-
tions to be higher or lower than the observed data (Jung et al.
2020). The value of RSR varies from the optimal value of 0,
which indicates zero RMSE or residual variation and there-
fore perfect model simulation, to a large positive value. The
lower the RSR, the lower the RMSE, the better the model
simulation performance (Moriasi et al. 2007). The validation
criteria are shown in Table 3, with modifications compared
to Jung et al. (2020) because they use an additional constant

Table 3 Validation criteria of

T . ‘ RSR (RMSE-observations NSE (Nash—Sutcliffe PBIAS

the sediment rating curves, standard deviation ratio) efficiency coefficient) (percent of

adapted from Jung et al. (2020) bias)
Excellent (0.00-0.25) (0.75-1.00)
Very good (0.25-0.50) (0.50-0.75) <10
Good (0.50-0.75) (0.25-0.50) (10-30)
Satisfactory (0.75-1.00) (0.00-0.25) (30-50)
Unsatisfactory >1.00 <0.00 >50
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term p to Eq. 1 in order to take into account the non-linearity
of the suspended sediment rating-curve. This would have
needed a greater number of samples to be computed.

2.4.2 Spatial and temporal sediment yield calculation

At watershed scale, the specific annual sediment yield was
computed as the sum, for each time interval, of the product
of the instantaneous flow and the concentration of suspended
solids estimated via Eq. 1 and discrete samples (Syvitski
et al. 2000; Cerdan et al. 2012). This method of estimation
is based on the hypothesis of a unique relationship between
Q and C, and on the assumption that an instantaneous C|
depends only on Q at any given time without hysteresis
phenomena (Ritchie 2007; Cerdan et al. 2012). Not enough
samples were collected in this study to differentiate flow
conditions and obtain flood- and recession-sediment curves
at each gauging station The method proposed by Ferguson
(1986, 1987) has been used to correct the bias due to the
logarithmic de-transformation on both axes, which is only
effective when the residuals of C; follow a log-normal dis-
tribution and C; is a power function of Q (Asselman 2000).
A corrective factor is applied to the total suspended and
wash load estimations (Phillips et al. 1999), as shown by
Eq. 5 to give the corrected daily mass of suspended and
wash loads (fyuy cor.) from Q,, the hourly discharge; C), the
estimate suspended sediment concentration, and with s, the
standard error of the estimation of the least squares regres-
sion in log,, units.

24
Faityeorr. = 2, 36000, C,exp(2.6515?) ®)
h

2.5 Physical characteristics of the studied
watersheds

The physical data of the watersheds have influence on soil
erosion and sediment transport efficiency (Syvitski et al.
2000). These parameters have been extracted from the global
I-arcsecond (30-m) Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM) downloaded from
the United States Geological Survey’s EarthExplorer site
(http://earthexplorer.usgs.gov). However, the mean slope of
the watersheds may not be ideal to describe the runoff con-
centration time of the watershed. The Roche’s slope index
1,, also called the index of runoff susceptibility and based
on the compactness coefficient of Gravelius (1914), was
computed for each watershed (Roche 1963). Additionally,
the hypsometric curve (Davis 1899) and the hypsometric
integral were computed for each (Table 8 in Supplementary
Materials) watershed (Strahler 1952; Demoulin 2012).

2.6 Multi-criteria analysis on physical watershed
variables

Correlation matrices will be used in the first approach in
order to isolate the variables with the greater influence on
the integrated value of sediment transport at the outlet. The
physical variables that will be used are the watershed area,
the mean elevation and slope, the Roche’s slope index, and
the hypsometric value, whilst the variables related to the
land use will be the relative proportion of forests, grass-
land, and cultivated areas. The Corine Land Cover map that
has been used is the reference year 2006 because a major-
ity of samples were taken around 2006 (CORINE Land
Cover 2018). Land cover maps of 2000, 2012, and 2018
will also be taken into account in the correlation analysis.
In the second approach, weighted coefficients of these vari-
ables will be computed as well as the coefficient of multiple
determination.

3 Results
3.1 Sediment rating curves analysis

The results of this study are presented in Table 4, which
gives all the parameters that were computed from the
water samplings and the computed SSY. The parameters
‘a’ (Fig. 3) and ‘b’ (Fig. 4) of the sediment rating curves
were plotted in relationship with the watershed area and
the regional affiliation of the stations. Even if lower ‘a’
values are observed in the Ardenne rivers and higher ‘a’
values in the Hesbaye rivers, no other obvious regionaliza-
tion effect appears. The parameter ‘b’ does not show any
relationship with the watershed area among the studied
sites. However, when dealing with several stations on the
same river, the parameter ‘b’ tends to increase with the
drained area, while the parameter ‘a’ decreases with the
watershed area.

Based on the validity criterion (Table 3), the unsatisfac-
tory sediment rating curves are presented in Table 5. In
addition to the validity criterion, a small number of stations
hugely overpredict suspended sediment concentration based
on maximum recorded discharge: #61 Grande Gette River
at Sainte-Marie-Geest (~59 g 17') and #42 Bocq River at
Yvoir (~35 g 171). All the other stations show peak con-
centrations below 17 g 17!, For comparison, in a 134-km?
watershed in the loess belt region (#59), automatic sam-
pling far below the water surface during the rupture of a
storm dam on 29 June 2011 led to measured concentrations
around 25 g 171,
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Fig. 3 Relationship between the parameter ‘a’ of the rating curve equation C,=a Q” and the watershed area with a regionalized differentiation.
The values between brackets stand for the sediment rating curves considered as unsatisfactory

3.2 Spatial and temporal specific sediment yield
variability analysis

Through the computation of sediment rating curves and the
hydrological series, the annual sediment transport at the sta-
tions was calculated. Due to the significant temporal vari-
ability of annual sediment yield, which is directly linked to
the variability of rainfall and river flows, the average and the
median annual sediment yields during the 1996-2018 period
were computed (Table 4) and the median SSY values were
mapped (Fig. 5). The overall weighted-area median SSY
was 32.7 t km~2 year™!, taking into account the 58 valid sta-
tions. The median sediment yield for the period 1996-2018
reveals clear regional variability. Considering the computed
data for valid sediment rating curves (therefore without the
unsatisfactory stations), the median SSY reaches, on aver-
age, 19.2 t km™? year™! in Lorraine, 24.9 t km™ year™!
in Ardenne, 26.9 t km~2 year™! in the Haine basin, 28.4
t km~? year™! in Fagne-Famenne, 41.4 t km™ year™! in
Hesbaye, 49.2 t km™? year‘1 in Entre-Vesdre-et-Meuse,
and 119.0 t km~2 year™! in the Brabant Plateau. The annual
sediment yield is very dependent upon the annual runoff
and the intensity of the floods. Regional differences were

observed in relationship to the proportion of agricultural
areas, the availability of fine sediment, and to a less extent,
the slope of the watershed in a runoff concentration time
point of view.

The region with the most marked median SSY (Hesbaye
and Brabant Plateau) also shows the most marked annual
variation. In Hesbaye, the studied watersheds belong to two
large watersheds: the Meuse basin and the Scheldt basin.
The median SSY of the rivers belonging to the Scheldt basin
(Petite Gette and Grande Gette rivers) is much higher than
the values observed in the Meuse basin (Geer and Mehaigne
watersheds). In the Brabant Plateau region and in the Senne
watershed, SSY values tend to be even more important than
in the Hesbaye region. The Entre-Vesdre-et-Meuse rivers
tend to present large annual variations. The other studied
regions show less marked annual and spatial variations. Riv-
ers from the Haine basin (16 to 35 t km™> year™!) and the
Fagne region (18 to 37 t km~2 year™!) show lower median
SSY values. These values in Fagne are understandable given
the grassland which is the predominant land cover and the
low slope of the watersheds. However, in the case of the trib-
utaries of the Haine River, it seems that the type of flow — a
predominant base flow while Ardennian rivers often show a
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more flashy discharge regime — tends to explain the lower
SSY value. In Famenne, the interannual variability is lower
for the studied stations due to a smaller proportion of agri-
cultural areas, preventing high sediment concentrations after
summer storms, compared to the large plots in Hesbaye. The
Lesse and the Lhomme rivers are subject to karstic losses
at the interface of the Ardenne and the Famenne regions.
Hart and Schurger (2005) showed that karstic zones can also
behave like sedimentary sources, when floods re-suspend old
deposits trapped within these cavities.

The median SSY of the rivers of the Ardenne region
show, at first sight, a certain variability. However, the order
of magnitude of these values agrees with the measurements
made by estimating the sedimentary volume trapped by
the Biitgenbach dam on the Warche River (A =72 km?), in
a similar lithological and land use context than the upper
Ambleve River watershed where samples were taken (#3
Ambleve River in Targnon, 803 kmz). Rivers from the south-
ern part of the Ardenne region and the Lorraine region show
lower SSY, due to the forestry and the grassland land cover
respectively.

Due to the very high interannual variability of SSY,
we analysed 2 years, i.e., 2002, representing a humid year

@ Springer

(Fig. 7 in Supplementary Materials), and 2018, represent-
ing a dry year (Fig. 8 in Supplementary Materials). Table 5
gives the average SSY by region for the humid and dry
years in terms of days > Q,, taking into account valid sedi-
ment rating curves. In the case of the humid year and even
if the number of flood events and their intensity play a role,
the Lorraine and Ardenne regions present quite low sedi-
ment transportation in comparison to the other regions.
Entre-Vesdre-et-Meuse and Fagne-Famenne regions pre-
sent intermediate results (~ 100 t km~2 year™"). The larger
SSY are observed in the Haine Basin, and above all in the
Brabant Plateau and Hesbaye regions. These watersheds
from the loess belt have greater availability of fine sedi-
ment to transport. In the case of long period of intense
floods, SSY can exceed 300 to 600 t km™2 year‘l. The
Senne River showed a SSY value of 1032 t km~2 year™!
but is still considered as a valid value in terms of maxi-
mum extrapolated concentration (9.3 g 171), contrary to
the station #61, the Grande Gette River. Years with heavy
runoff are those that contribute the most to sediment trans-
port but uncertainties in SSY calculations are more impor-
tant in the case of above-bankfull discharge and especially
when extreme floods occur.
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Fig.5 Sediment yield median values within studied watersheds (period 1996-2018). Median SSY related to sediment rating curves that are con-

sidered as unsatisfactory are shown between brackets

The lowest annual discharge of the studied time inter-
val was reached in 2018 in a vast majority of watersheds,
although some significant flooding occurred in January and
June. Figure 8 shows the average SSY values of 2018 taking
into account only valid sediment rating curves and Table 6
presents the average values computed by region. In com-
parison to the year 2002, the year 2018 and its cumulative
drought over a period of 3 years display great differences
in terms of regional SSY values. The Haine basin presents
the lowest SSY values, while this region was showing one
of the highest SSY in a humid year. Ardenne and Lorraine
regions present values pretty close to 2002 values. Fagne-
Famenne region, for its part, has up to 5 times less SSY.
Hesbaye and Brabant Plateau regions show around 10
to 20 times less SSY during a drought period. It should
be noted that the Berwinne and Bolland watersheds, in
Entre-Vesdre-et-Meuse, show very high SSY values, 131
t km=2 year™! and 116 t km~2 year™!, respectively. This
is due to an intense thunderstorm accompanied by rainfall
of 89 mm per day on 1 June 2018 in the town of Battice
(headwaters of the Berwinne and the Bolland rivers). The

@ Springer

Berwinne River experienced flood discharge of 62 m® s

(recurrence ~ 120 years), while the Bolland River reached a
flow rate of 12.4 m® s™! (recurrence > 175 year). (Table 7)

3.3 Effects of physical characteristics
of the watersheds on sediment yield

Table 1 gives the proportion of each type of land cover in
the watersheds. Moreover, the sediment concentration at
bankfull discharge has been used in order to compare riv-
ers. This reference discharge has been selected because it is
the most suitable discharge value to compare stations with
each other. The recurrence of the bankfull discharge (Q) 45
in partial series according to Van Campenhout et al. (2020)
in the same geographical area) is usually in the range of
sampled discharges. Comparison with greater floods (Q,,
Qs, or 0;,) may lead to uncertainty due to the extrapolation
of the sediment rating curve.

As a preamble to the analysis of regional differences in
suspended sediment yield, some discrepancies in the relation
between bankfull discharge and watershed area appears. The
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Fig.6 Estimated suspended sediment concentrations at bankfull discharge and Corine Land Cover simplified map for 2006 (100-m resolution).
Stations #41 and #42 were not shown because of their unrealistic SSC value at bankfull discharge

rivers located in the Haine Basin and those from the Hesbaye
region clearly show Q, values lower than the other rivers
for a given value of watershed area (Petit and Pauquet 1997,
Petit et al. 2007). In this case, it is more an influence of the
hydrological regime, with a general weakness of the flows,
rather than of the morphology of the bed and the size of the
bed material (Petit et al. 2007). In the opposite case, with
their soft-shale substratum that tends to increase the depth
of the bed incision, Fagne and Famenne rivers show a higher
bankfull discharge compared to the other rivers.

Ardennian rivers show less possibility of the accumula-
tion of large alluvial plains, regarding their less important
SSC at Q,, unlike Brabant Plateau and Hesbaye rivers, with
a large availability of loess. However, the rarity of overflow-
ing floods prevents having a precise estimate of the concen-
trations of suspended sediment above Q,. Some rivers in the
southern part of the Lorraine region show local particulari-
ties, such as natural levees on the Ton River or an artificial
dam in the Vire River, can induce, in the case of the Vire
River, a significantly greater bankfull discharge value and
thus, a greater sediment concentration at Q,,.

Figure 6 shows the estimated concentration at Q,, (see
Table 4 for values). The variance of SSC is partially
explained by the variance of Q, (R*=0.60), given by Eq. 6
(where SSC at Q,, is the suspended sediment concentration
at bankfull discharge in mg 17, and A, 1s the proportion
of agricultural area in the watershed expressed in percent).

SSC at Q, = 38.72A3.7° (6)

Another important physical parameter is the mean slope
of the watersheds: 4.2% in the Haine basin and in Hesbaye,
5.5% in the Brabant Plateau, 7.7% in Fagne-Famenne, 8.0%
in Entre-Vesdre-et-Meuse, 8.9% in the Condroz, 9.8% in
Lorraine, and 10.3% in Ardenne. It can be observed that
slopes in central and south-western Ardenne are less steep
than in the north-eastern Ardenne. The watersheds with
the greatest average slopes are more likely to be forested.
Inversely, the cultivated watersheds are prone to present the
least steep slopes. However, local lower slopes in agricul-
tural areas may lead to mudflows and flash-floods that con-
tribute to higher sediment yield at the watershed integration
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Table 6 Average SSY by region for 2002 (humid year) and 2018 (dry
year)

Region SSY in 2002 (t SSY in 2018 (t
km™2 year_l) km™ year_l)
Ardenne 64.9 19.3
Haine Basin 380.6 12.2
Entre-Vesdre-et-Meuse 82.0 90.4
Fagne-Famenne 120.0 18.9
Hesbaye 636.4 36.3
Lorraine 30.1 23.4
Brabant Plateau 487.2 42.5

scale (Evrard et al. 2007; Van Campenhout et al. 2015). The
Roche’s slope index is given in Table 8 (see Supplementary
Materials) and ranges from 0.045 to 0.197. It is a better rep-
resentation of the overall slope of the watershed. The higher
values of Roche’s slope index (> 0.100) are observed in the
watershed with an area that is lower than 200 km?.

areas, and thus with the availability of suspended sediment
runoff in the watershed. No correlation was found between
the median SSY and the watershed area. For the duration of
the water samplings, the land cover has not been drastically
modified. However, some trends were detected in the stud-
ied watersheds (see Table 9 in Supplementary materials).
From 2000 to 2018, the forest land cover has increased in all
regions — and especially in Lorraine (+0.9%) and Ardenne
(+0.4%) — except in Hesbaye and Entre-Vesdre-et-Meuse.
Grassland tends to decrease in every region (up to —2.6% in the
Haine Basin), except in Brabant Plateau and Entre-Vesdre-et-
Meuse. Cultivated areas increase in the Haine Basin (+ 1.8%)
and in the Condroz (+0.61%); they decrease especially in the
Brabant Plateau region (—1.8%) and in Hesbaye (—0.9%).
This decrease is related to the urbanization of the watershed
(+1% in the loess belt). The Ardenne region is less marked by
recent urbanization (+0.2%). Multi-criteria analyses have been
undertaken to extract the coefficients of the most correlated or
inversely correlated variables with SSY (Eq. 7).

Median SSY [t km_zyear_l] = 3.10 Mean slope[%] — 0.527 Forest cover [%] @)

+ 0.396 Cultivated cover [%] + 11.2

Correlation matrices have been used to detect the explana-
tory variables with respect to the median 1996-2018 spe-
cific sediment yields (Table 7). Despite our efforts to deter-
mine physical explanatory variables, only weak correlations
between median SSY and land cover percentages are visible.
The percentage of cultivated areas tends to be correlated with
median SSY (R=0.42), while the percentage of forested areas
(R=-0.45) is inversely correlated with sediment yields.
Physical variables that are linked to the relief energy show
less meaningful correlations with median SSY. The mean
slope of the watershed (R=—0.28) presents an inverse trend
in comparison to the median SSY. The hypsometric value of
the watershed showed a very weak correlation (R=0.21) with
median SSY. The mean elevation of the watershed is inversely
linked with the median SSY (R=-0.43). However, the mean
elevation is also related to the location of the agricultural

The coefficient of multiple determination (R?) reaches a
value of 0.48, with a standard error of 26.1 tkm™2 year_l. The
multi-criteria analysis hardly explains the variance of median
SSY with confidence, even if physical parameters of the water-
sheds play a role.

4 Discussion

The sediment rating-curve method tends to underpredict
high and overpredict low SSC value (Horowitz 2003).
Ideally, the calibration measurements should cover a
full range of flow conditions from droughts to floods to
ensure that extrapolation of the curve beyond the range
of supporting measurements is minimized. However,
achieving water sampling over a full range of flow rates

Table 7 Correlation between
median SSY (1996-2018)
and physical variables of the

Physical variables of the watersheds

Correlation (R) with
median 1996-2018 SSY
(tkm™2 year™)

watersheds
Watershed area (A) (km?) —-0.05
Mean elevation (m) —-0.43
Mean slope (%) -0.28
Roche’s slope index -0.19
Hypsometric value 0.21
Forest relative land cover in 2006 (%) —0.45
Grassland relative land cover in 2006 (%) -0.21
Cultivated areas relative land cover in 2006 (%) 0.42
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is difficult where the sampling site is remote from the lab
or where the watershed is small so that the river has a
quick response to infrequent storms. For this reason, some
degree of extrapolation of the rating curve is often neces-
sary (McKerchar 2003). In case of flash-floods or pluri-
centennial floods, Keaton (2019) estimates the threshold
between normal streamflow to hyperconcentrated sedi-
ment flow at a sediment concentration by volume of about
0.05 to 0.1 (50 to 100 g 171), while mud flood and mud
flow are classified above 0.2 and 0.45 respectively. These
reference values were used to ban the over-extrapolated
values of the stations #42 and #61 (with about 35 and
59 g 17! respectively); they are considered as unrealistic
for their stream environment. In the end, the #62 station
could be considered as invalid due to a probable underes-
timation of the sediment concentration (max. 986 mg 1Y
even if the NSE and PBIAS give a “very good” state of
validity. There is a possibility that sediment accumulation
occurred upstream of the sampling station according to
Hombrouckx (2002). In any case, the manual sampling of
over-bankfull discharges will remain hard due to the rarity
of these events. Only automatic sampling stations would
have achieved the gathering of data for very infrequent
floods to study the within-event sediment variability and
the hysteresis (Oeurng et al. 2010; Rodriguez-Blanco et al.
2010). In practice, this real-time monitoring and water
sampling are rather difficult to set up in a large number of
stations and requires high frequency field handlings and
laboratory analyses.

Minimizing the sum of the squares of the logarithmic
deviations results in the underestimation of the calculated
concentrations (Wilson et al. 1990; Grasso and Jakob
2003; Hallot 2010). The bias increases with the degree of
scatter about the regression (Ferguson 1986), despite the
common use of a correction factor (Phillips et al. 1999;
Ndomba et al. 2008), and the sediment yield underesti-
mation may exceed 50% in some cases (Thomas 1985;
Jansson 1985; Ferguson 1986, 1987; Koch and Smillie
1986; Cohn et al. 1989; Lamalle et al. 1989; Grasso and
Jakob 2003). We have observed that the correction factor
led to an increased value of around 30% when the R? of
the sediment rating curve is around 0.5. In the case of a
R? above 0.8, the increased value of the corrected SSY
remains below 10%. The quality of the sediment rating
curve has therefore a significant impact on the computed
results, much higher than the exhaustiveness of the range
of sampled discharges. However, the slope of the loga-
rithmic rating curve could change significantly in case of
new samples, because this type of mathematical relation
is driven by extreme values. In addition, the values of the
parameters ‘a’ and ‘b’ of the sediment rating curve may
change with time: hydrologic changes may come from
human-caused alterations of the global climate system or

river restoration plans (Warrick 2015). Authors showed
that variation in flow discharge can lead to a general
decrease in ‘b’ and an increase in ‘a’ during the period
with more flood events (i.e., an increase in sediment trans-
port) and an increase in ‘b’ and a decrease in ‘a’ during
droughts (Higgins et al. 2013).

The relationship between the SSY and the area of the
watershed is rarely significant. In a large study of 60 water-
sheds in Spain, Verstraeten et al. (2003) could not explain
more than 17% of the variability of the SSY with the water-
shed area. Multiple regression models, based on climatic,
topographic, and land use properties, often are insufficient
to model the sedimentary behaviour of the watersheds
(Verstraeten et al. 2003). The same observations were made
in Italy by de Vente et al. (2006). In the presence of clastic
materials such as badlands, gullies, or landslides, the pre-
diction of SSY seems to be easier, based on the drainage
density (de Vente et al. 2006; Grauso et al. 2008). In Wal-
lonia, the prediction seems to be more difficult due to the
large range in the pattern of types of lithologies and soils
over a rather small area. The high variability of litholo-
gies prevents drawing a clear link between drainage density
and sediment yield. The land cover is more likely to be
used to explain a part of the spatial variability of sediment
yields as it can be presented in correlation and multicriteria
analyses. For instance, predominant agricultural land cover
conjugated to higher watershed slope in the vicinity of the
watercourses in the loess belt (Senne, Dyle and Gette riv-
ers) is likely to explain higher SSY values.

From the samplings of this study, it was shown that, as
a general rule, the concentrations of suspended sediment
observed in the summer period are higher than the concen-
trations observed for an identical discharge in the winter
period, even when the sample is taken during the rising
phase of the flood in the studied stations. In addition, it was
observed that this difference between the concentration of
samples in winter and in summer is maximum in the small
watersheds located in silty areas. Large-area watersheds are
less subject to this phenomenon of temporal differentiation
because the impact of runoff due to summer storms is inte-
grated over the entire surface.

Despite the high variability of factors controlling the sedi-
ment yields (Zabaleta et al. 2016), the physical characteristics
of the watersheds play a role in sediment yield. In addition
to the scale effect of their area, it has been demonstrated
that parameters such as slope, land cover, lithology, and soil
erosivity have an effect on sediment budget (Van Oost et al.
2000; Yan et al. 2013; de Vente et al. 2013; Fang et al. 2016;
Messina and Biggs 2016). Moreover, the link between higher
drainage density and higher sediment yield is only present in
homogeneous bedrock geology (Dragicevié et al. 2018). In
addition, the connectivity of the river networks also plays a
significant role. The presence of weirs and dams impacts the
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fine sediment transport (Lajczak, 1996). In urban area, the
rectified reaches also affect its transport by the narrowing due
to bridges and hydraulic obstacles. Even if the land cover data
are not sufficient to realistically represent all the sedimentary
processes that take place from soil erosion to the outlet and
the accumulation processes, the more complex models are
generally very difficult to calibrate for large watersheds. The
use of Corine Land Cover maps with a resolution of 100 m
was the only available technique to compare different years
with thematic consistency over the last decades. Due to the
international environment of the studied watersheds, pan-
European data are needed to deal with the part of them that
are in boundary countries and regions.

Compilation studies often highlight the influence of run-
off in the variability of SSY. In Wallonia, Perpinien (1998)
observed very low denudation rates at the level of the Meh-
aigne, at its confluence with the Meuse (14 t km~2 year™!
at Wanze in 1997), while Sine and Agneessens (1978)
observed a SSY of barely 10 t km™2 year™! in the upper
Mehaigne (20.4 km?). These differences highlight the great
interannual variability of SSY which makes it difficult to
compare the values based on different analysis periods, espe-
cially when they include particularly dry years, such as the
1973-1977 period studied by Sine and Agneessens (Lamalle
et al. 1989). The results of Vanmaercke et al. (2012b) with a
worldwide dataset remain inconclusive about the potential
impact of land use on the inter-annual variability of SSY, but
indicate a weak correlation. Costa et al. (2017) only man-
aged to observe a link with land cover modifications over
a 40-year period of data with continuous monitoring in an
Alpine environment.

This study has demonstrated that nowadays the rivers that
were suspected of clogging the downstream waterways, such
as the Trouille River and the Samme River, did not repre-
sent a massive input of sediment each year. However, tak-
ing into account the estimated value by the public managers
of 1.3 million tons of accumulated sediment in the Condé-
Pommeroeul canal since 1818 (connected to the Trouille
River via the Haine River) and the data from the station #40
(Trouille River at Hyon, with a watershed area of 224 km?
and a median SSY of 28.4 t km~2 year™!), the simple extrap-
olation by multiplication of our median SSY results over the
period 1818-2010 reaches 1.22 million tons of potentially
accumulated suspended sediment for this 192-year period.
The computation by other means of the sediment yield
was in accordance with the results found in our study. For
instance and despite the difference in watershed area, the
SSY was estimated to be between 28 and 33 t km~2 year™!
with an accumulation in the Biitgenbach dam from 1932
to 2004 (Hallot et al. 2012) compared to 30 t km~2 year™!
of median 1996-2018 SSY value with suspended sediment
samplings.

@ Springer

Several types of potential uncertainty were addressed in
the computation of the SSY from sediment rating curves.
The first type is due to the sampling method and the repre-
sentativeness of the sample across the water column and the
water section. Perpinien (1998) observed, thanks to measure-
ments conducted by Lamalle (1987) in the Burdinale River
and Pironet (1995) in the Magne River, a low variability in
suspended sediment concentration of samples taken at dif-
ferent depths on cross-sections. This variability is different
with average concentrations. The coefficient of variation is 8
to 12% for average concentrations below 30 mg 1"! between
1.3 and 6% for average concentrations of 150 to 600 mg 17!
and 8.4% for a concentration of 1800 mg 17! on the Burdi-
nale River. The second type of uncertainty relates to the
quality of the sediment rating curve, linked to the trap effi-
ciency of the filtration method and the ability for modelling
suspended sediment concentration across a wide range of
discharge. Jung et al. (2020) summarize a computing method
of several validation criteria to describe the quality of the
sediment rating curve. Another source of uncertainty in the
SSY computation is the model of interpolation of annual
or pluri-annual sediment yield. A great variety of types of
calculations exist to interpolate from infrequent samples
(Phillips et al. 1999; Delmas et al. 2011). The summation
of modelled concentrations on an hourly discharge basis
was used in this study. However, each type of computation
model may give very different SSY results, in relation to the
number of samples, the coefficient of determination of the
sediment rating curve, and the distribution of the samples
over the range of flow discharge values. Estimating sediment
yield over large watersheds is a difficult task, taking into
account the great spatial and temporal variability of physical
parameters of the watersheds, and the difficulty of sampling
with representativeness the suspended sediment at a wide
range of discharge values.

The frequency of suspended sediment sampling also has
a non-negligible impact on the annual sediment yield calcu-
lated from the flow series (Horowitz 2002, 2003; Vanmaercke
et al. 2012b; Skarbgvik et al. 2012). Walling (1977) showed
significant differences in the interpolation of SSY with dif-
ferent sampling timings such as daily, monthly or seasonal
intervals. Underestimates of up to 70% are reported in the
literature when the sampling frequency is weekly (Li et al.
2006). A fairly small number of samples, for example 12
samples taken on a hydrological basis rather than a calen-
dar basis, may allow a first estimate of the annual sediment
transport to be obtained while minimizing the trips required
to cover a large network of stations (Skarbgvik et al. 2012).
The representativeness of the sediment rating curves obtained
is correct for the majority of the study sites. However, the
number of samples or the range of sampled discharges was
too small in 10 cases, leading to unsatisfactory results. This
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compromise between the precision of the estimate of the
annual sediment yield and the ability of sampling a large
number of measurement sites is dependent upon each water-
shed, because the bias due to a low sampling frequency can
vary greatly with the area and physical characteristics of the
studied watersheds (Moatar et al. 2006).

In the end, the source data of land cover maps, their refer-
ence year, and their resolution may be another issue affecting
the multicriteria analyses. With a variable sampling period
for the studied sites, the land cover map at different epochs
has been used and integrated to the searching for correlations
between land cover and the SSY at the outlet of the water-
shed. The Corine Land Cover map for the year 2006 has
shown better correlation values compared to ProbaV 2015
maps (Buchhorn et al. 2019), previously tested. The current
trend of urbanizing the areas in the agricultural area such as
the Hesbaye and the Brabant Plateau region could lead to an
increase of the sediment transport by raising the connectivity
of the sediment source and the rivers downstream through
the impervious area.

5 Conclusions

Since the end of the 1990s, campaigns of suspended sedi-
ment samplings have been carried out on 72 study sites in
the Southern part of Belgium in order to acquire sediment
yields at the outlet of watersheds located in different geo-
graphical regions. The statistical validity and representa-
tiveness of the sediment curves has been described using
several descriptors. This type of study aiming at accu-
mulating many suspended sediment samples from a great
number of gauging stations confronted us with the diffi-
culty of obtaining representative results at different time
and space scales. The classical method of interpolation of
the suspended sediment concentration with the Ferguson
correction required by the bi-logarithmic space was the
methodology used to compute the SSY over a representa-
tive period with the available series of hourly discharges.
However, the high variability of SSY related to the sea-
sonality of sediment transport in fluvial regimes would,
due to logistics and costs, tend to result in only a small
number of stations, representative of geographic regions or
watersheds, being equipped with continuous measurement
devices to acquire data during single events. The method-
ology described here made it possible to obtain an order
of magnitude of the sediment transport in suspension for
a large number of stations, which was the initial request
of the river managers.

Belonging to seven very different geographical regions,
with their specific geologic substratum, type of soils, and
land cover, differences in SSY have been observed. Consid-
ering the computed data for valid sediment rating curves,

median SSY reaches, on average, 20.1 t km~2 year~! in Lor-
raine, 28.7 t km~2 year™! in Ardenne, 52.9 t km~? year™!
in the Haine basin, 30.7 t km~2 year~! in Fagne-Famenne,
96.1 t km~2 year~! in Hesbaye, 63.2 t km~2 year™! in Entre-
Vesdre-et-Meuse, and 192.2 t km™2 year'1 in the Brabant
Plateau region. The estimated SSC value at bankfull dis-
charge was related to the proportion of agricultural areas
in the watershed (R?=0.60). Indeed, rivers from Ardenne,
Fagne, and Famenne regions and the northern part of the
Lorraine region depict low SSC at Q,,. Conversely, Brabant
Plateau and Hesbaye rivers (and to a lesser extent, those
located in the southern part of Lorraine) show the larger
sediment concentrations at bankfull discharge, correlated
to a predominantly agricultural land cover. The percent-
age of cultivated areas (in 2006) is weakly correlated with
median SSY of the 19962018 period (R=0.42), while the
percentage of forested areas (R=—0.45) is inversely corre-
lated with sediment yields. The mean slope of the watershed
(R=-0.28) and the average elevation (R=—0.43) present
an inverse trend in comparison to the median SSY, but the
mean elevation is linked to the proportion of agricultural
areas in terms of climatic environment and the availability
of arable lands in Wallonia.

Compared to other sediment transport analyses, the
order of magnitude of median SSY (33 t km ™2 year_l) was
consistent with other studies in the same climatic context
and for the same range of watershed areas. This study also
confirms the great temporal and spatial variability of SSY.
In terms of clogging of the waterways and dams, the com-
putations made from sediment rating curves and hydro-
logical data matched with the estimates of accumulated
sediment over different time intervals.

The uncertainties that are linked to the sampling meth-
ods, the quality of the sediment rating curves in terms of
representativeness, and the soundness of the choice of the
available computation methods still make complex today
the study of sediment transport in rivers. Further analyses
that are based upon high-frequency water samplings and
long-term data gathering would be necessary to define
more precisely the intrinsic and complex sedimentary
processes that take place in watersheds.
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