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Abstract
Purpose Polycyclic aromatic hydrocarbons (PAHs) in the environment are strongly influenced by anthropogenic activities 
and negatively impact human health. Identifying the sources and potential risks of PAHs in soils will help to prevent soil 
pollution and utilize land more effectively.
Materials and methods In this study, soils under different land-use types in the northern Taihu Basin were investigated. 
The PAHs in soils were measured by gas chromatography-mass spectrometry. The toxicity of PAHs from different sources 
was quantitatively evaluated based on the positive matrix factorization-toxic equivalent quantity (PMF-TEQ) model. The 
incremental lifetime cancer risk (ILCR) method was used to assess the health risk of PAHs.
Results and discussion The results showed that the Σ16PAHs concentrations varied between 142.26 and 9278.51 ng  g-1, with 
a mean value of 1640.43 ng  g-1. High molecular weight PAHs were found to account for the largest fractions (87%) of the 
Σ16PAHs. Significant variation of the PAHs concentrations in soils was observed under different land-use types. The mean 
concentration of Σ16PAHs in different areas was in the order of industrial area > traffic area > commercial area > residential 
area > park > farmland. Vehicle emissions and coal/coke combustion were the predominant sources, accounting for 54% 
and 37% of the Σ16PAHs loading, respectively. The total predicted TEQ of PAHs ranged from 15.71 to 867.35 ng  g-1 (mean 
189.29 ng  g-1), and benzo(a)pyrene was the major species. The total ILCR value for soil PAHs exposure was in a range of 
(0.13 ~ 9.13) ×  10-6.
Conclusions Source identification showed that the dominant source of soil PAHs was vehicle emissions in commercial 
(89%) and traffic (85%) area, while coal/coke combustion was the main source of soil PAHs in industrial area (43%). The 
total TEQ indicated a potential carcinogenic risk in the study area, with vehicle emissions and coal/coke combustion making 
the primary contribution to the total TEQ (95%). The total ILCR value was in a range of  10-7 ~  10-5, which indicated a low 
health risk. Children experienced a higher cancer risk than adults due to their sensitivity to the carcinogenic effects of PAHs.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous 
environmental contaminants due to their carcinogenic, 
immunotoxic, and mutagenic effects on organisms (Wu 
et al. 2014; Obrist et al. 2015; Lei et al. 2016; Balgobin and 
Singh 2019 and references therein). With the increase in 
benzene ring number, PAHs with a high molecular weight 
becomes more stable and have stronger toxicity. These PAHs 
can resist biodegradation and persist in the environment 
for a long time. The environmental behavior of PAHs has 
become a cause for concern (Wu et al. 2014; Lei et al. 2016; 
Balgobin and Singh 2019). PAHs are mainly derived from 
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the burning of various organic materials, including natu-
ral sources, i.e., volcanic eruptions and forest fires, as well 
as anthropogenic activities such as vehicle emissions, coal 
combustion, and oil leakage (Li et al. 2019a; Parra et al. 
2019). Different sources of PAHs may exhibit various levels 
of toxicity due to the different dominance of ring numbers. 
Therefore, it is crucial to clarify the toxicity of PAHs from 
different sources before developing cost-effective abatement 
strategies (Yin et al. 2015; Zheng et al. 2018; He et al. 2020).

Soil serves as a “sink” for PAHs in the environment, 
which can become tightly bound to soil particles following 
atmospheric deposition and sewage irrigation due to their 
high hydrophobicity (Cetin 2016; Zheng et al. 2018). The 
enrichment of PAHs in soils can eventually affect human 
health through the food chain or various other exposure 
routes (Lemieux et al. 2015; Qi et al. 2019; Wang et al. 
2020a; Xu et al. 2021). The PAHs concentrations in soils 
reflect the environmental quality (Qi et al. 2019), and their 
distribution in the soil can be used to assess pollution levels 
(Jia et al. 2017), identify emission sources (Lu et al. 2020), 
and evaluate the environmental health risks associated with 
PAHs (Zheng et al. 2018).

In recent decades, the emission of PAHs in China has 
been on the rise (Xu et al. 2006; Mu XL 2016) accompa-
nied by an increasing proportion of high-molecular weight 
PAHs (Zhang et al. 2011). PAHs have become major con-
taminants in urban soils and pose potential carcinogenic 
risks to urban residents (Zheng et al. 2018; Chen and Liang 
2021), especially in areas with a high population density and 
high level of anthropogenic activities (Xu et al. 2021). The 
northern Taihu Basin is such a region, located in the Yangtze 
River Delta in China. In this century, the environment of the 
northern Taihu Basin has been deteriorated to be a heavily 
polluted area as a result of intense anthropogenic activities 
(Chen et al. 2020; Huang et al. 2020; Li et al. 2020a). Most 
of the current studies focused on the algae bloom, changes 
in nitrogen and phosphorus contents, sediment thickness 
and dredging, and effects of multiple factors, i.e., wind-
wave disturbance, temperature, dissolved oxygen, and pH 
value on the lake water quality (Zheng et al. 2015; Zhong 
et al. 2020; Chen et al. 2021). The non-point pollution from 
agriculture has also been paid more attention to (Chen et al. 
2020) in the Taihu Basin. With the economic development, 
the intensity and patterns of anthropogenic activity varied 
within the different land-use types, resulting in differences 
in soil contamination between different regions (Peng et al. 
2011; Jia et al. 2017; Li et al. 2020a). However, at present, 
limited researches on the persistent organic pollutants, espe-
cially PAHs in soils from different functional areas of the 
basin, and the cancer risks of human exposure to PAHs. 
The objectives of this study were as follows: (1) to investi-
gate the concentrations and sources of PAHs in soils under 
different land-use types in the northern Taihu Basin, (2) to 

quantitatively estimate the toxicity of PAHs from various 
sources, and (3) to evaluate the incremental lifetime cancer 
risk (ILCR) due to exposure to PAHs in soils. It is expected 
that our study will provide a scientific basis for soil remedia-
tion and human health risk management.

2  Materials and methods

2.1  Study area and sampling

Taihu Lake is the third-largest freshwater lake in China, with 
approximately 120 inflows and outflows around the lake. 
The inflows are mainly located in the northern and western 
parts of the lake (Li et al. 2019b). Wuxi City is located in the 
northern part of the Taihu Basin and has more than 6 million 
inhabitants. In the “13th Five-Year Plan,” the government 
proposed to develop Wuxi City into a national integrated 
transport hub. The total number of vehicles in Wuxi City 
reached 2.02 million in 2018, which represented an increase 
of 1.73 times compared to that in 2000. The raw coal, coke, 
and crude oil consumption of major industrial enterprises 
in this region reached 25.68, 4.33, and 1.37 million tons, 
respectively in 2018, which represented an increase of 
1.51, 54.72, and 3.75 times compared to the values in 2000, 
respectively (Wuxi City Bureau of Statistics 2000–2018). 
Large volumes of treated industrial effluents from the city 
are discharged into the northern part of Taihu Lake via the 
Wangyu River (Lei et al. 2016). The total nitrogen (TN) 
and total phosphorus (TP) concentrations allowed by the 
national Level A discharged standard are 15 and 0.5 mg  L-1, 
respectively, and the allowable discharged concentrations 
of other pollutants are also high (Environmental Protection 
Department of Jiangsu Province 2007).

In August 2020, a total of 14 representative topsoil sam-
ples (0 ~ 10 cm) in different areas were collected from the 
northern Taihu Basin (mainly the Binhu District of Wuxi 
City). The sample sites represented various land-use types, 
covering industrial areas (I1, I2, and I3), a commercial area 
(C1), traffic areas (T1 and T2), residential areas (R1, R2, 
R3, and R4), parks (P1, P2), and farmland (A1 and A2). 
The distribution of each sampling site is shown in Fig. 1. 
A stainless steel shovel was used to collect the 0 ~ 10-cm 
surface samples at each site. Artificial fill was avoided, and 
all surface debris was removed. All samples were stored in 
well-labeled sealed bags at –20 °C for subsequent process-
ing and analysis.

2.2  Sample preparation and instrument analysis

Impurities (i.e., stones, plants, and animal residues) were 
removed from freeze-dried samples. The samples were 
ground using an agate mortar and then passed through a 100 
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mesh sieve (particle size < 0.15 mm). Anhydrous sodium 
sulfate and silica gel were used as the column sorbent mate-
rials and were activated at 450 °C and 180 °C for 4 and 6 h, 
respectively, and were then allowed to cool to attain room 
temperature. Approximately 2 g (dry weight) of the sam-
ple was transferred into a 34-mL extraction cell and mixed 
with moderate diatomaceous earth for accelerated solvent 
extraction (ASE) using dichloromethane/hexane (1:1, v/v) 
as the solvent. The cell was placed into the carousel of an 
ASE 350 system (Thermo Scientific, USA). The system was 
filled with an n-hexane/dichloromethane mixture (1:1, v:v). 
The operating conditions were as follows: oven temperature 
of 100 °C, heating for 5 min, and static extraction for 5 min 
at a pressure of 1500 psi (10 MPa). The extract was col-
lected from the sample cell with a 90-s nitrogen purge. The 
extract from the collection flask was transferred to a round 
bottom flask and concentrated to 2 mL through a vacuum 
rotary evaporation process in a 40 °C water bath. The extract 
was then transferred to the prepared chromatography col-
umn using a glass dropper. The clean-up column was filled 
from top to bottom with 1.5 g anhydrous sodium sulfate, 
1 g silica gel, and 1.5 g anhydrous sodium sulfate. The puri-
fication column was then rinsed with a 15 mL n-hexane/
dichloromethane mixture (1:1, v:v) and 5 mL n-hexane, and 
the solution was collected in a flask and decreased to 0.5 mL 
with an evaporator. The extract was transferred into a 2-mL 
vial. The n-hexane was used to rinse off the residual extract 
from the flask and diluted to exactly 1 mL with the solution 
(Chang et al. 2018; Chen and Liang 2021; Xia et al. 2021).

The pretreated samples were analyzed by a gas chro-
matography-mass spectrometer (GC–MS) system (Agilent 
8860–5977, USA) with a DB-5MS (0.25-μm film thick-
ness, 30 m × 0.25 mm i.d.) silica capillary column. High 
purity (99.999%) helium was used as the carrier gas at a 
constant flow rate of 1 mL  min-1. The injection volume was 
1 μL of each sample, with a splitless injection method. The 
injector and detector temperatures were 250 and 280 °C, 
respectively. The initial temperature was 50 °C held for 

1 min, ramped up to 180 °C at 15 °C  min-1, then to 280 °C 
at 5 °C  min-1, and subsequently maintained for 5 min. The 
mass detector was operated at 70 eV, and the temperature of 
the ion source was set to 280 °C. Sixteen PAHs were meas-
ured under the full scan mode (50 ~ 550 amu): 2 rings: naph-
thalene (Nap); 3 rings: acenaphthylene (Acy), acenaphthene 
(Ace), fluorene (Flu), phenanthrene (Phe), and anthracene 
(Ant); 4 rings: fluoranthene (Flua), pyrene (Pyr), benzo(a)
anthracene (BaA), and chrysene (Chry); 5 rings: benzo(k)
fluoranthene (BkF), benzo(b)fluoranthene (BbF), benzo(a)
pyrene (BaP), and dibenzo(a,h)anthracene (DahA); and 6 
rings: indeno(1,2,3-cd)pyrene (IcdP) and benzo(g,hi)per-
ylene (BghiP).

2.3  Quality assurance and quality control

The glass bottles and round-bottomed flasks used in the 
experiment were baked at 500 °C for 4 h. A seven-point 
calibration curve (50, 100, 250, 500, 1000, 2000, and 
2500 ng  mL-1) with a correlation coefficient (r2 > 0.996) 
combined with an external standard method was applied to 
quantify PAHs. The target compounds were not detected in 
method blanks. The average recoveries of the sixteen PAHs 
in all samples were > 75%, and the resulting concentrations 
were not corrected with recoveries. The relative standard 
deviations of the sixteen PAHs in the duplicate samples were 
all less than 10%, and the PAH concentrations in this study 
were based on dry-weight soil samples.

2.4  Source quantification and toxicity evaluation 
of PAHs

2.4.1  The positive matrix factorization model

The PMF model was applied to quantitatively determine 
the source profiles of PAHs in soils. This model was first 
proposed by Paatero and Tapper (1994). The uncertainty 
of the variables was taken into account and all values were 

Fig. 1  Location of the sampling 
sites in the northern Taihu 
Basin

136 Journal of Soils and Sediments  (2022) 22:134–145



positive. The model did not require source profile data. It 
was therefore particularly suitable for identifying and quan-
tifying source profiles and the contributions of PAHs in the 
environment (i.e., urban air, soils, and lake sediments) (Li 
et al. 2016; Yang et al. 2018). The PMF model is commonly 
used as a quantitative source resolution method. The model 
can be described by Eq. (1):

where i represents the detected sample, j refers to the PAHs 
species, p refers to the number of source factors, B is the 
component matrix of each source, A represents the contribu-
tion matrix of each contaminant, and εij refers to the random 
error.

where Q refers to the weighted sum of squares for the dif-
ference between the PMF output and the original dataset 
and σij represents the uncertainty in the jth PAHs for sample 
i. The details of the uncertainty are provided by Yang et al. 
(2021). All of the values of the uncertainty file are needed to 
calculate the confidence level of the model. The concentra-
tion and uncertainty file for each value should be positive. 
Consequently, the concentrations of individual PAHs in soil 
samples were replaced by half of its method-detection-limit 
(MDL) if they were below the corresponding MDL value.

2.4.2  Risk assessment

The toxicity equivalency factor (TEF) method was applied 
to calculate the toxic concentrations of PAHs in soil sam-
ples. The most widely studied carcinogenic PAHs, BaP, was 
selected as a reference species for the toxicity assessment. 
Subsequently, BaP-based TEFs were used to evaluate the 
toxicity of the different sources identified by the PMF model 
and the predicted PAHs concentration from each source. The 
TEF value was calculated as follows:

where  TEQik indicates the total toxic equivalent quantity 
(TEQ) of factor k from sample i, cjik represents the predicted 
concentration of species j emitted by source k in sample i, 
and  TEFj is the TEF of species j from the literature (Nisbet 
and Lagoy 1992; Samburova et al. 2017).

The ILCR method was used to quantify the potential 
health risk of PAHs in soils to children and adults (Chen and 
Liang 2021). The ILCR value for soil PAHs was calculated 
according to Eqs. (4) to (7). The relevant exposure pathways 

(1)Eij =

p
∑

k=1

AikBkj + �ij

(2)Q =

n
∑

i=1

m
∑

j=1

(

�ij

�ij

)2

(3)TEQik =
∑m

j=1
Cik
j
⋅ TEFj

of soil PAHs throughout a human lifetime include direct 
ingestion, dermal absorption, and inhalation (Table S1).

where  ILCRIng,  ILCRDer, and  ILCRInh represent the cancer 
risks associated with the exposure pathways via ingestion, 
dermal contact, and inhalation, respectively, and  ILCRtot 
is the total cancer risk. More of the parameters referred 
to in the equations are presented in Table S1 (Yang et al. 
2015). The qualitative descriptions of the ILCR were as 
follows: acceptable health risk (≤  10-6), low health risk 
 (10-6 ~  10-4), moderate health risk  (10-4 ~  10-3), high health 
risk  (10-3 ~  10-1), and very high health risk (≥  10-1) (Qi et al. 
2019).

2.5  Statistical analysis

All statistical tests were performed with the statistical pro-
gram SPSS 21.0 (SPSS Inc. Chicago, USA). A T-test was 
applied to compare the PAHs levels in soils from the areas 
with different land-use types. For a principal component 
analysis (PCA), all socio-economic parameters were log-
transformed to obtain a normal distribution of data. An 
eigenvalue over 1 was selected to explain the percentage 
of the total variation attributed to each parameter based 
on the Kaiser criterion. A linear regression of the PAHs 
in soils versus the derived principal components was then 
conducted. Statistical significance was verified by an F-test 
of the overall fit, followed by a T-test for each parameter. 
The data for the socio-economic parameters used in the PCA 
were obtained from http:// www. tiand itu. gov. cn/.

3  Results and discussion

3.1  Characteristics of PAHs concentrations in soils

The Σ16PAHs concentration in soils of the different land-use 
types in the northern Taihu Basin is shown in Fig. 2, with a mean 
value of 1640.43 ng  g-1 (range of 142.26 ~ 9278.51 ng  g-1). The 
classification criteria for PAHs contaminated soils according to 
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the standard proposed by Maliszewska-Kordybach (1996) were 
used as a reference, with the result that 7%, 29%, 21%, and 43% 
of the sampling sites corresponded to non-contaminated soil 
(< 200 ng  g-1), weakly contaminated soil (200 ~ 600 ng  g-1), 
contaminated soil (600 ~ 1000 ng  g-1), and heavily contami-
nated soil (> 1000 ng  g-1), respectively. The concentrations of 
some individual PAHs in samples from industrial, traffic, and 
commercial area exceeded the Chinese Agricultural Soil Envi-
ronmental Quality Standard (China’s Ministry of Environmen-
tal Protection 2009). Of the sixteen PAHs, BbF (43%), Chry 
(36%), BaA (21%), and IcdP (21%) had the highest exceedance 
rates, indicating a large potential risk. Based on this standard, 
the most contaminated soil sample was found at site I1, which 
was an industrial area, where the concentrations of Phe, Ant, 
Flua, Pyr, BaA, Chry, BbF, BkF, BaP, DahA, and IcdP in soils 
exceeded their environmental quality standards, followed by 
sites I2 and T1, where the concentrations of BaA, Chry, BbF, 
and IcdP in soils exceeded the standard. The main species 
that exceed the standard were high molecular weight PAHs 
(HPAHs), i.e., including 4 ~ 6 rings. The Σ16PAHs concentration 
in soils from the northern Taihu Basin was high in comparison 
to reported values in soils from South Korea (23.3 ~ 2834 ng  g-1) 
(Nam et  al. 2003) and underdeveloped western China 
(141 ~ 191 ng  g-1) (Sun et al. 2017), and was comparable to the 
values reported in Tianjin (58.2 ~ 9160 ng  g-1) and Zhengzhou 
(49.9 ~ 11,565 ng  g-1) in China. Compared to other soils, i.e., 
Shanghai (251 ~ 18,916 ng  g-1) (Chen and Liang 2021) in China, 
Tampa (59 ~ 58,640 ng  g-1), and Orlando (43 ~ 30,428 ng  g-1) 
in the USA (Liu et al. 2019), the PAHs concentration in soils 
investigated in this study was lower.

The result of the T-test revealed that the Σ16PAHs con-
centrations in soils from different land-use types varied 

significantly (p < 0.05), with the concentrations in soils 
from industrial and traffic area being much higher than 
those from areas with other land-use types. The mean 
Σ16PAHs concentration in soils followed the descend-
ing order of: industrial area (4240.80 ng  g-1) > traffic area 
(2433.13 ng  g-1) > commercial area (1280.07 ng  g-1) > resi-
dential area (638.94 ng  g-1) > park (461.68 ng  g-1) > farmland 
(304.06 ng  g-1). The large volume of fossil fuels consumed 
in the industrial area could lead to an accumulation of PAHs 
in the environment. In particular, the oil processing plant at 
site I1 was responsible for contamination from petroleum 
hydrocarbons due to waste oil discharges and leakages (Zong 
et al. 2019). The frequent use of large trucks for transport, 
as well as the stop-start motion of trucks in transit releases 
exhaust gases rich in PAHs (Yang et al. 2021). High traf-
fic volumes in traffic area lead to large amounts of diesel 
and petrol combustion, which increases PAHs level in the 
environment.

There were slight differences in PAH composition pat-
terns among the different land-use areas (Fig. 2). The PAHs 
composition in soils was dominated by 4 ~ 5 rings, attrib-
uting 43 ~ 58% (mean 50%) and 15 ~ 31% (mean 25%) of 
the Σ16PAHs, respectively. The most abundant PAHs were 
the HPAHs (mean 87%), with low molecular weight PAHs 
(LPAHs) (2 ~ 3 rings) accounting for less than 20%. This 
might be related to the different vapor pressures of indi-
vidual PAHs. Due to their relatively high vapor, LPAHs are 
more volatile than HPAHs. They are therefore effectively 
distilled and transported, whereas HPAHs tend to remain 
near the emission source due to their large sorption capac-
ity and resistance to degradation (Li et al. 2020b). Previous 
studies have shown that the high-temperature combustion 

Fig. 2  The percentage of 
each pollution grade (a), and 
distributions of Σ16PAHs (b) 
summarized by the ring number 
in soil samples from different 
areas. (I) Bon-contaminated 
soil; (II) weakly contaminated 
soil; (III) contaminated soil; 
(IV) heavily contaminated soil; 
IA industrial area, TA traffic 
area, CA commercial area, RA 
residential area
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of organic materials for industrial production emits large 
amounts of HPAHs, while low-temperature combustion of 
organic matter for domestic heating or in small workshops 
releases a higher proportion of LPAHs (Hadibarata et al. 
2019). The predominance of HPAHs in the soil samples 
reflected a developed industrial civilization, which was con-
sistent with the social development level of the study area 
in the “economic center of the Yangtze River Delta.” There 
were similar composition patterns of PAHs among the vari-
ous land-use areas, suggesting homology of PAHs in soils. 
Only the proportion of LPAHs in soils varied, with the levels 
in industrial area and farmland being slightly higher than the 
levels in soils from other land-use types. This was attributed 
to oil leakage during production in industrial area and the 
combustion of biomass or civilian coal in farmland.

3.2  The sources of PAHs and associated influencing 
factors

3.2.1  Source apportionment

Due to the fingerprinting potential of PAHs in different 
emissions, some specific PAHs (i.e., Phe and BghiP) are 
often used as indicators of specific formation processes, and 
their ratios can suggest different emission sources. The diag-
nostic ratios of PAHs isomers are widely used for the tracing 
of potential PAHs’ sources (Wang et al. 2011; Zheng et al. 
2020). The diagnostic ratios of Ant/(Ant + Phe) and IcdP/
(IcdP + BghiP) have been used to characterize their poten-
tial sources (Dashtbozorg et al. 2019; Yang et al. 2019). In 
this study, the diagnostic ratios of Ant/(Ant + Phe) and IcdP/
(IcdP + BghiP) were found to have ranges of 0.10 ~ 0.23 and 
0.04 ~ 0.54, respectively (Fig. 3). It has been reported that 
Ant/(Ant + Phe) ratios below 0.1 suggest a petroleum source, 
whereas values above 0.1 are associated with pyrogenic 
sources. All samples had Ant/(Ant + Phe) ratios greater 
than 0.1, indicating that PAHs in soils were mainly derived 
from the burning of various substances. IcdP/(IcdP + BghiP) 
ratios < 0.2 indicate a petroleum source, while values 
between 0.2 and 0.5 indicate the burning of liquid fossil 
fuel, and values above 0.5 indicate solid fuel combustion 
(i.e., biomass, wood, and coal). About 86% of the samples 
presented IcdP/(IcdP + BaP) ratios > 0.2, of which 57% fell 
with the range from 0.2 to 0.5, and the IcdP/(IcdP + BaP) 
ratios for 29% of the samples were above 0.5, indicating a 
pyrogenic source for most of the PAHs in soils of the study 
area. The northern Taihu Basin is a developed urbanized 
and industrialized region, and industry is the main economic 
activity, which has also been boosted by the rapid growth 
of tourism with a large number of visitors in recent years. 
Therefore, energy consumption and transport usage have 
increased in this area (Zheng et al. 2020). We deduced that 

industrial development and transport were the main causes 
of the high PAHs concentration.

The mixing of various PAHs sources may produce aver-
age results that differ from their original characteristics, as 
shown in the literature (Semenov et al. 2017; Wang et al. 
2020b), and variations in the transport of different isomers 
may also lead to a bias between diagnostic ratio results and 
reality (Katsoyiannis and Breivik 2014). Due to these issues, 
source apportionment methods may not work perfectly for 
determining diagnostic ratios. Consequently, the contribu-
tions of possible PAHs sources were separated and quanti-
fied by the PMF model. Four factors were extracted and their 
source profiles of PAHs are shown in Fig. 4. Factor 1 (F1), 
accounting for 37% of the Σ16PAHs, was dominated by Ace 
(90%), Ant (64%), Flu (60%), and Phe (53%). The burning 
of coal releases an abundance of LPAHs, and Ace, Flu, and 
Phe can be regarded as indicators of coke production (Li 
et al. 2018, 2020a). In addition, Ant and Phe are also used 
as tracers of coal combustion (Li et al. 2020a; Chen and 
Liang 2021). Many of the industrial enterprises in Wuxi City 
require large quantities of coal as an energy source, which is 
an important reason for the accumulation of PAHs in soils. 
Thus, F1 was found to be a mixed source of coal and coke 
combustion, while F2, which accounted for contributing 9% 
of Σ16PAHs, had the highest NaP loading of 75%. It has been 
reported that NaP is present in large quantities in unburned 
petroleum (Zheng et al. 2017; Li et al. 2018; Zhang et al. 
2019), and therefore, F2 was considered to be the source 
representative of oil leakage. The F3 factor explained 28% of 
Σ16PAHs and was mainly loaded with BkF (55%) and IcdP 
(48%), both of which were identified as markers of diesel 
combustion (Zheng et al. 2017). Thus, F3 was considered 
to represent the burning of diesel. The contribution of F4 to 
the Σ16PAHs was 26%, with the highest loadings from DahA 
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(93%), which is a typical contaminant emitted from gasoline 
vehicles (Li et al. 2018), and consequently, F4 was assigned 
to gasoline combustion. The accumulation of PAHs in soils 
from various pollution sources is a complex process, with 
vehicle emissions (diesel and gasoline combustion) contrib-
uting the most (54%) to the Σ16PAHs concentration.

To further explore the mutual correlation between the 
PAHs concentration and socio-economic parameters, a 
PCA was performed (Table 1). The socio-economic param-
eters are presented in Table S2. Three principal compo-
nents (PCs) were extracted to explain the percentage of 
the total variation among the parameters, with the three 
PCs explaining 83% of the total variation (Table 1). It 
was found that  PC1 was positively correlated with x1, and 
made the largest contribution to the overall variance, while 
 PC2 was positively correlated with all parameters, with the 
values of x3 and x5 being statistically significant for  PC2. 
Finally,  PC3 was dominated by x2, x4, and x6. There was 

a positive correlation between  PC1 and the Σ16PAHs con-
centration, with a small coefficient in the model. Both  PC2 
and  PC3 were negatively correlated with the Σ16PAHs con-
centration, and a larger coefficient was observed, reflect-
ing the major impact of  PC2 and  PC3 (transportation and 
industrial activities) on the Σ16PAHs concentration in soils 
(R = 0.5; Table 2). The results showed that transportation, 
industrial activities, and green space had significant effects 
on the Σ16PAHs concentration in soils. Therefore, we sug-
gest increasing the area of woodland, which has a good 
absorption effect on PAHs, within the proximity of the 
main roads. Based on retaining the original ecosystem, 
forests have been planted around industrial point sources 
to isolate the pollution.

3.2.2  Emission sources in different land‑use areas 
and the driving factors of PAHs pollution

The identification of PAHs sources in soils based on the PMF 
model was used to determine the PAHs concentration derived 
from different sources in the samples (Fig. 5). The PAHs 
derived from coal and coke combustion in soils ranged from 
0.21 to 5897.29 ng  g-1, with a mean value of 623.32 ng  g-1. 
The highest concentrations of coal and coke combustion-
derived PAHs were found at site I1 in the industrial area, with 
values in the remaining sites being < 500 ng  g-1. The PAHs 
originating from volatilization or the leakage of unburned 
petroleum were least abundant in soils, ranging from 184.76 
to 1459.85 ng  g-1, with a mean value of 311.25 ng  g-1. The 
highest concentrations were observed at site I1 in the indus-
trial area, which was associated with oil leakage during the 
production of oil products. Vehicle emissions-derived PAHs 
were found in soils with a range from 1.68 to 2951.50 ng  g-1 
and an average value of 825.57 ng  g-1. It should be noted that 
site T1 had the highest concentration of vehicle emissions-
derived PAHs residues in soils. The cumulative contribution 
of each emission source to Σ16PAHs differed under the differ-
ent land-use types. Coal and coke combustion was the main 

Fig. 4   Source profiles and 
quantitative contributions of 
PAHs in soils from the northern 
Taihu Basin based on the PMF 
model
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Table 1  Principal component analysis of the socio-economic param-
eters in the study area

x1, road width (km); x2, distance from a sampling site to a road (km); 
x3, distance from a sampling site to Wuxi railway station (km); x4, 
distance from a sampling site to an industrial area within 1 km of it 
(km); x5, size of the industrial area  (km2), x6, size of a park within 
1 km of a sampling site  (km2)

Socio-economic parameter Principal component (PC) for all 
data

PC1 PC2 PC3

x1 0.32 0.09 -0.30
x2 0.16 0.47 0.48
x3 -0.28 0.45 0.03
x4 0.26 0.10 0.52
x5 0.09 0.51 -0.57
x6 -0.34 0.13 0.18
Pct. of var. (%) 42.00 23.34 17.77
Cum. pct. (%) 42.00 65.34 83.10
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source of PAHs in soils from the industrial area, attributing 
43% of the Σ16PAHs predicted by the PMF model, with the 
highest contribution occurring at site I1 (64%). However, the 
primary source of Σ16PAHs in soils was replaced by vehi-
cle emissions in the commercial area (89%) and traffic area 
(85%), while its contribution to Σ16PAHs in the residential 
area was also relatively high (51%). Unburned petroleum 
accounted for 55% and 49% of the Σ16PAHs in soils from 
park and farmland, respectively. This might be related to 
that these two types of areas are relatively far from pollu-
tion sources, and the volatile PAHs derived from unburned 
petroleum are expected to be more effectively distilled and 
transported to these areas (Li et al. 2020b).

3.3  Toxicity assessment

A toxicity assessment of PAHs in soils from different sources 
was conducted through the application of the positive matrix 

factorization-toxic equivalent quantity (PMF-TEQ) model. 
The spatial variations of total TEQ from different sources 
identified by the PMF model are presented in Fig. 6a, and the 
toxicity profiles of each source are illustrated in Fig. 6b. The 
predicted total TEQ in soils from the study area ranged from 
15.71 to 867.35 ng  g-1, with a mean value of 189.29 ng  g-1. 
The differences in the distribution of total TEQ displayed 
a similar pattern of variation to that of the Σ16PAHs con-
centrations, with the TEQ in descending order by land-
use type being industrial area (449.16 ng  g-1) > traffic area 
(308.75 ng  g-1) > commercial area (155.48 ng  g-1) > resi-
dential area (91.30 ng  g-1) > farmland (48.78 ng  g-1) > park 
(33.43 ng  g-1). The largest TEQ in soils was obtained from 
site I1 (867.35 ng  g-1). The samples exceeded the standard 
by 86%, suggesting a potential risk in the study area, espe-
cially in the industrial and traffic area where the toxicity 
was relatively high based on a reference value (32.96 ng  g-1) 
(Crnković et al. 2007).

For different sources, the contribution of coal and coke 
combustion, unburned petroleum, and vehicle emissions to 
Σ16TEQ ranged from 15.15 to 36.50, 2.62 to 5.51 ng  g-1, 
and 60.44 to 82.22 ng  g-1, with mean values of 29.38, 4.49, 
and 66.13 ng  g-1, respectively. As shown in Fig. 6a, 95% of 
the total Σ16PAHs toxicity was due to the contribution from 
pyrogenic sources, with coal and coke combustion explain-
ing 34% and vehicle emissions explaining 61%. The toxicity 
profiles revealed the BaP was the dominant species, account-
ing for 67%, 62%, and 58% of the total toxicity from coal and 
coke combustion, unburned petroleum, and vehicle emission 
sources, respectively. This indicated that vehicle emissions 
were the primary source of PAHs toxicity in soils followed 
by urban industrial manufacturing, which was due to the 
intensity of anthropogenic activities in the study area.

To obtain a more accurate health risk assessment for 
human exposure to PAHs, the exposure pathways through 
direct ingestion, dermal contact, and inhalation were 
considered. Based on the total TEQ, the ILCR values for 
children and adults are summarized in Fig. 6c. The total 
cancer risk via dermal contact, ingestion, and inhalation 
for children and adults exposed to PAHs in soils was in 
a range of (0.17 ~ 9.13) ×  10-6 and (0.13 ~ 7.16) ×  10-6, 
respectively, indicating a potential carcinogenic risk. The 
total cancer risk of children exposed to soil PAHs was 
greater than that of adults, probably because children are 

Table 2  Linear regression 
analysis of PAHs concentration 
vs. derived principal 
components and statistical 
significance

y, Σ16PAHs concentration; ε, residuals of the equation; p < 0.1

Equation R Significant level

F-test T-test

F |t1| |t2| |t3|

y = 0.01  PC1 - 0.40  PC2 - 0.43  PC3 + 4746.37 + ε 0.5 0.96 0.03 0.74 1.41
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more sensitive to the carcinogenic effects of PAHs, due to 
their underdeveloped immune systems. The ILCR values 
in the industrial, traffic, and commercial area ranged from 
 10-6 to  10-4, which demonstrated that a low health risk 
would occur for human exposure to soil PAHs at these 
sites. If someone living or working near the industrial area 
or along the main road ingested, dermally contacted, or 
respired road dust, then the cancer risk would be higher. 
Except for these sites, the total cancer risk was equal to or 
less than the baseline of an acceptable health risk  (10-6).

The percentage concentrations of various exposure path-
ways to the total cancer risks are shown in Fig. S1. Dermal 
contact was the most important pathway, accounting for 
54.45 ~ 65.10% of the total cancer risk. Compared with soil 
ingestion and dermal contact, human exposure to PAHs via 
the inhalation of resuspended particles from surface soils is 
limited. The inhalation of soil particles only accounted for 

0.09 ~ 0.27% of the total cancer risk to human health. The 
inhalation of soil particles was therefore almost negligible 
when compared to other pathways. The same results have 
been reported elsewhere (Soltani et al. 2015; Yang et al. 
2015).

In soil samples, the proportion of the total cancer risk 
from soil PAHs due to dermal contact for adults (65.10%) 
was higher than that for children (54.45%), which may be a 
consequence of adults having a higher dermal surface area 
and exposure duration than children. The proportion of the 
total cancer risk from the inhalation of soil particles was also 
greater for adults (0.27%) than for children (0.09%) due to 
the high inhalation rates of adults leading to more particulate 
matter entering the body through inhalation. Compared to 
dermal contact and the inhalation of soil particles, the cancer 
risk for adults generated by direct ingestion was lower than 
that for children, which could be explained by the fact that 
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children were the most sensitive subpopulation due to their 
frequent ingestion of contaminated dust via hand-to-mouth 
activities. The PAHs intake for children was also considered 
to be greater than that for adults due to their low body weight 
(Jia et al. 2017).

4  Conclusions

In this study, we focused on PAHs in soils of the northern 
Taihu Basin, China, to quantitatively estimate their spatial 
toxicities from different sources by applying the PMF-TEQ 
model. The highest PAHs concentration and toxicity were 
found in soils from industrial and traffic area, while the low-
est values were found in soils from farmland and park. Three 
predominant PAHs sources, vehicle emissions (54%), coal 
and coke combustion (37%), and unburned petroleum (9%) 
were identified. Vehicle emissions (61%) made the primary 
contribution to the total toxicity. The ILCR values revealed 
that the cancer risk for children and adults from PAHs expo-
sure in soils from industrial, traffic, and commercial area 
presented a low-risk, while the cancer risk from residential 
area, park, and farmland was acceptable. Dermal contact 
accounted for the largest proportion of the overall exposure. 
It is recommended that a buffer zone be created between resi-
dential area and pollution sources using green spaces to block 
and adsorb PAHs. Sufficient space should be allocated to 
green spaces in cities to minimize the diffusion of pollutants 
when planning new industrial area and constructing roads.
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