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Abstract
Purpose Information related to spatial distribution and dominants of soil organicmatter (SOM) is critical for evaluating soil quality and
assessing the carbon sequestration capacity, which play essential role in soil management and climate changemitigation. Until now, no
reported research has conducted an extensive survey to predict SOM content, analysed SOM spatial variability, and determined the
main controls of SOM variation in areas around Dongting Lake in southern China. Therefore, this study aims to (1) explore the spatial
variability of SOM content; (2) build a model to quantitatively predict SOM content with various sources of covariates andwith the RF
method; and (3) identify potential controls of SOM based on the relative importance of variables.
Materials and methods A total of 8040 soil samples were collected from Yueyang County in Eastern Dongting Lake Plain.
Ordinary kriging was used to produce a map of SOM and then the random forest algorithms were used to predict SOM content
with 17 covariates covered terrain attributes, land use, climate, soil management policies, soil properties, and geologic informa-
tion. Finally, the main dominants of SOM variability were identified.
Results and discussion The SOM content in the survey region varied from 4.00 to 446.60 g kg−1 and had an average content of
33.17 g kg−1, which indicated fertile soil in the study area. SOM presented strong spatial variability in the area under study. The
high SOMvalues were majorly located in the northeast and southwest parts of the survey regions. TheR2 of our developed model
was 0.74 and the RMSE was 0.16 g kg−1. The main controls of SOM variability in the study area were available phosphorus,
precipitation, soil group, rotation system, available potassium, altitude, and slope.
Conclusion Our developed model showed a good performance to estimate SOM content using auxiliary variables. Soil properties and
agricultural management measures played the most important roles in predicting SOM in the study area. Results obtained from this
study could provide new insights for estimating SOMand contribute to the sustainable development of agriculture and better regulation
of soil quality in the study area.

Highlights • Random forest was used to predict soil organic matter
(SOM) with 17 covariates
• The mode had good performance for estimating SOM with R2 = 0.74
and RMSE = 0.16 g kg−1

• SOM presented strong spatial variability in Yueyang County
• Soil properties and climate factors controlled variation of SOM in
Yueyang County
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1 Introduction

Soil organic matter (SOM) is a crucial gauge for soil quality
(Schmidt et al. 2011; Zhou et al. 2016; Hengl et al. 2017; Chen
et al. 2020; Zhou et al. 2021). It is essential to the stewardship
of ecosystem functions, such as soil fertiliser and carbon se-
questration, since SOM drives the soil carbon decomposition
and nitrogen (N) mineralisation processes in the soil (Fang
et al. 2005; Yuste et al. 2011; Zhu et al. 2014; Schillaci et al.
2017; Bai and Zhou 2020; Saby et al. 2020). Therefore, pre-
cise knowledge on the spatial distribution of SOM and poten-
tial controls plays vital roles in sustainable soil utilisation and
management, as well as climate change migration.

However, SOM may vary spatially and is influenced by var-
ious factors like soil properties, climate, terrain, and anthropo-
genic activities (Wiesmeier et al. 2011; Ji et al. 2012; Zhang et al.
2012; Zhou et al. 2016; Liang et al. 2019; Yang et al. 2020;
Cambou et al. 2021; Hu et al. 2021). Therefore, the spatial esti-
mation and identification of potential controls of SOMhave been
widely and extensively studied (Hengl 2009; Marchetti et al.
2012; Piccini et al. 2014; Boubehziz et al. 2020). Among these
studies, Zhang et al. (2012) estimated the spatial distribution of
SOM with covariates such as terrain indices and categorical var-
iables in Miyun County in Beijing City of China using ordinary
kriging (OK), multiple linear stepwise regressions, and
regression kriging. They concluded that the spatial patterns of
SOM in their survey area were affected by the collaborative
consequence of topography, soil texture, and soil type. Dai
et al. (2014) mapped the spatial variation of SOM content by
combining artificial neural networks and OK in the Tibetan
Plateau in China. Mao et al. (2014) produced the map of SOM
in urban soils in Xuzhou City, China with OK. Wiesmeier et al.
(2011) applied the random forest (RF) to map SOM content
stocks in a semi-arid area in the autonomous province of Inner
Mongolia, China. They found that land use, soil group, and
geology are key factors that determine the amount of SOM in a
surveyed region.Wu et al. (2009) produced spatialmaps of SOM
in Haining City in Southeast China using OK and the cokriging
method. Guo et al. (2015) used RF plus the residuals kriging
approach to estimate the spatial variation of SOM in Danzhou
City, Hainan Province, in the south of China. Their study re-
vealed that geological unit, precipitation, and terrain played a
crucial role incontrolling SOM variation. Zhou et al. (2016) re-
vealed the scale-specific dominators of SOM in the Northeast
and North China Plain using discrete wavelet transforms. Their
results indicated that the correlation between environmental
factors and the original SOM is quite different at different
spatial scales. Bogunovic et al. (2018) usedOK tomap the spatial
distribution of SOM in the Baranja region of eastern Croatia.

They reported high relationships between spatial variation of
SOM and geological or landform factors (Bogunovic et al.
2018). Using co-ordinary kriging, Medhioub et al. (2019)
mapped the spatial pattern of SOM in southern Tunisia with
the help of covariates extracted from remote sensing image.

Dongting Lake is the second largest freshwater lake in China,
with an area of 3879.2 km2. There are large areas of farms and
wetlands around Dongting Lake, which has a history of more
than 8000 years of rice cultivation and the region around the
Dongting Lake is well known as the hometown of fish and rice
in China. It is also one of the most important bases for commod-
ity grain production in China. However, with the increasing pop-
ulation and rapid development of industry and urbanisation, land
use types and soil management practices have greatly changed in
the area around Dongting Lake, which has led to great effects on
the ecological environment. SOM is very sensitive to changes
linked to anthropogenic activities, climate, land use, terrain, and
soil properties. Accurate information of the spatial variability and
the identification of potential controls of SOM are necessary for
better soil management and agricultural practices. However, to
our knowledge, among substantial research on the spatial pat-
terns and potential controls of SOM, few studies have been re-
ported to conduct extensive surveys at county scales and fewer
studies have involved factors such as rotation system, soil plough
depth, and cropping system. Moreover, no research has been
reported that analysed spatial variations and identified potential
controls of SOM in the Dongting Lake region.

To fill these gaps, 8040 topsoil samples (0~0.2 m) were
collected from Yueyang County in Eastern Dongting Lake in
the south of China in this study. Additionally, two widely used
and efficient methods, OK and RF, were used to estimate the
spatial variation of SOM and build a model to predict SOM
content with covariates as well as identify main controls of
SOM variation in the survey area. The main aims of the cur-
rent research were (1) to explore the spatial variability of SOM
content; (2) to build a model to quantitatively predict SOM
content with various sources of covariates and with the RF
method; and (3) to identify potential controls of SOM based
on the relative importance of variables. These results could
contribute to more efficient soil management and climate mit-
igation such as carbon sequestration.

2 Methods and materials

2.1 Study area

The survey region covers whole the Yueyang county (112°
55′ 27″ E–113°45′ 54″ E, 28° 32′ 16″N–29° 42′ 59″N) and is
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located in the east of Dongting Lake, which is the second
largest freshwater Lake in Central China. Yueyang county
has an area of 2809 km2 (Fig. 1). The climate is a typical
subtropical monsoon climate, with an annual average temper-
ature of 17 °C and an annual mean precipitation of 1331.5
mm. The main soil types are fluvo-aquic soil, red earth, paddy
soil, and purplish soil. The main land use types in the study
area are arable land, forest land, and industrial, mining, and
residential lands. Topographically, the landform of the county
slopes down in steps from the northeast part to the southeast
part. The proportions ofmountains, hills, plains, and water can
be roughly assigned as 12:11:24:13:40.

2.2 Sampling and chemical analysis

The survey was conducted between 2007 and 2014, with 8040
topsoil (0–20 cm) samples were collected (Fig. 1). The sampling
locations were recorded using a portable global positioning sys-
tem. Meanwhile, other information, including altitude, slope, as-
pect, land use, and vegetation types, soil texture, and soil plough
depth, were also recorded when employing soil sampling. Each
sample was composited by five sub-samples within a radius of 5
m and had a total weight of 3 kg. Then, the samples were first air-
dried in the laboratory and then passed through a 2-mm sieve for
the measurement of SOM by the potassium dichromate-wet
combustion procedure (Faurescu et al. 2010). The soil organic
content (SOC) of each soil sample was determined using the
potassium dichromate oxidation method (external heat applied),
after that multiplied it by the coefficient 1.724 to get the SOM
content. The soil pH was measured using the glass electrode
method (pHS-3C, REX, Shanghai, China). Available K were
extracted by ammonium lactate solution and detected by spec-
trophotometry and flame photometry.

2.3 Spatial interpolation

Ordinary kriging (OK) (Webster and Oliver 2007) was used to
estimate the spatial pattern of SOM in the survey region using
ArcGIS (Version 10.3, ESRI Inc., USA) with all the soil sam-
ples we collected. OK is one of the most widely used methods
for mapping soil properties in many different fields around the
worldwide (Simbahan et al. 2006; Chabala et al. 2017; Vasu
et al. 2017; Hu et al. 2019; Hu et al. 2020a; Xia et al. 2019; Xia
et al. 2020). Its core assumption is that the mean estimation
error equals zero and the optimisation target is minimizing the
variance of estimation error (Goovaerts 1997). Experimental
semi-variograms were calculated to indicate the spatial depen-
dence of soil SOM using the following equation (Webster and
Oliver 2007):

γ* hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ−Z xi þ hð Þ½ �2 ð1Þ

where γ∗(h) represents the semi-variance, N(h) indicates
the number of separated experimental point pairs at distance
lag h, Z(xi) indicates the SOM content at the observation site i
and Z(xi + h) expresses the SOM content at the observation
site i + h. Based on the experimental variogram function, we
can fit a suitable model using the weighted least squares and
set some prior values for model parameters such as range,
nugget, and sill prior during the process of fitting and interpo-
lation. Some studies have proven that the accuracy of OKwith
different semi-variance functions is similar (Xie et al. 2011;
Qiao et al. 2018). Therefore, the parameters of the best
optimised semi-variance function in this study were fitted by
GS+, recorded, and then mapped using the ArcGIS software
(Version 10.3, ESRI Inc., USA).

2.4 Random forest

The RF was proposed by Breiman (2001) as an extension of
CART (classification and regression trees) to improve the pre-
diction ability (Fu et al. 2020; Jia et al. 2020;Wang et al. 2020). It
is based on regression trees butmakes predictions based onmany
trees in an entire forest instead of a single tree. A large number of
trees could guarantee model stability (500 trees were used in this
study). The data are divided into a training subset, which is also
known as the “in-bag” data, and the remaining part, known as
“out-of-bag” data. The latter are used to estimate prediction errors
(Breiman 2001). The RF method could capture linear and non-
linear relationships between dependent variables and covariates.
In addition, it could provide a measure of variable importance,
calculated based on how much worse the prediction would be if
the data were randomly permuted (Prasad et al. 2006). In this
study, the dataset was divided as training dataset and independent
validation dataset according to the ratio of 2:1 whenwe predicted
the SOM content using the RF method. The model was trained
with the training dataset and then independently validated by the
validation dataset.

2.5 Data collection and analysis

Information related to 17 factors that would affect soil organic
matter content was collected. As shown in Table 1, these
factors included four categories, including (1) factors related
to soil properties: soil groups (SG), soil texture (ST), soil
plough depth (SD), pH, available phosphorus (AP), and avail-
able potassium (AK); (2) variables of climate: annual temper-
ature, annual precipitation, and NDVI; (3) factors related to
anthropogenic activities: land use (Landuse), rotation system
(RS), cropping system (CS), and population density (Pop);
and (4) factors related to terrain: elevation (Elev), slope, land-
form, and soil erosion degree (SE). The information related to
soil groups, soil texture, soil plough depth, rotation system,
cropping system, Elev, slope, landform, and soil erosion
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degree was recorded when performing soil sampling. The pH,
available phosphorus, and available potassium were measured
in the laboratory. The map of land use in 2015, annual tem-
perature in 2014, annual precipitation in 2014, population
density in 2014, and NDVI in 2015 was downloaded from
the Resource and Environmental Data Cloud Platform
(REDC) (http://www.resdc.cn/Default.aspx), with a
resolution of 1 km.

The summary statistic was employed in R studio (R
Development Core Team 2013). The experimental semi-
variogram for SOM was fitted using GS+ software (Version

7.0) (Robertson 1998). The random forest was applied in the
package “randomForest” in R studio (Liaw andWiener 2002).

3 Results and discussion

3.1 Exploratory data analysis

The summary statistics and histograms of physical-chemical
properties of the soil samples studied in the survey region are
listed in Table 2 and presented in Fig. 2. The distribution of

Fig. 1 Map of sampling locations
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SOM content in Yueyang County had an approximately nor-
mal distribution (Fig. 2), with a skewness value of 0.077 and a
kurtosis value of 0.84. The SOM content in the survey region
varied from 4.00 to 446.60 g kg−1 and had an average content
of 33.17 g kg−1 (Table 2), which is clearly higher than the
mean content of SOM (24.65 g kg−1) in farmland soil in
China (Yang et al. 2017); this indicates a high-fertility soil
condition in the survey region. The mean values for pH, AP,
and AK were 5.41, 22.91 g kg−1, and 112.20 g kg−1, respec-
tively. The coefficient of variation (CV, %) (Sokal and Rohlf
1981) was determined as an important indicator for reflecting
the overall variation of SOM. Three categories of variation
were classified as Wilding (1985): low (CV = 0–15%), mod-
erate (CV = 16–35%), and high (CV > 36%). The CV of the
SOM content in our study area was 31.81%, which indicates
moderate SOM variation. This revealed that SOM variation in
the study area was affected by both natural factors and anthro-
pogenic activities.

3.2 SOM spatial pattern

As presented in Fig. 2 and Table 2, the SOM content in the
study area showed an approximately normal distribution. An
exponential model of semi-variance of the SOM in the study
area was fitted using GS+ software (Fig. 3) through 1000
iterations. The values of parameters for the fitted exponential
model are presented in Table 3. The ratio of nugget variance

Table 1 Environmental variables
used in this study to model and
predict SOM (g kg−1)

Name Abbreviation Resolution Soil-forming
factora

Typeb Source

Available phosphorus AP Point Soil Q This
study

Available potassium AK Point Soil Q This
study

pH pH Point Soil Q This
study

Rotation system RS Point O C This
study

Soil group SG Point P C This
study

Population density Pop 1 km O Q REDCc

Cropping system CS 1 km O C REDCc

Soil texture ST Point Soil C This
study

Soil plough depth SD Point Soil Q This
study

Soil erosion degree SE Point O C This
study

Land use Landuse 1 km O C REDCc

Normalised difference vegetation
index

NDVI 1 km Cl Q REDCc

Temperature Temperature 1 km Cl Q REDCc

Precipitation Precipitation 1 km Cl Q REDCc

Elevation Elev Point R Q This
study

Landform Landform Point R C This
study

Slope Slope point R Q This
study

aR, terrain attributes; P, parent materials; O, organisms including humans activities; Cl, climate
bQ, quantitative; C, categorical
cREDC, Resource and Environmental Data Cloud Platform (http://www.resdc.cn/Default.aspx)

Table 2 Physico-chemical properties of studied soils

Variable Min Max Mean SD

SOM (g kg−1) 4.00 446.60 33.17 10.55

pH 3.50 7.60 5.41 0.43

AP (mg kg−1) 0.10 623.60 22.91 24.38

AK (mg kg−1) 8.00 485.00 112.20 46.71
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(C0) to the whole variance (sill, C0+C) was calculated to as-
sess the degree of spatial correlation. A lower value for the
ratio indicates a stronger spatial correlation. As suggested by
Cambardella et al. (1994), the value of C0/(C0+C) could be
classified as three degrees: strong spatial dependence (< 25%),
moderate spatial dependence (25–75%), and weak spatial de-
pendence (> 75%). Accordingly, the C0/Sill ratio of SOM in
the survey region is 9.94%, which means a strong spatial
dependence of SOM in the study area.

Themap for the SOM content in the study area is presented in
Fig. 4. As confirmed by the low value of C0/(C0+C), SOM
presents strong spatial dependence in the study area, and the
areas with high SOM contents and low SOM contents were
mixed and discretely distributed. Generally, high SOM values
were majorly located in the northeast and southwest parts of the
survey regions, whereas low SOM values were primarily distrib-
uted in the western and southeastern parts of the survey region.
The northeast and southwest parts of the research regions are
very flat. Much of the farmland in this region is the reclamation
area of Dongting Lake. Therefore, land in these regions has a
relatively high fertility grade. The terrain in the western and
southeastern parts of the area under survey is dominated by
mountains and hills and has relatively poor soil fertility.

To evaluate the prediction accuracy of OK, we presented the
prediction standard error map of OK (Fig. 5). The standard error
of the OK method ranged between 5.83 and 10.47 g kg−1 in the
study area. The largest standard error was detected in the bound-
ary of the study area which was attributed to the edge effects of
the interpolation methods. In the area near the edges of the study
area, less measured samples are available for estimation variables
at unvisited locations which then could increase the prediction
error (Goovaerts 1997; Webster and Oliver 2007).

3.3 Modelling SOM with RF

In this study, a model was constructed to predict SOM content
using RF based on 17 covariates, including SG, ST, SD, pH,

AP, AK, Temperature, Precipitation, NDVI, Landuse, RS,
CS, Pop, Elev, Slope, Landform, and SE. As presented in
Fig. 6, the developed model showed a good ability to estimate
SOM concentration in the survey region, with an R2 of 0.74,
an RMSE of 0.16 g kg−1, and a bias of 0.002 g kg−1. However,
limited by the inherent shortcomings of many machine learn-
ing methods and even classical statistical methods, we could
find that small parts of extremely low values prone to be
overestimated, while part of extremely high values prone to
be underestimated in our prediction results. In practice, the
overestimation of SOM may lead farmers to be overconfident
in the fertility of their farmland, and the underestimation of
SOM may lead farmers to take additional but unnecessary
measures such as the application of fertilisers to improve soil
fertility. Both of these situations could bring economic losses
or even negative effects on the environment. Therefore, in
further work, we can consider introducing a penalty function
in the RF algorithm to reduce the negative impact of low-
value overestimation and high-value underestimation on the
prediction result (Costa 2003).

3.4 Potential controls of SOM

As described above, one of the important advantages of the
RF algorithm is that it could quantitatively define the relative
importance of predictors using the increased mean standard
error (%IncMSE). In this study, four kinds of covariates (soil
properties, terrain factors and Elev, climate factors, anthropo-
genic factors) were used to construct our models for predicting
SOM. The relative importance of these predictors we used in
this study is presented in Fig. 5.

3.4.1 Soil properties

As shown in Fig. 7, factors relating to soil properties, such as
soil group, available phosphorus, available potassium, soil
texture, and soil plough depth, were determined as priority

Fig. 2 Histogram of the values of
SOM in Yueyang County (the red
dashed line represents the mean
value of SOM)
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controls for SOM in the area under study. Some studies have
confirmed that soil nutrients, such as P and K, are closely
related to SOM content (Tao et al. 2012; Wang et al. 2013;
Debicka et al. 2016; Hu et al. 2020b). Tao et al. (2012) report-
ed that when the content of soil total phosphorus was main-
tained at a low level, soil samples with higher SOM tend to
have lower AP contents.

Soil groups have been proven by many previous studies to
be an important driver of SOM variation (Hu et al. 2018; Fan
et al. 2020). Our study also confirmed the finding reported by
many previous researchers that paddy soils have relatively
higher SOM content than most other soil groups (Hu et al.
2018; Fan et al. 2020) (Fig. 8). This may be attributed to
several reasons: firstly, compared with other lands, a larger
amount of straw and stubble may be returned to paddy soil,
which functions as an important input of SOM (Jiang et al.,
2018). This practice is widely encouraged and very popular in
the south of China, including regions around Dongting Lake.
In addition, frequent flooding of paddy fields gives rise to
anoxic status in the paddy soils, which reduces the decompo-
sition speed of SOM, and then leads to SOM accretion (Fan
et al. 2020). Finally, the repeated redox alternations during the
paddy rice planting process could enhance the emergence of
amorphous material. For example, Fe oxyhydroxide has high
reactivity for SOM adsorption and could strengthen the se-
questration of SOM via a large specific surface area (Huang
et al. 2018).

The effect of soil texture on the spatial distribution of SOM
was confirmed by numerous studies such as Don et al. (2009),
Mirzaee et al. (2016), and Schillaci et al. (2017). Generally,

the SOM content is positively correlated with silt and clay
content but negatively correlated with sand content (Wang
et al. 2014). Alcántara et al. (2016) found deep ploughing in
soil could increase agricultural SOM stocks by expanding the
storage space for SOC-rich material. Fan et al. (2020) also
reported that SOM decomposition was notably influenced
by changes in SOM constituent related to soil depth.

3.4.2 Climate factors

As presented in Fig. 7, climate factors (annual precipitation,
annual temperature, and NDVI) were identified as secondary
important controls for SOM variability. Many studies have
found that decomposition of all SOM is sensitive to tempera-
ture (Jenkinson and Rayner 1977; Schimel et al. 1994;
Kirschbaum 1995; Davidson and Janssens 2006). One of the
popular current opinions is that the decomposition of SOM is
positively correlated with temperature (Hartley and Ineson
2008; Nianpeng et al. 2013). The index of temperature sensi-
tivity (Q10) has been widely used to represent the reaction of
SOM decomposition to temperature variation (Davidson and
Janssens 2006; Conant et al. 2011).

Precipitation is one of the other chief elements that controls
the net primary production of terrestrial vegetation, which
then affects the input of SOM to the soil. Wang et al. (2014)
revealed a positive relation between the SOM and precipita-
tion in grasslands in Northwest China. Many other researchers
also reported a significant positive relation between SOM and
precipitation in the forest ecosystem (Baritz et al. 2010;
Wiesmeier et al. 2011). NDVI has been used to represent the

Table 3 Parameters of the
semivariogram model Variable Model Lag value

(m)
Nugget
(C0)

Sill
(C0+C)

C0/(C0+C)
[%]

Range
(m)

RSS R2

SOM Exponential 2454 11.5 115.7 9.94 550 56.3 0.38

RSS, residual sum of squares

Fig. 3 Semi-variogram of SOM
in Yueyang County
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vegetation portion cover and the existence of vegetation in the
survey region (Rouse et al. 1974). The biomass produced by
vegetation is a critical input for SOM accumulation in soil.

However, in this study, the correlations between SOM and
precipitation (R2 = 0.002), temperature (R2 = 0.003), as well as
NDVI (R2 = 0.001), were not significant. Two factors may
contribute to this. The main reason is that the study area only
covers an area of 2716 km2. The change of latitude and lon-
gitude in the study area is very little; therefore, little differ-
ences exist among precipitation and temperature in different
locations in the study area. Many soil samples had similar or
even almost the same annual precipitation and temperature.

Climate factors are expected to play a more important role in
the control of SOM variability at large spatial scales (Sun et al.
2020). In addition, temperature has relatively lower impor-
tance than precipitation. This may stem from the low-
temperature sensitivity of SOM decomposition in the study
area. The average annual temperature of the study area was
larger than 17 °C, which indicates that the temperature sensi-
tivity was much lower than that within a low-temperature
range (< 10 °C) (Kirschbaum 1995).

The resolution of the image for NDVI is 1 km in this study,
which is relatively coarse. Considering the extensive density
of soil sampling in this study, many soil samples also had

Fig. 4 Spatial distribution map of
SOM in the study area produced
by ordinary kriging

Fig. 5 Prediction standard error
map of SOM of ordinary kriging
interpolation results
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similar or even the same values for NDVI, which may also
weaken the relationship between SOM and NDVI values in
the study area.

3.4.3 Anthropogenic factors

Our results revealed that anthropogenic factors, such as rota-
tion system, cropping system, population density, and land
use, were also determined to be important variables for con-
trolling SOM variation in the area under study (Fig. 7). In this
study area, soils with a double cropping system had the
highest content of SOM (Fig. 9a). Additionally, land that
had a rotation system of wheat, fruit, wheat-corn, rice, and

rice-rice had the highest SOM compared with land with other
kinds of rotation systems (Fig. 9b). Different soil management
policies were employed on land with different rotation and
cropping systems, which then led to variations of SOM con-
tent. For example, land that incorporated cropping rotations
with high-residue-producing crops and maintenance of sur-
face residue cover with reduced tillage led to more input of
SOM in soils (Havlin et al. 1990; Lesoing and Doran 2019).
Additionally, usually low SOM concentration could be sup-
posed in land with cropping rotations with a high portion of
root crops that need rigorous tillage such as potatoes (Götze
et al. 2016). Moreover, long-term application of fertiliser was
also reported to lead to increases in SOM in soils (He et al.
2018). Large amounts of chemical and organic fertilisers are
applied into the arable soil, which increases SOM content in
arable soils (Yang et al. 2017).

Regarding land use, our results indicate that arable land,
forest, grassland, and resident land had similar and higher
SOM contents than other land uses and that unused land had
the lowest SOM content (Fig. 9c). Different land use types
have different effects on soil fertility and productivity.
Changes in land use and landmanagement have a great impact

Measured SOM (g kg-1)

Predicted
SO

M
 (g kg

-1)

Fig. 6 Relationships between the observed and predicted values of SOM
using Random Forest method

Fig. 7 Relative variable importance for modelling SOM in soils in the
study area (RS: rotation system, AK: available potassium, Elev:
elevation, SG: soil group, AP: available phosphorus, Pop: population
density, CS: cropping system, ST: soil texture, SD: soil plough depth;
and SE: soil erosion degree, NDVI: normalised difference vegetation

index. The brown colour represents factors related to soil properties, the
blue colour represents factors related to climate, the red colour represents
factors related to anthropogenic activities, and the green colour represents
factors related to the terrain)

Fig. 8 SOM content in different soil groups (g kg−1)
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on the balance of SOM in soil (Guggenberger et al. 1994). Liu
et al. (2015) found that SOM concentration in forest was
clearly higher than in grassland. No significant linear relation-
ship was detected between SOM content and population den-
sity in the study area, which may stem from the same reasons
we described above for annual precipitation and temperature.

In addition, when we focus on the effects of cropping sys-
tem on the SOM in the same soil group, different order of
SOM content could be detected in different soil groups (Fig.
10). In fluvo-aquic soils, SOM content in areas with a double
cropping system was higher than that in areas with a single
cropping system. In paddy soil, areas with single and double
cropping systems have higher content of SOM than other
regions. In purplish soils, areas with a single cropping system
have slightly higher content of SOM than other areas except
quadra-cropping system since the sample size is too small (N
= 2) in purplish soils. In red earths, SOM content in areas with
a single cropping system and other cropping systems have
higher content than areas with a double cropping system.

Our results revealed that high-intensity tillage activities would
reduce the SOM content in the soil, which will adversely
affect the soil quality. This statement was also confirmed by
many other researchers (Bayer et al. 2002; Pittelkow et al.
2015; Shakoor et al. 2020).

3.4.4 Terrain factors and the elevation

Slope and Elev were also found as important factors for reg-
ulating SOM content (Fig. 7). Terrain attributes are typically
assumed to affect the spatial distribution of SOM by
redistributing the environmental variables and soil materials
and further regulating particular conditions for vegetation
growth, nutrient migration, and carbon cycling (Sun et al.
2010). Terrain attributes are also the principal factors that
govern the process of soil formation (McBratney et al. 2003;
Zhou et al. 2016; Yan et al. 2020), and therefore, terrain fac-
tors have been widely used for predicting soil properties
(Zhou et al. 2016; Yang et al. 2014; Caubet et al. 2019;
Chen et al. 2019; Peng et al. 2019; Hu et al. 2020c). Many
studies have confirmed terrain attributes as controlling factors
of SOM (Schillaci et al. 2017; Zhu et al. 2018; Yu et al. 2020).
The influence of altitude was complicated and was likely
indirect. Liu et al. (2011) reported that wetter and warmer
conditions could improve biomass productivity in areas with
relatively lower elevation, which then lead to more SOM in-
put. Generally, lower temperatures are expected in places with
high altitudes, which then slow the rate of SOM decomposi-
tion and result in relatively high SOM contents (Leifeld et al.
2005). Many researchers have reported that SOM content in-
creased linearly with the increase in altitude (Raich et al. 2006;
Girardin et al. 2010; Dieleman et al. 2013). Other factors, such
as slope, landform, and soil erosion degree, are related to the
erosion and deposition of soil. Strong soil erosion tends to
occur on areas with steep slopes and higher precipitation,
which then accelerates the loss of more soil fertilisers, includ-
ing SOM, and usually leads to a higher concentration of SOM
in the downward slope site or valley (Nan et al. 2012). The
study conducted by Zhong and Xu (2009) revealed a negative
relationship between the slope and the SOM content.

3.5 Limitations and implication

As with other studies, there are several limitations in our
study. Firstly, bacterial and fungal diversity plays a critical
role in controlling SOM decomposition in soil (Yuste et al.
2011). This factor was not taken into account in our prediction
model. Therefore, including information on bacteria and fungi
may improve the model performance in further work.
Secondly, we used the map downloaded from the REDC
Platform, which has a resolution of 1 km. However, according
to Barthold et al. (2008), an elevation map with a resolution of
90 m is probably too coarse to capture some key topographic

Fig. 9 SOM content in different cropping systems (CS) (a), rotation
systems (RS) (b), and land uses (c)
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processes, and an elevation map at a 30-m resolution was
already too coarse to capture the spatial variation of soil prop-
erties such as soil potassium. Therefore, the data we used in
our study may be too coarse to enhance the prediction of SOM
in soil. In future studies, maps of land use, population density,
precipitation, and temperature with finer resolution should be
used to build the model, and a higher model accuracy and
higher importance for these variables can be expected.
Thirdly, 17 factors were used in this study to construct a mod-
el to estimate SOM content, and some of the factors were
closely related to each other. Therefore, multi-collinearity
should be removed in further work, especially when many
covariates are included in the model, which may improve
model performance. Finally, part of information such as land-
forms was recorded in the field based on expert knowledge.
This may lead to deviation from practical situations and have
negative effects on the results.

4 Conclusions

In the current study, we employed OK to estimate the spatial
variability of SOM in Yueyang County in Eastern Dongting
Lake Plain in southern China. Then, we used RF to build a
model to predict SOM content and to identify potential con-
trols for SOM variation. The mean content of SOM was
33.17 g kg−1, which was clearly higher than the mean SOM
content in farmland soils in China (Yang et al. 2017), and
indicates high-fertility soil status in the survey region. High
values of SOM were mostly discovered in the northeast and
southwest part of the study regions, whereas low values of

SOM were largely situated in the western and southeastern
parts.

Our developed RF model showed a good performance to
estimate SOM content by making use of other covariates.
Available phosphorus, precipitation, soil group, rotation sys-
tem, available potassium, altitude, and slope played an impor-
tant role in predicting SOM content. It indicates that these
variables have greater effects on accumulation of SOM.
Results obtained from this study could provide new insights
into the prediction of SOM and could contribute to the sus-
tainable development of agriculture and better regulation of
soil quality in the study area.
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