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Abstract
Purpose Microplastics are considered emerging pollutants and already currently present in measurable quantities in aquatic
ecosystems. However, information on the current status of microplastic pollution in the upper Yangtze River, the most important
water body in China, is insufficient. In the present study, the abundance and distribution of microplastics in the surface water and
sediments were investigated to obtain the characteristics of microplastic pollution in Yangtze River along Chongqing City.
Materials and methods Ten sampling sites along Yangtze River in the Chongqing urban area were selected to collect surface
water and sediment samples. Abundance and morphological characteristics of microplastics were determined by counting using a
digital stereo microscope. Micro-Fourier transform-infrared spectroscopy (μ-FTIR) analysis was used to identify polymer type of
the microplastics.
Results and discussion The abundance of microplastics rangedwithin 46.7–204 n L−1 and 100–583 n kg−1 dw (dry weight) in the
surface water and sediment samples, respectively. Fibers and films were dominant inmost of samples, and the average proportion
of fibers reached 74.3% in surface water. Whether in surface water or sediments, most of the microplastics were less than 0.7 mm
in size, and the average proportion of microplastics with a size of less than 0.3 mm reached 62.6% in the sediment samples.
Moreover, fibrous and small were the primary characteristics of the microplastics. Polypropylene, polyvinyl chloride, high-
density polyethylene, polyester, and wool fibers were identified in the surface water samples.
Conclusion The Yangtze River along Chongqing City is contaminated by microplastic, like many urban rivers. Anthropogenic
activities, including sewage treatment effluents, might be the main sources of microplastic pollution in Yangtze River
(Chongqing urban section). This study reveals the contamination and characteristics of microplastics in the Yangtze River along
Chongqing and supplies important data for further research on microplastics in Yangtze River’s basin.
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1 Introduction

Plastic products have been mass-produced and widely used in
various fields since the early 1950s due to their low weight,
bioinertia, durability, and impressive cost–performance ratio

(Phuong et al. 2016). The annual yield of global plastic pro-
duction has increased to 359 million tons in 2018, 30% of
which was produced in China (PlasticsEurope 2019). The
dramatic increase in plastic production has resulted in serious
plastic waste pollution in natural environments. For instance,
the amount of plastic waste deposited into oceans has
exceeded 250,000 tons in 2014 (Eriksen et al. 2014).
Although plastics have a stable chemical structure and prop-
erties, large plastics are degraded into small pieces when they
are subjected to waves, weathering, and ultraviolet rays
(Moore 2008; Andrady 2011). Plastics with a size below
5 mm are defined as microplastics (Thompson et al. 2004).
Microplastics are classified into primary and secondary cate-
gories depending on their manner of formation. The original
size of primary microplastics is less than 5 mm, and the main
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sources are daily beauty and health products, such as scrub
particles in toothpaste, facial cleanser, and cosmetics.
Secondary microplastics are derived from the breakdown of
larger plastic debris through natural weathering processes, and
sources of secondary microplastics include beverage bottles,
fishing nets, and plastic bags (Cole et al. 2011).

Primary and secondary microplastics have been detected in
oceans (Cole et al. 2011; Eriksen et al. 2014; Yonkos et al.
2014; Faure et al. 2015), including the water surface and
sediments. Cózar et al. (2014) investigated the global distri-
bution of plastics at the surface of the open sea and found that
the frequency of occurrence of plastic debris on the water
surface is 88%. Faure et al. (2015) discovered that the average
abundance of microplastics is 5700 items km−2 in theWestern
Mediterranean and confirmed that most of the microplastics
are secondary microplastics. Microplastics have also entered
the food chain in the oceans and have been detected in many
marine organisms (Cole et al. 2011; Ferreira et al. 2018). In
addition, the distribution patterns of microplastics have been
monitored using ocean surface circulation models (Lebreton
et al. 2012; Maximenko et al. 2012). Increasing amounts of
microplastics have also been identified in other environmental
systems, especially in lakes and rivers, throughout the world
(Li et al. 2018; Boots et al. 2019; Ding et al. 2019; Kumar
et al. 2020; Zhang et al. 2020). In the past few years,
microplastics have been detected in surface waters, sediments,
and aquatic organisms (Eriksen et al. 2013; Zhang et al. 2015;
Lin et al. 2018; Ding et al. 2019). For example, microplastics
of varying concentrations have been found in Laurentian
Great Lakes (Driedger et al. 2015), UK urban lake (Vaughan
et al. 2017), Yangtze River (Zhang et al. 2015; Li et al. 2020),
Pearl River (Lin et al. 2018), Dongting Lake (Wang et al.
2018), Qinghai Lake (Xiong et al. 2018), and several lakes
in the Tibet Plateau (Jiang et al. 2019).

Microplastics exist in the environment in different forms,
such as fibers, fragments, spheres, beads, and films, due to
their various sources (Ding et al. 2019). Most microbeads
are from daily beauty and health products which contain
microplastic abrasives (Fendall and Sewell 2009), whereas
fibers are commonly derived from laundry and fishing gear
(Browne et al. 2011). In general, microplastic sources include
industrial resin microbeads from manufacturing plants and
fragmentation of large plastic through photolysis, abrasion,
and microbial decomposition (Cole et al. 2011). Thus, domes-
tic wastewater plays an important role in the continued in-
crease of microplastics. Several researchers have suggested
that local occurrence of microplastics is likely due to a nearby
urban effluent (Eriksen et al. 2013), and the abundance of
microplastics is related to population density.

Chongqing is a megacity in southwest China, and it is one
of the four municipalities under the direct administration of
the central government of the People’s Republic of China (the
other three are Beijing, Shanghai, and Tianjin). It is the most

populous Chinese municipality, with a population of 31.2
million in 2019. Chongqing is located in the Upper Yangtze
River, and Jialing River feeds into Yangtze River in the
Chongqing urban area. Data from extant literature indicated
that the extensive use and discarding of plastics in Chongqing
have considerably increased the microplastic burden of
Yangtze River (Di and Wang 2018). Di and Wang (2018)
investigated the distribution characteristics of microplastics
in the surface water and sediments of the part of Yangtze
River running from Chongqing to the Three Gorges Dam.
The abundance of microplastics in the surface water was
1597–12,611 n m−3, and the most abundant site was located
in Nan’an District of Chongqing close to a wastewater treat-
ment plant. Fibrous microplastics accounted for the largest
proportion, and microplastics with a particle size of less than
1 mm accounted for 79.8%. The components of microplastics
were polycarbonate (6.3%), polyethylene (21.0%), polypro-
pylene (PP, 29.4%), polystyrene (38.5%), polyvinyl chloride
(PVC, 4.2%), and vinyl chloride/vinyl acetate copolymer
(0.7%). Although several sampling sites in Chongqing urban
area have been investigated in previous research, the
microplastic pollution in the Yangtze River along
Chongqing, especially in urban sections, remains unclear.
Notably, pollutants in an upstream area migrate with the flow
of river water. In addition, smaller size microplastics (micro
size) were ignored in most research, although they are more
likely to bioaccumulate. Thus, the properties of microplastic
pollution in Yangtze River flowing along Chongqing City
should be investigated, and microplastics of smaller size were
analyzed.

The current study investigated the microplastic contamina-
tion in Yangtze River’s urban section along Chongqing.
Surface water and sediment samples were collected, and the
abundance, size, and shape of microplastics collected were
analyzed. The polymer types of microplastics were identified
through micro-Fourier transform-infrared (μ-FTIR) analysis.
The objectives were to gain insight into the pollution level of
microplastics in Yangtze River’s urban section along
Chongqing and determine the major factors that affect
microplastic pollution in urban rivers.

2 Materials and methods

2.1 Study areas and sampling sites

The Yangtze River is the longest river in Asia and the third
longest river in the world. It is also the longest river in the
world to flow entirely in one country. The total length of this
river is 6300 km. The main stream originates in the eastern
Tibetan Plateau and merges into the East China Sea in
Shanghai. Yangtze River Basin covers one-fifth of the main-
land’s land area and nurtures one-third of the mainland’s
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population, and the Yangtze River Economic Belt is China’s
largest economic belt. Chongqing, the largest economic center
city in the upstream of Yangtze River, is an important point
that connects the Belt and Road Initiative and the Yangtze
River Economic Belt. In this study, we selected 10 sampling
sites along Yangtze River in the Chongqing urban area
(Egongyan Bridge to Cuntan Yangtze River Bridge). Details
on the location and sampling sites are shown in Fig. 1.

2.2 Sample collection

Samples, including surface water and sediments, were col-
lected in April 2019. A stainless-steel bucket water

sampler (volume = 2.65 L; Φ = 15 cm, H = 15 cm) was
immersed to collect surface water (0–20 cm depth). In or-
der to exclude large pieces of debris, a large mesh (1.0 cm)
screen was placed at the open top (water inlet) of water
sampler. The collected water was transferred and stored
in a 2 L glass bottle, and each location was sampled three
times. In addition, sediment samples were obtained to de-
termine the presence of microplastics. From the same site
with surface water sample, approximately 1 kg of sedi-
ments (shore shallow water area) was collected using a
stainless-steel shovel, placed in an aluminum foil Ziplock
bag, and preserved at 4 °C until analysis. Three replicates
were obtained from each site.

Fig. 1 Sampling sites in the Yangtze River along Chongqing City
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2.3 Microplastic extraction from water and sediments

Each water sample was filtered through a 0.45 μm filtration
membrane, and the substances on the filter membrane were
pretreatedwith 30%H2O2 in covered glass bottles to eliminate
the natural organic material in the samples. After 24 h of
shaking in a constant-temperature oscillator at 50 °C in the
dark, the samples were made to pass through a 0.45 μm glass
microfiber filter membrane (GF/F, 47 mm Ø, Whatman) by
using a vacuum pump. Then, the material on the filter mem-
brane was washed into a separatory funnel with a saturated
sodium chloride solution and shaken. The suspension liquid
(when the suspension liquid is turbid, it needs to be centri-
fuged) was collected after 10 min of standing and passed
through the same 0.45μm glass microfiber by using a vacuum
pump. The filter membrane was stored in a glass Petri dish and
subsequently dried at 50 °C for 12 h (Wang et al. 2018).

The microplastics were separated from the sediment sam-
ples by using modified methods reported in previous literature
(Nuelle et al. 2014). First, air-dried sediments were screened
with a 0.833 mm stainless-steel sieve after chunks of impuri-
ties (stone, large plastic, etc.) were culled. Second, a saturated
salt solution was added to 50 g of the sediment samples, and
the suspension was made to stand for 24 h. Third, the suspen-
sionwas stirred for 2min, and the floating liquid was collected
afterward. The same procedure was performed on the water
samples.

2.4 Observation and identification of microplastics

The materials on the filter were observed under a stereo mi-
croscope (Optika, Italy) with a digital camera system. The
suspected microplastics were photographed and analyzed in
accordance with previous studies (Hidalgo-Ruz et al. 2012).
The amount and properties (size, type, and shape) of
microplastics were recorded. The units of microplastic abun-
dance in the water and sediment samples were n L−1 and n
kg−1 dw (dry weight), respectively. In addition, the chemical
components of individual microplastics in the surface water
from S6 were determined through micro-FTIR microscopy
(Shimadzu, Japan) with a liquid nitrogen-cooled mercury cad-
mium telluride (MCT) detector in attenuated total reflection
mode. The spectrum range was set to 4000−700 cm−1 with 16
coscans for eachmeasurement, and the spectral resolution was
4 cm−1 for all samples.

2.5 Quality assurance and quality control

In order to avoid external microplastic pollution in the whole
experimental process, experimenters wore cotton test suit and
the nitrile gloves, and clothes were cleaned with a lint roller to
remove any loose fibers. The collected water samples were
placed into glass containers, which were rinsed three times

with ultrapure water and then baked at 120°C for 4 h.
Meanwhile, all sampling tools, including water sampler,
stainless-steel shovel, and aluminum foil Ziplock bags, were
rinsed with ultrapure water in advance, and water sampler and
stainless-steel shovel were washed with ultrapure water after
sampling at each location. Three replicates were obtained
from each sampling site. In addition, to examine potential
contamination from the air during laboratory analysis, proce-
dural blanks were also conducted in triplicate. The effect of
0.45-μm filter papers was investigated, and no microplastic
was observed after filtering the air in the workplace for 2 h
using a vacuum pump. The treatment of samples was conduct-
ed in a clean laminar flow cabinet. The workstation surround-
ing of the dissecting microscope was carefully cleaned before
visual inspection.

2.6 Data analysis and statistical analysis

Statistical analysis was carried out using one-way analysis of
variance (ANOVA) with an LSD post hoc test and Waller
Duncan test (SPSS 19.0) to verify the significant difference
between microplastics abundance at different sampling sites
(p<0.05). The OriginPro 9.1 and arcgis 10.2 software are used
for figure and the space mapping drawn.

3 Results and discussion

3.1 Abundance of microplastics

The amounts of microplastics in the surface water and sedi-
ment samples were analyzed and are shown in Fig. 2.
Microplastics were detected in all the samples, and the amount
of microplastics ranged within 46.7–204 n L−1 and 100–583 n
kg−1 dw for surface water and sediments, respectively. The
abundance of microplastics in the samples indicated high spa-
tial heterogeneity. Among the surface water samples, there
was a significant difference between microplastics of the dif-
ferent sites groups (ANOVA F = 42.947, d.f. = 9 and 20, p =
0.000). The highest abundance (204 n L−1) of microplastics
was found in sample site S1, which was located near sewage
discharge vents, possibly because of the lack of restrictions on
microplastics in the sewage discharge standard. The lowest
microplastic abundance (46.7 n L−1) was found in sample
S6, which was collected from the site where Jialing River
joins Yangtze River. However, the average microplastic abun-
dance of surface water reached 105 n L−1; notably, high levels
of microplastics in urban surface water have previously been
detected in other areas (Lin et al. 2018; Yan et al. 2019).
Among the sediment samples, there was a significant differ-
ence between microplastics of the different sites groups
(ANOVA F = 23.172, d.f. = 9 and 20, p = 0.000), and the
highest abundance (583 n kg−1 dw) of microplastics was
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found in sample site S4, which is located near Nanbin Park.
The lowest microplastic abundance (100 n kg−1 dw) was
found in sample S10 collected from a site far from downtown.
Meanwhile, the average microplastic abundance of the surface
sediments reached 232 n kg−1 dw. Many natural factors, such
as source loading, plastic properties, and meteorological and
hydrodynamic conditions, can influence the distribution of
microplastics. Anthropogenic factors, such as solid waste (in-
cluding plastic and textile) discarded against regulations and
other pollutants discharged into rivers, should not be ignored
(Cole et al. 2011; Horton et al. 2017; Wang et al. 2018; Ding
et al. 2019).

For instance, municipal sewage discharge and plastic solid
waste illegally disposed may increase the amount of
microplastics in surface water and sediments. Images of the

sampling sites in the studied area are shown in Fig. 1. Many
large pieces of plastic were observed, and these included daily
life waste (woven bags, plastic bags, plastic toys, and other
plastic products) and fishing gear abandoned in the river.
These macroplastics would be broken down into microplastics
and may be potential sources of microplastic in surface water
and sediments. This situation is the reason for the relatively
high abundance of microplastics in urban water bodies (water
and sediments). The abundance of microplastics in the surface
water of Yangtze River is higher than that reported in previous
studies. Di and Wang (2018) studied the distribution charac-
teristics of microplastics in the surface water and sediments of
Yangtze River from Chongqing to the Three Gorges Dam.
They found that the abundance of microplastics in surface
water ranged within 1.6–12.6 n L−3, and the sampling points
where the abundance of microplastics is above 5 n m−3 were
located in urban areas with high population density. The sam-
ple collected from Nan’an District of Chongqing had the
highest microplastic abundance, and this sampling site is close
to Jiguanshi and Tangjiatuo Wastewater Treatment Plants.

Meanwhile, the abundance of microplastics in the surface
water was higher than that of surface water microplastics
found in other fresh water (Table 1), and the major reasons
are speculated as follows. First, the sample sites are located in
urban areas of Chongqing, and previous studies have shown
that the abundance of microplastics is positively correlated
with the degree of urbanization and population density
(Yonkos et al. 2014). The urban area of Chongqing has
reached a high degree of urbanization and population density.
Furthermore, the sample sites in this study are located in
places involving frequent human activities or near sewage
outlets, so that microplastic pollution is relatively obvious.
Second, the use of different separation methods produces dif-
ferent results. In other related research, a trawl (aperture of
hundreds of microns or more) or a 12 V Teflon pump plus
stainless-steel sieve (pore size: tens of microns or higher) was
used (Zhang et al. 2015; Di et al. 2019; Yan et al. 2019).
Microplastics that are smaller than these particle sizes were
consequently not considered. However, a previous study has
shown that microplastics with a small particle size cannot be
ignored (Cai et al. 2018). In our work, a 0.45 μm filter mem-
brane was used for suction filtration. Thus, microplastics larg-
er than 0.45 μm were separated, and high abundance was
obtained.

3.2 Shapes of microplastics

Typical images of collected microplastics were obtained with
a stereo microscope and are shown in Fig. 3. The
microplastics detected in this study were classified as fiber,
fragment, microbead, film, and foam in accordance with pre-
vious studies (Hidalgo-Ruz et al. 2012; Di and Wang 2018).
As shown in Fig. 4a and b, fibers were numerically dominant

Fig. 2 The abundance distribution of microplastics in surface water and
sediments of the Yangtze River along Chongqing City (data are presented
as mean ± SD (n=3). Letters a–e indicate significant differences between
samples according to one-way analysis of variance (ANOVA) andWaller
Duncan test, p < 0.05. Results of LSD multiple comparisons were shown
in table S1and table S2)
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in most of the water samples. The percentage ranged from
46.4 to 86.8%, with an average proportion at 74.3%. This
result might be attributed to the peeling of plastic fishing gear
(Cole et al. 2011). Fishing activities can also increase the fiber
presence in surface water (Di and Wang 2018). Meanwhile,
domestic sewage, which contains fibers from washed clothes,
could be the most important source of fibers (Browne et al.
2011). The proportion of films in this study ranged from 13.1
to 32.1%, and the average was 16.1%. Fibers accounted for
the highest proportion (86.8%) in S3, and films showed the
highest abundance (32.1%) in S6. In all microplastics collect-
ed from surface water, foams accounted for the least amount
and were only detected in two surface water samples (S6 and
S8); the average proportion was 0.48%. Generally, the order
of the proportion of different types of microplastics from high
to low was as follows: fiber > film > fragment > pellet > foam;
fiber microplastics were the most important component. These
results are consistent with the distribution of microplastics in
the Pearl River (Lin et al. 2018) and Wuhan urban rivers
(Wang et al. 2017).

Similar to what was observed in the surface water samples,
the types of microplastics in the sediment samples were the
same, and five shapes of microplastics were detected.
However, the proportion of each type changed. The shape

distribution is shown in Fig. 4c and d. Although the proportion
of foam (1.4%) in the sediments was similar to that in surface
water and was the least abundant, the percentage of fibers in
the sediments ranged only from 15.9 to 46.7%, and the aver-
age proportion decreased to 29.2% compared with the 74.3%
for surface water. Additionally, the proportion of film ranged
from 27.4 to 52.2%, and the average proportion increased to
38.6% compared with the 16.1% for surface water. The pro-
portion of microbeads ranged from 5.0 to 21.5%, and the
average proportion of microbeads and fragments increased
to 15.0% and 15.8% compared with the 2.5% and 6.5% for
surface water, respectively. Furthermore, among the sediment
samples, films accounted for the highest proportion (52.1%)
in S6, and fibers showed the highest abundance (46.7%) in
S10.

In conclusion, whether in the surface water or sediments,
the sum of fibers and films accounted for over 50% of the total
microplastics in each sample. This result might be due to the
fiber microplastics in surface water having a wide range of
sources, including domestic sewage (laundry wastewater),
broken fishing nets, and waterborne degraded tourist waste
(Henry et al. 2019). Moreover, the proportion of fibers in
surface water was higher than that in sediments because fibers
with a line shape are difficult to sink and deposit on the river

Fig. 3 Photographs of microplastics items identified by using microscope: foam (a), fragment (b and e), fiber (d), film (c), and microbead (f)
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bed and prefer to be suspended in surface water (Zhao et al.
2015; Schwarz et al. 2019). Microplastics with a film shape
mainly originate from the weathering and cracking of plastic
products (packaging bags, agricultural film waste, and plastic
wrap) and enter the natural environment under the action of
external forces. However, films have a large specific surface
area and provide sorption sites for fine sand and other mate-
rials, which increase their density; hence, they are co-
deposited into the river bed eventually. Beads were found in
most of the water samples and in all the sediment samples in
this study. Although the number of beads was relatively small,
the environmental impact of beads should not be ignored be-
cause of the strong migration capability of these pollutants
(Schwarz et al. 2019). Meanwhile, the proportion of beads in
the sediments was higher than that in surface water because
manufactured plastic products, such as industrial microbeads
and nurdles, entered the water environment several years ago

and sank into sediments. Cosmetic and cleaning products with
plastic beads were listed as high-pollution, high-risk products
by the Ministry of Ecology and Environment of the People’s
Republic of China in 2017, and the production of personal
care products and cosmetics containing plastic microbeads
was banned by other countries. Thus, only a few of
microbeads were found in the surface water and sediments,
and the proportion of beads in the sediments was higher than
that in surface water.

3.3 Size of microplastics

The size distribution of microplastics in the study samples is
presented in Fig. 5. Microplastics were divided into three size
categories, namely, group A (<0.3 mm), group B (0.3–0.7
mm), and group C (>0.7 mm). As indicated in Fig. 5a and b,
the size distribution of microplastics in each sample differed.

Fig. 4 The shape distribution of microplastics in surface water (a and b) and sediments (c and d) of the Yangtze River along Chongqing City (data are
presented as mean (n=3), and results of one-way analysis of variance (ANOVA) were shown in table S3)
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The microplastics in group A were the most abundant in the
majority of the water samples and accounted for 36.5–77.1%
of the total amount of microplastics; the average proportion
was 48.3%. Group A was followed by group B, which
accounted for 19.8–44.2% of the total amount of
microplastics. The microplastics in group C accounted for
the smallest proportion and were not detected in sample S4.
Generally, the size of the microplastics in the study samples
was relatively small, and the proportion of microplastics in the
classifications decreased as the size increased. This result is
consistent with the conclusions obtained by many previous
studies (Eriksen et al. 2013; Su et al. 2016; Wang et al.
2017; Di and Wang 2018; Yan et al. 2019). In addition, the
average proportions of microplastics less than 0.3 and 0.7 mm
were 48.3% and 86.6%, respectively, in all of the water sam-
ples. Previous studies have found that microplastics less than
0.333 mm account for about 50% of the total microplastics in

the surface water of Tai Lake (Su et al. 2016). Yan et al.
investigated the distribution of microplastics in Pearl River
along Guangzhou City and discovered that microplastics with
a size of less than 0.5 mm account for more than 80% of the
total (Yan et al. 2019). The large proportion of small plastic
particles is probably due to the fact that large plastic debris can
break down into small pieces of microplastics. Di and Wang
(2018) discovered that microplastics with a size of less than
1 mm account for 79.8% of the microplastics in the Three
Gorges Reservoir. In many survey areas, small-sized
microplastics often have high abundance because large ones
can be split into small particles (Browne et al. 2010; Zhang
et al. 2015).

Similarly, the microplastics in group A (<0.3 mm) were the
most abundant in the sediment samples and accounted for
33.3–100%, and the average proportion was 62.6%, which
is shown in Fig. 5c and d. The microplastics in group B

Fig. 5 The size distribution of microplastics in surface water (a and b) and sediments (c and d) of the Yangtze River along Chongqing City (data are
presented as mean (n=3), and results of one-way analysis of variance (ANOVA) were shown in table S4)
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(0.3–0.7 mm) and group C accounted for 0–52.2% and 0–
28.7%, respectively. The average proportions were 27.6%
and 9.8% for groups B and C, respectively. In general,
microplastics of a small size accounted for a large proportion,
and these trends are in line with the size distribution of
microplastics in other study areas. Previous studies have
found that microplastics with a size of less than 0.333 mm
account for about 60% of the sediments in Tai Lake (Su
et al. 2016). Ding et al. (2019) investigated the abundance
and distribution of sediments in Wei River and discovered
that microplastics with a size of less than 0.5 mm are the most
abundant and that the proportion of microplastics with a size
of larger than 1 mm is less than 10%. Similar results were
obtained in studies on the microplastic size distribution in
Lake Garda (Imhof et al. 2016), the Three Gorges Reservoir
(Di and Wang 2018), and Qinghai Lake (Xiong et al. 2018) in
China. The large number of small-sized microplastics may be
explained by two factors. First, several large-particle
microplastics can be decomposed into small particles.
Second, surface runoff can increase the abundance of
microplastics, and the sand in rivers can enhance the
weathering of plastics.

3.4 Polymer identification of microplastics

Micro-FTIR is widely used to identify the composition of
unknown particles (Li et al. 2018; Fan et al. 2019). On the
basis of the results of the microplastic shape analysis, the
microplastics collected from the surface water in S6 were used
for further chemical composition analysis. As shown in Fig. 6,
the following types of polymers were identified: polypropyl-
ene (PP, polyester, polyvinyl chloride (PVC), low-density
polyethylene (LDPE)). PP has a low density, good heat resis-
tance, good stress cracking resistance, and high bending

fatigue life; it is easy to suspend in surface water. Thus, PP
is widely applied in household appliances, such as fresh-
keeping boxes, food packaging bags, durable textiles, and
pipes. PP can also be used to make agricultural mulch, fishing
nets, packaging bags, and strapping ropes. LDPE has good
chemical stability and high impact strength at low tempera-
ture, excellent electrical insulating properties, and transparent
in thin film form, and it is difficult to dissolve in organic
solvents, acids, alkaline solutions, and various salts. It is wide-
ly used in containers, dispensing bottles, wash bottles, tubing,
and plastic bags. Polyester fiber is widely used in apparel
fabric production because of its special chemical properties.
Traditionally, PVC was used to make construction materials
and daily supplies (pipes and plastic bags). However, the use
of PVC in packaging is now strictly controlled by Chinese law
because PVC is unstable under light and heat. For instance,
several carcinogens are emitted when PVC is exposed to tem-
peratures above 100 °C.

These polymers detected in the current study have been
identified in other freshwater areas of China. PP and PVC
were found in the Three Gorges Reservoir (Di and Wang
2018), Pearl River along Guangzhou City and Pearl River
estuary (Yan et al. 2019), urban water areas in Changsha
(Wen et al. 2018), and Dongting Lake (Jiang et al. 2018).
Clothing fibers were found in several urban rivers, such as
nylon in Wuhan (Wang et al. 2017) and polyester, rayon,
cotton, and viscose in Shanghai (Peng et al. 2018). Polyester
and wool fibers were detected in this study.

Previous studies have indicated that the dominant source of
microplastics is secondary microplastics in the environment
(Ryan 2015; Duis and Coors 2016). In the current study, fibers
and films predominated in all the samples, and synthetic plas-
tics, including PP, PVC, LDPE, and polyester, were identi-
fied. Thus, a series of plastic production, including plastic

Fig. 6 Typical μ-FTIR spectra of
the microplastics collected from
S6
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package bags, ultra-thin films, and fishing gears, may enhance
microplastic formation. Meanwhile, one kind of nonplastic
fiber was identified as wool. Clothes washing also constituted
a large portion of microplastics entering the water environ-
ment, as evidenced by the identification of polyester and wool.
Given that the study area is located in Upper Yangtze River,
the microplastics in water would migrate toMiddle and Lower
Yangtze River. Thus, the microplastics in freshwater must be
given sufficient attention. The investigation of the status of
microplastic pollution in other regions, in combination with
studies on environmental and health risks, should be put on
the agenda, and a comprehensive evaluation method and rea-
sonable management and control system should be
constructed.

4 Conclusion

Microplastics were detected in the surface water and sedi-
ments of Yangtze River along Chongqing City. The aver-
age abundance of the microplastics was 105 n L−1 and 232
n kg−1 dw for surface water and sediments, respectively.
The highest abundance of microplastics in surface water
was detected near sewage treatment effluents, and the
highest abundance of microplastics in sediments was found
near Nanbin Park. This result indicates that human activi-
ties might play an important role in microplastic pollution
in the study area. Fibers and films were the numerically
dominant shape in most of the water and sediment samples.
Microplastics with a small size dominated in all the sam-
ples, and the average proportion of microplastics with a
size of less than 0.3 mm was 48.3% and 62.6% for the
surface water and sediment samples, respectively. In addi-
tion to PP, PVC, and LDPE, polyester, and wool fibers
were also identified in the surface water samples. Thus,
clothing fiber in urban rivers should not be ignored. In
the future, additional studies on pollution source analysis
and ecological risks should be conducted to prevent and
control microplastic pollution in Yangtze River (especially
Upper Yangtze River).
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