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Abstract
Propose Soil organic matter (SOM) content is one critical indicator of agricultural sustainability. Analyzing the spatial distribu-
tion and temporal variation of SOM content and its influencing factors at the watershed scale is essential for maintain sustainable
soil fertility and productivity in the Chinese Mollisol region.
Materials and methods A total of 292 soil samples at the same sampling points in 2005 and 2016 were used to quantitatively
study the spatial heterogeneity of SOM dynamics in Tongshuang small watershed. Effects of land use types and topographic
factors (slope gradient, slope positions, slope aspect, elevations, and topography wetness index (TWI)) on the spatiotemporal
distribution of SOM dynamics were investigated.
Results and discussion The results showed that the variability of SOM content was moderate variation, with an increase rate of
0.21 g kg−1 year−1 from 2005 to 2016. The spatial autocorrelation of SOM content was strengthened by 30.37% in 2016
compared with that in 2005. Slope gradient, slope position, slope aspect, elevations, and TWI had significant effects on the
SOM content in 2005 and 2016, but not for the variation of SOM content. The explanatory ability of each factor and their
interaction to spatial variability of SOM content was strengthened from 2005 to 2016. Slope gradient and TWI could explain over
8.15% of spatial variability in SOM content.
Conclusion A combination of slope position with TWI was the dominant interaction factor that explaining at least 16.0% of the
SOM distribution. This study is important for the accurate estimation of carbon reserves, sustainable utilization, and management
of soil nutrients and to improve soil productivity in the Chinese Mollisol region.
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1 Introduction

Soil organic matter (SOM) is the largest terrestrial sink of carbon
in the global carbon cycle (Fang et al. 2018; Funes et al. 2019;
Mayer et al. 2019), which also plays a critical role in keeping the
sustainability of soil quality and productivity (Funes et al. 2019;
Sun et al. 2018). It has long been recognized that small changes
in SOM could influence regional carbon balances (He et al.
2020; Obalum et al. 2017). Therefore, understanding the spatio-
temporal distribution and the factors that control SOM variation
is significant for estimation of soil carbon storage (Hounkpatin
et al. 2018); develop carbon mitigation strategies (Adhikari et al.
2019), and regional ecological environment construction (Lu
et al. 2018).
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The spatial heterogeneity and temporal variation of SOM
was influenced by various factors, such as land use (Wang
et al. 2020a; Yu et al. 2017), and topographic factors
(Hounkpatin et al. 2018; Zadorova et al. 2014). Land use
altered soil carbon sequestration process (Hu et al. 2018; Xu
et al. 2015) by changing land cover, root activity, and micro-
organisms (biotic mechanisms) (Liu et al. 2017). Numerous
studies have investigated the SOM dynamics under different
land use types (Fang et al. 2018; Lu et al. 2018; Mayer et al.
2019), but have obtained various results. For example, Smal
and Olszewska (2008) proposed that Scots pine forests de-
creased the accumulation of SOM in Poland, while Kalinina
et al. (2015) reported that soil carbon stock showed a
decrease-increase trend during 1–42 years restoration in the
dry steppe zone of Russia. Meena et al. (2018) noted that the
returning of degraded farmland ecosystem to forest and grass
land ecosystem could increase the accumulation of SOM con-
tent in Indian mid-Himalaya region. Thus, the SOM dynamic
remains unclear under various land planning strategies (Xu
et al. 2015).

Topographic factors, including elevation, topographic wet-
ness index (TWI), slope gradient, slope positions, and slope as-
pect (Bai and Zhou 2020; Chen et al. 2016; Sigua and Coleman
2010), can modify geomorphologic and hydrological dynamics

(Huang et al. 2020;Vos et al. 2019) through abiotic influences by
altering land cover pattern and local microclimate (Funes et al.
2019; Wang et al. 2020b). Elevation controls the zonal climatic
conditions along the vertical gradient (Zhu et al. 2019b), with
different heat conditions, precipitation, and decomposition rates
as the increasing elevation, and then resulted in different re-
sponses to SOM accumulation (Li et al. 2019b). TWI is used
to characterize soil wetness at different landscape positions (Xin
et al. 2016). High TWI values within floodplains indicate high
soil moisture content for the strong accumulation of SOM
(Swetnam et al. 2017). Slope gradient affects SOM distribution
through influences soil erosion intensity (Zhang et al. 2020), but
varies among soil types (Nabiollahi et al. 2018; Takoutsing et al.
2018). Slope position governed the SOM distribution through
soil erosion and decomposition process (Tu et al. 2018), and
result in a higher content in the foot slope area than at higher
slope positions (Li 2017). Slope aspect represents solar radiation
conditions (Zhu et al. 2019a), the SOM on the north slopes
generally greater than the south slopes in semiarid regions of
the Northern Hemisphere due to lower soil moisture and more
drought-tolerant species in south slopes (Yu et al. 2020). In gen-
eral, the reshaped climatic, hydrological, and ecological condi-
tions by these topographic factors can sharply modify the spatial
and temporal patterns of SOM contents (Fan et al. 2020; Kobler

Fig. 1 Location map and land use map of Tongshuang small watershed in 2016

Table 1 The descriptive
statistical analysis of SOM
content and K-S test

Minimum

(g kg−1)

Maximum

(g kg−1)

Mean

(g kg−1)

S.D.

(g kg−1)

CV (%) Skewness Kurtosis K-S (P)

2005 0.62 102.55 39.01 11.91 30.53 0.73 3.47 0.17

2016 8.45 93.21 41.34 12.39 29.98 0.33 0.86 0.75
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et al. 2019). In addition, there existed interaction effect among
various topographic factors on soil properties by changing the
soil erosion process (He et al. 2020; Obalum et al. 2017). Thus,
our understanding of SOM dynamics affected by topographic
factors remains incomplete.

Globally, serious soil erosion can result in soil degradation (de
Nijs and Cammeraat 2020), the loss of soil nutrients, and the
redistribution of SOM content (Hancock et al. 2019). Previous

studies (Adhikari et al. 2019; Olson et al. 2016; Zhang et al.
2013) reported that the conversion of forest to farmland resulted
in SOM stock decreased approximate 10–52% during 100–150
years, which had threaten the sustainable development of local
agriculture (Cui et al. 2007; Zhang et al. 2007; Zhang et al.
2018b). To prevent soil erosion and enhance soil carbon accu-
mulation, Chinese government has established the “Grain for
Green” program since the 1980s (Sun et al. 2018), which in-
volved in returning farmland into forestlands and grasslands (Li
et al. 2019a; Wei et al. 2008; Zhang et al. 2011). Numerous
studies noted that vegetation restoration can recover the soil prop-
erties in the serious eroded areas (Burst et al. 2020; Funes et al.
2019; Li et al. 2019a; Miao et al. 2014; Zhang et al. 2016). Thus,
understanding the SOM dynamics during vegetation restoration
processes is becoming increasingly important (Meena et al.
2018). However, few studies have systematically investigated
the spatial distribution patterns and temporal variation of the

Table 2 Isotropic semivariogram theory model and related parameters
of SOM content

Year Nugget coefficient C0/C0 + C (%) Range (m) R2 RSS

2005 16.53 342 0.684 5.25E-06

2016 11.51 252 0.763 3.85E-07
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Fig. 2 Spatial distribution of SOM content in the 2005 (a), 2016 (b), and the variation (c)

738 J Soils Sediments  (2021) 21:736–747



SOM content at the same sampling points within the controlled
watershed. In addition, the influence of unique environmental
factors and their interactions on the dynamics of SOM content
is still poorly understood at the controlled watershed with certain
land use patterns. Hence, a typical controlled Mollisol watershed
in Northeast China, where the soil had higher SOM content and
is known as “black soil” (Liu et al. 2008; Liu et al. 2012; Zhang
et al. 2018b), was selected as the study case. The objectives of
this studywere to (1) examine the spatial and temporal variability
of SOM content at the same sampling points during 2005–2016;
and (2) quantify the distinct influence of environmental factors
on SOM dynamics.

2 Materials and methods

2.1 Study area

The study has been conducted in Tongshuang small watershed
(126° 14‵ 45– 126° 17‵ 15‵ 'E, 47° 26‵ 00– 47° 28‵ 30 N),
which is located in the southeastern of Baiquan county,
Heilongjiang province, Northeast China (Fig. 1). It covers an
area of 992 ha. This region has a typical temperate monsoon
climate, which was characterized by short warm summer and
long cold winter, with annual average temperature and precip-
itation of 1.28 °C and 490 mm (Wei et al. 2006). The rainy
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Fig. 3 Box plots showing the influence of land use types, slope gradient,
slope position, and slope aspect on the SOM content. The central divider
of the box is the median of the SOM data of each land use type. The box

delimits the inter-quartile range (lower quartile Q1 and upper quartile
Q3), and the whiskers indicate the variation outside this interquartile
range. The same in Fig. 4
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season is from June to August. The elevation ranges from
215.6 to 309.1 m. The slope gradient ranges from 0° to 19°.
This watershed with hilly landscape, with the soil classified as
Mollisols (USDA Taxonomy). The main cultivation is corn-
soybean rotation. Various ecological programs, including
farmland (such as terraces and contour tillage), forest land,
shrub land, and grassland, have been implemented on
hillslopes since 1980s due to the drastic erosion in the late
1970s. The shrub vegetation includes Salix monglica and
Salix viminalis, and forest vegetation includes Larix dahurica
and Pinus sylvestris Var. mongolica (Wei et al. 2008).

2.2 Soil sampling and measurements

A 500 by 500 m grid was used for collecting soil samples ac-
cording to different land use, topographic factors, and represen-
tative principles in the field survey. A total of 292 soil samples in
the top layer of 20 cm (plowed layer), where > 50% of soil
organic carbon was distributed (National Soil Survey Office
1997), were collected at the same sampling points within the
watershed in June 2005 and June 2016 (Fig. 1). Each soil sample
was a composite of five subsamples based on the four corners
and center points of the 1 by 1m square. A subsample of 1 kg per
mixed sample was isolated for laboratory analysis. Sample sites
were laid on different slope positions including summit, upper,

middle, foot, and valley slope (Wei et al. 2008). The sampling
sites were recorded by the global positioning system (GPS) (Fig.
1). Soil samples of SOM were air-dried and sieved at 0.25 mm,
and analyzed by using an elemental analyzer (Vario EL III,
Germany) (Slepetiene et al. 2008). Because the soils were free
of carbonates, soil organic carbon (SOC) was assumed to be
equivalent to total carbon (Liang et al. 2009; Zu et al. 2011).

2.3 Mapping of land use types and the calculation of
topographic factors

Field mapping of land use types based on a relief map of scale
1:10,000 and Landsat-8 image (ETM+ of August, 2016, 15 m
resolution). A digital map of land use types was built accord-
ing to a triangulation network calculated from contour lines
with 1 m intervals using ArcGIS 10.2 (ESRI 2013, ArcGIS
Desktop: Redlands, CA: Environmental Systems Research
Institute).

Four topographic factors, including elevation, TWI, slope
gradient, and slope aspect, were calculated from DEM.
According to the techniques standard for comprehensive con-
trol of soil erosion in the black soil erosion SL 446-2009,
Ministry of Water Resources, China, the contour tillage, veg-
etated earth bund, and terrace were suitable for built at the
slope gradient < 3°, 3°–5°, and > 5° perpendicular to the
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Fig. 4 Box and whiskers plots showing influence of elevation, and topographic wetness index on the SOM content

Table 3 Correlation analysis
between environmental factors
and SOM content

Land use types Slope gradient Slope aspect Slope position Elevation TWI

SOM2005 0.016 0.172** 0.026 0.157** − 0.195** − 0.181**

SOM2016 0.083 0.244** 0.053 0.122* − 0.211** − 0.274**

SOMvariation 0.075 0.086 0.030 − 0.031 − 0.025 − 0.111

** p < 0.01; * p < 0.05
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sloping farmland, respectively (Ministry of Water Resources
2009); thus, the slope gradient was grouped into 4 classes (<
0.5°, 0.5°–3.0°, 3.1°–5.0°, > 5.1°). Slope aspect was designat-
ed as north (N), northeast (NE), east (E), southeast (SE), south
(S), southwest (SW), west (W), and northwest (NW).

2.4 Statistical methods

2.4.1 Classical statistical analysis

The descriptive statistics was performed using the statistical
software SPSS 21.0 (IBM SPSS Statistics for Windows, IBM
Corp., Armonk, NY, USA). Analysis of variance (ANOVA)
was conducted to examine significant differences in SOM. For
the results of multiple comparisons, the method of least sig-
nificant difference (LSD) procedure was used, and the values
were statistically significant at the 95% confidence level. The
correlation analysis between land use types and topographical
factors with SOM was also investigated.

2.4.2 Geostatistics analysis

Spatial variations in SOM were analyzed by using GS + 9.0
(Gamma Design Software, Plainwell, MI, USA). Besides, the
Kriging spatial interpolation was applied to draw the spatial
distribution map of SOM dynamics. The semivariogram was
calculated using the following equation:

γ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Z xið Þ−Z xi þ hð Þ½ �2 ð1Þ

where γ(h) is the experimental semi-variogram value at dis-
tance interval h, N(h) is the logarithm of the distance when the
distance equals h, Z(xi) is the value at location xi; and Z(xi + h)
is the value at a distance h from xi.

2.4.3 GeoDetector method

Spatial heterogeneity of geographic phenomena and its key
driving factors could be analyzed by GeoDetector (http://
www.geodetector.org/). Both numerical data and qualitative
data can be detected in geodetector method (Wang et al.
2010). There are four modules of GeoDetector, involved in
factor detector, risk detector, interaction detector, and ecolog-
ical detector(Wang et al. 2016).

In the present study, factor detector and interaction detector
were used to detect the independent and interactive explanatory
abilities of environmental factors to SOM dynamics, respective-
ly. Factor detector can detect the ability of the independent var-
iable to interpret the spatial variability of the dependent variable
(Wang et al. 2019), which can express as q value (ranged from 0
to1, the larger q value represents the greater the explanatory
ability), the significance of the q value also can be test (Wang
et al. 2010). The q values can be calculated as follows:

q ¼ 1−
∑
L

h¼1
Nhσ2

h

Nσ2
¼ 1−

SSW
SST

ð2Þ

SSW ¼ ∑
L

h¼1
Nhσ

2
h; SST ¼ Nσ2 ð3Þ

where h = 1, ..., L is the classification of independent variable;
Nh andN are the number of sample units in classification h and
the whole region, respectively; σ2

h and σ2 are the variance in
the classification h and the whole region, respectively; SSW
and SSTmean within sum of squares and total sum of squares,
respectively (Wang et al. 2010; Wang et al. 2016).

Interaction detector can identify the interaction between
two independent variables by comparing the q values of single
factor and the interaction q values as compared with conven-
tional statistical methods (Wang et al. 2016). There are five
types of interaction between two covariates, as long as inter-
action exists, it can be detected (Wang et al. 2019).

3 Results

3.1 Description statistics of SOM content

The SOM contents increased from 39.01 to 41.34 g kg−1 from
2005 and 2016. The increase rate of SOM content was 0.21 g
kg−1 year−1 (Table 1). The coefficient variations (CV) of SOM
in 2005 and 2016 were 30.53% and 29.98%, respectively,
indicating moderate variation. The SOM contents were nor-
mally distributed, as indicated by the shape parameters (skew-
ness and kurtosis) of the data (p > 0.05), which met the re-
quirement of geostatistic analysis.

3.2 Spatial and temporal variability in SOM content

The exponential model gave the best fit for the SOM contents
in 2005 and 2016 (Table 2). The nugget coefficient in 2005
and 2016 was lower than 25%, indicating high spatial auto-
correlation of SOM content and the spatial variability was
mainly influenced by structural factors. The spatial autocorre-
lation of SOM content was strengthened in 2016; the nugget
coefficient value in 2016 was lower 30.37% than that in 2005.

Table 4 q values of single factors influencing the spatial variability of
SOM content under different topographic factors

Slope gradient Slope position Elevation TWI

SOM2005 0.034 0.099 0.028 0.043

SOM2016 0.0815** 0.057 0.037 0.0820*

** p < 0.01; * p < 0.05
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The range of spatial autocorrelation decreased 90 m from
2005 to 2016.

In 2005 and 2016, the SOM distributions presented ribbon
and plaque shapes (Fig. 2). The higher SOM content was
distributed in the northeast, southwest, and southwest areas
and the lower SOM content was distributed in the middle area.
In addition, the SOM content increased in east, southwest, and
southwest areas, but decreased in the west and northwest areas
during 2005–2016.

3.3 Analysis of influencing factors on SOM content

The SOM content in grassland was significantly greater than
that in other land use types in 2016 (Fig. 3, p < 0.05). The
value in grassland was 1.23, 1.32, and 1.31 times greater than
that in farmland, forestland, and shrub land, respectively. In
addition, the variation rate of SOM content in grassland was
4.14, 3.96, and 3.07 times greater than that in farmland, for-
estland, and shrub land, respectively (p < 0.05).

The mean SOM content increased with the increasing slope
gradient, and the values increased by 1.20 and 1.33 times as
slope increased in 2005 and 2016, respectively (Fig. 3, p <
0.05). SOM content increased by 3.36%, 6.51% and 7.82% in
0.5°–3°, 3°–5°, and > 5.1°, respectively, while decreased by
2.84% in the slope of < 0.5° from 2005 to 2016 (p > 0.05).

For different slope aspects, the mean SOM content signif-
icantly decreased from N slopes to SE and S slopes, and then
increased to NW slopes in 2005 and 2016 (Fig. 3, p < 0.05).
The values in NE slopes were 1.29 to 1.37 times, and 1.22 to
1.29 times greater than those in S and SE slopes in 2005 and
2016, respectively. The SOM content increased in all slope
aspect except in W slopes, which decreased by 1.68% from
2005 to 2016 (p > 0.05).

For different slope positions, the mean SOM content in-
creased from the summit slope to valley slope, the values in-
creased by 1.54 and 1.41 times in 2005 and 2016, respectively
(Fig. 3, p < 0.05). SOM content increased by 1.90%, 3.65%,
7.45%, 9.19%, and 12.05% in foot, valley, upper, middle, and
summit slope, respectively from 2005 to 2016 (p > 0.05).

The mean SOM content decreased with elevation, and its
content decreased by 13.63% and 15.10% as elevation de-
creased in 2005 and 2016, respectively (Fig. 4, p < 0.05).
SOM content increased by 5.00% and 6.82% in 275–309 m

and 215–245 m, respectively, while decreased by 6.11% in
245–275 m from 2005 to 2016 (p > 0.05).

For different TWI intervals, themean SOMcontent in 3.0–6.0
and 6.1–9.0 TWI intervals was significantly greater than that in
12.1–14.0 TWI intervals, and the values were 1.21 and 1.27
times and 1.33, 1.40 times greater than that in 12.1–14.0 TWI
intervals in 2005 and 2016, respectively (Fig. 4, p < 0.05). SOM
content increased by 6.33%, 6.64%, and 10.10% in 3.0–6.0, 6.1–
9.0, and 9.1–12.0, respectively, while decreased by 3.31% in
12.1–24.0 from 2005 to 2016 (p > 0.05).

SOM content was significant positive correlated with slope
gradient and slope positions, but negative correlated with ele-
vation and TWI in 2005 and 2016 (Table 3, p < 0.05). But
there was no correlation among SOMvariation and topographic
factors. The factors that had no significant correlation with
SOM content was excluded from the subsequent analysis.

3.4 Relationships between spatial variability of SOM
content and topographic factors

3.4.1 Influence of single factors on spatial variability of SOM
content

According to the factor detector, the factors influencing SOM
content were differed in 2005 and 2016 (Table 4). There was
no dominant factor influence the spatial variability of SOM
content in 2005; while in 2016, TWI was the dominant factor,
its explanatory ability was 8.20%; followed by slope gradient
with an explanatory ability of 8.15%.

3.4.2 Influence of interactions between factors on spatial
variability of SOM content

The influence of interactions between various factors was en-
hanced compared with the influence of single factors
(Table 5). In 2005, the interactions of slope position with
TWI, elevation, and slope gradient were the dominant factors
influencing SOM content, and their explanatory abilities in-
creased by 6.1%, 3.5%, and 2.5%, respectively, compared
with those of slope position alone. However, different inter-
actions of factors were observed in 2016, when the explana-
tory ability of each interaction was much higher than that in
2005; the explanatory abilities of slope position with TWI

Table 5 q values for the
interactions between factors
influencing the spatial variability
of SOM content under different
topographic factors

SOM2005 SOM2016

Dominant interaction 1 Slope position ∩ TWI Slope position ∩ TWI

q 0.160 0.161

Dominant interaction 2 Slope position ∩ Elevation Slope gradient ∩ Elevation

q 0.135 0.158

Dominant interaction 3 Slope position ∩ Slope gradient Slope gradient ∩ Slope position

q 0.125 0.147
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were the highest (16.1%), and the interactions of slope gradi-
ent with elevation (15.8%) and slope position (14.7%) became
the dominant factors influencing SOM content.

4 Discussion

4.1 Dominant factors influencing the spatial
variability of SOM content

In the present study, the spatial variability of SOM content
was mainly affected by structural factors, including topogra-
phy factors, climate, and parent material, which drove the soil
heat and water (Fan et al. 2020; Yu et al. 2020; Zhu et al.
2019a), solar radiation condition (Bai and Zhou 2020; Sigua
and Coleman 2010), and soil erosion (Zhang et al. 2007). The
spatial dependence of SOM was affected little by human fac-
tor in the present study, and the continuity of disturbance from
human factor is not high (Zhu et al. 2019b). According to the
factor detector, slope gradient and TWI could explain the spa-
tial variability of SOM content. This indicated that the slope
gradient and TWI-induced variations in soil temperature and
moisture were the main controls of SOM spatial patterns in the
present study areas.

Slope gradient affected the redistribution of SOM content
through alter soil erosion process (Miheretu and Yimer 2018;
Zhang et al. 2020). SOM content was significant positive cor-
related with slope gradient. This was also reported in previous
studies, but the increment of SOM content could attribute to
the increase of rock exposure rate in the karst region of south-
west China (Hu et al. 2018), or attribute to the reduced actual
inclusion area of the slope on the China's Loess Plateau
(Zhang et al. 2020); while in the present study, this phenom-
enon could attribute to the implementation of ecological pro-
grams (Ministry of Water Resources 2009) that enhanced the
accumulation of SOM content (Zhang et al. 2020). However,
contradictory results have also been reported, such as de-
creased (Nabiollahi et al. 2018; Takoutsing et al. 2018), no
change (Tu et al. 2018), and exist a slope threshold (Zhang
et al. 2018a). The inconsistency of these abovementioned ob-
servations suggests that the spatial distribution of SOM con-
tent is site-dependence (Bai and Zhou 2020; Sigua and
Coleman 2010).

TWI is used to characterize soil wetness at different land-
scape positions (Xin et al. 2016; Swetnam et al. 2017). SOM
content was significant negative correlated with TWI in the
watershed. This was different with previous report (Liu et al.
2017; Zadorova et al. 2014) that higher TWI values indicate
higher soil water content and resulted in the slower decompo-
sition rates and mineralisation rate of organic matter (di Folco
and Kirkpatrick 2011). One possible reason was that water
movement from upslope to downslope is more divergent in
lower areas (Hounkpatin et al. 2018) and result in TWI may

not capture the movement of water flow well at lower sites
(Fan et al. 2020). Another possible reason was that different
ecological programs changed the topographic concavo-con-
vex, which exhibit different underlying condition influence
the redistribution of water and sediment (including the trans-
port of organic matter). The above reasons may reduce TWI
control on the distribution of SOM content (Li et al. 2018).

Various factors may interact with each other to influence
the spatial variability of SOM content (He et al. 2020; Obalum
et al. 2017) through influence the local microclimate, which
directly affect the decomposition rate and plant production
(Qin et al. 2016). In the current study, the interaction of slope
position with TWI had the highest explanatory ability to the
spatial variability of SOM content, followed by slope position/
slope gradient with elevation, and slope position with slope
gradient. The fine particles combined with organic matter in
the summit and upper slope were transport (Wei et al. 2008;
Xu et al. 2015) and deposited on the foot and valley slope (Li
2017;Tu et al. 2018) along the gentle and long slope in this
region. Moreover, TWI and elevation determines alter soil
water (Li et al. 2019b; Liu et al. 2017) and heat conditions
(Xin et al. 2016; Zadorova et al. 2014). Due to the relatively
low elevation (215 − 309m), temperature changed little by the
increasing elevations (Hu et al. 2018), the wetter and warmer
conditions in lower elevations promote the increase of the
biomass productivity and organic carbon inputs (Zhu et al.
2019b); while the SOM in high elevation areas could be easily
lost and concentrated in valley lowlands (Yu et al. 2020). In
addition, ecological programs set at different slope gradient
intervals can not only effectively reduced soil erosion
(Ministry of Water Resources 2009), but also enhanced the
accumulation of SOM (Zhang et al. 2020). Different results
also been reported, Zhu et al. (2019a) and Zhang et al. (2020)
proposed that the spatial distribution of SOM was significant-
ly affected by the interaction of elevation and slope aspect,
slope gradient and slope aspect. This could be attributing to
that interaction of the topographic factors affected the SOM
content through their indirect influences on the microclimate
and vegetation type (Fan et al. 2020; Yu et al. 2020; Zhu et al.
2019a).

4.2 Temporal characteristics of the SOM content

During 2005–2016, the spatial autocorrelation of SOM con-
tent strengthened but the spatial autocorrelation range de-
creased; this indicated that the spatial autocorrelation distance
and heterogeneity decreased. This was inconsistent with pre-
vious study in the corn belt of Northeastern China over 1980s
to 2005 (Miao et al. 2014), when the spatial autocorrelation of
SOM content was weakened and the range increased, which
could mainly attributed to the effects of land-use and land
cover changes, crop productivity increase, and agricultural
managements (Zhu et al. 2019a). In addition, the influence
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of single factors and the interactions between various factors
was enhanced in 2016 as compared with that in 2005. This
indicated that topographic factors enhanced the spatial vari-
ability of SOM content after 11 years implementation of eco-
logical programs, which also confirming the results of the
semi-variance analysis.

Based on the balance theory of SOC, the evolution of SOM
on sloping farmland was driven by soil erosion and non-
erosive natural evolution before ecological program imple-
mented (Zhang et al. 2013). The former depends on topsoil
loss per year, namely as soil erosion modulus, the latter de-
pends on the soil mineralization rate and humification rate of
the existing farmland management mode (de Nijs and
Cammeraat 2020; Hounkpatin et al. 2018; Zadorova et al.
2014). After the implementation of ecological programs, the
evolution process of SOM was driven by soil erosion, equi-
librium point, and the returned biomass, the increase of
returned biomass leads to the root and litter increased, and
finally result in the increase of SOM content (Van Oost 2007).

Numerous studies (Fang et al. 2018; Gong et al. 2007;
Zhang et al. 2017) have investigated that land use caused by
human activities was the predominant factor affecting the var-
iation of the SOM content (Deng et al. 2017; Li et al. 2012),
which affected SOM sequestration by alter canopy coverage,
root distribution and activity (Burst et al. 2020; Gao et al.
2020), litter and soil microbial biomass (Chen et al. 2017;
Hu et al. 2018). In the current study, grassland had greater
SOM dynamics than that in other land use types because
grassland has more favorable soil water conditions and a
shorter life cycle (Deng et al. 2014; Karhu et al. 2011;
Laganière et al. 2010), and less disturbed by human activities
(Miheretu and Yimer 2018; Obalum et al. 2017; Xie et al.
2014). However, land use types had no correlation with
SOM dynamics. The possible reason was that the ecological
programs typically designed based on local topography con-
dition and land use types, and this special land use patterns
resulted in the influence of land use types on SOM overlaps
with the influence of topographic factors may be diluted at
some extent (Gao et al. 2020; Yu et al. 2017).

In addition, the initial SOM contents had significant effect
on the variation in SOM content (Lal 2001). Previous study
(Zhao et al. 2018) reported that initial SOM content accounted
for over 30% of the variation in SOM stocks. The increment in
carbon inputs was the primary reason result in the increase of
SOM content in the low initial SOM contents areas (Xie et al.
2021). However, in the present study, the initial SOM content
in the sloping farmland of the study areas was very low before
1980 (Wei et al. 2008). With the continuous plant-derived
carbon inputs increased (Zhao et al. 2018), the soil in the study
area could maintain relatively high-level SOM content over a
long time period (1980–2005), and then resulted in a small
increase during 2005–2016 as compared with other studies
(Fang et al. 2018; Lu et al. 2018). The variation of SOM

content was a complex process affecting by the specific to-
pography (Hounkpatin et al. 2018; Zadorova et al. 2014),
vegetation restoration period (Xu et al. 2015; Yu et al.
2017), and human disturbances (e.g., the ecological program
design) (Gao et al. 2020). Therefore, to better evaluate and
clarity the mechanisms of driving factors behind SOM
change, long-term monitoring is required for future research.

5 Conclusions

In the current study, a total of 292 soil samples at the same
sampling points were used to investigate the spatial and tem-
poral variations in SOM content over the period of 2005–
2016, and identified the dominant factors of the spatial distri-
bution of SOM content. Results showed that the SOM content
increased at a rate of 0.21 g kg−1 year−1 over the 11 years, and
belongs to moderate variation. The spatial autocorrelation of
SOM content was strengthened but the range decreased over
the 11 years. SOM content was significant positive correlated
with slope gradient and slope positions, but negative correlat-
ed with elevation and TWI in 2005 and 2016. No factor was
identified as the dominant driver of the increment in SOM
content. In addition, the explanatory ability of each factor
and their interaction to spatial variability of SOM content
was enhanced over the 11 years. No dominant driving factors
were found in 2005, while slope gradient (q = 0.0815) and
TWI (q = 0.0820) were the main drivers of the spatial vari-
ability of the SOM content in 2016. The interaction of slope
position with TWI (q values of 0.160 and 0.161) predominant-
ly explained the spatial heterogeneity of the SOM content.
This study could provide scientific guidance for soil conser-
vation, environment protection, and agricultural production
planning in the study region.
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