
SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE

Wet or dry sowing had a larger effect on the soil bacterial community
composition than tillage practices in an arid irrigated agro-ecosystem
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Abstract
Purpose Implementing practices that maximize water use efficiency in arid zones is important as agriculture relies mostly on
irrigation in these agroecosystems. The aim of this study was to identify the effect of combining different sowing irrigation
methods (dry and wet) with contrasting tillage practices (conventional practices and conservation agriculture) on bacterial
community structure in soils from the Norman E. Borlaug experimental field (CENEB), Yaqui Valley, Sonora.
Materials and methods Soil samples were collected consecutively four times in the month after sowing from permanent and
conventionally tilled beds under wet and dry sowing at CENEB. Soils were characterized and the bacterial communities were
identified with Illumina MiSeq sequencing where the 16S rRNA gene was targeted.
Results and discussion The bacterial community structure was affected by soil water content. Streptomyces and Balneimonas
were enriched in dry sowed soil, the first in conventionally tilled beds and the latter in permanent beds, while Acinetobacterwas
enriched in wet sowed soil under conservation agriculture. Shannon index indicated that there was a high species diversity in both
conventional practices and conservation agriculture.
Conclusions Soil water content was the principal factor shaping the bacterial community structure. While the three most dom-
inant phyla were affected by the difference in water content in the tillage practices under dry and wet sowing, it was at the genera
level that these fluctuations were more obvious.
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1 Introduction

Wheat (Triticum spp.), the third most important grain pro-
duced in the world, plays an important role in food security,
as it is an affordable source of protein and carbohydrates

(Balkovič et al. 2014). In Mexico, the leading wheat-
producing states are in the north of the country, Sonora being
the principal producer. More than 50% of wheat produced in
Mexico is grown in the Yaqui Valley, Sonora, a region that is
characterized by an arid climate (Verhulst et al. 2011), thus
crop cultivation mainly depends on irrigation (Mondani et al.
2019). It is therefore important to adopt more sustainable ag-
ricultural practices in the region to ensure water use efficiency.

The International Maize and Wheat Improvement Center
(CIMMYT, acronym in Spanish) has been experimenting
with different agricultural practices to improve yields while
maintaining sustainability of the agroecosystems for many
years (Govaerts et al. 2006; Hobbs et al. 2008).
Conservation agriculture (PB) is a sustainable alternative to
conventional agricultural practices (CB), which rely heavily
on tillage, a practice that causes physical soil disturbances
that affect the mechanical structure and porosity of soil, lead-
ing to loss of nutrients and alteration in bacterial community
structure (Wang et al. 2016; Anderson et al. 2017).
Conservation agriculture involves the application of little or
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no tillage (minimize soil disturbance), retention of crop resi-
due to form a permanent soil cover, and rotation of crops
aiming to improve soil quality, reduce water runoff, improve
water infiltration, and increase soil organic matter content,
which ultimately increases plant nutrients (Hobbs 2007;
Habig and Swanepoel 2015). A major advantage of PB is
that it increases water-use efficiency while increasing yields
and lowering management costs (Li et al. 2011; Verhulst et al.
2011).

Additionally, dry sowing as an alternative to wet sow-
ing could increase water use efficiency. Conventionally in
the Yaqui Valley, fields are irrigated about 2 to 3 weeks
prior to crop sowing so that weeds that germinate can be
controlled at sowing, allowing the crop to germinate in a
weed-free field; this is referred to as wet sowing (Govaerts
et al. 2009). In dry sowing, fields are irrigated 1 or 2 days
after being sown, resulting in higher soil water content
during germination compared to wet sowing (Mulvaney
et al. 2014). Both sowing irrigation practices involve wet-
ting and drying events of soil, which may have profound
effects on bacterial activity and consequently on plant nu-
trient availability (Denej et al. 2001). Soil drying has a
negative impact on matric and osmotic potential limiting
the amount of water available to soil bacteria (Mavi and
Marschner 2012). This can dehydrate bacteria and in ex-
treme circumstances their activity may come to a halt
(Muhr et al. 2010). Rewetting a soil stimulates microbial
activity and increases the soil nutrient content, i.e., nitro-
gen and phosphorous, a phenomenon referred to as the
“Birch effect” (Birch 1958; Thomson et al. 2010). Dry
rewetting also alters the bacterial community structure as
the changes in available C and nutrients enrich some bac-
terial groups, but not others (Fierer and Schimel 2002;
Muhr et al. 2010).

For farmers that are adopting PB, sowing a dry crop
residue-rich soil is easier than a moist soil. Therefore,
CIMMYT has been investigating dry sowing under PB
and conventional tillage practices. The difference in soil
water content in dry sowing compared to wet sowing will
affect the soil microbial population. Microbial activity
will increase earlier in wet sowing than in dry sowing
and thus stimulate plant growth–promoting bacteria earli-
er in wet than in dry sowing (Guo et al. 2013). Plant
growth–promoting bacteria, such as Paenibacillus
polymyxa, Achromobacter piechaudii ARV8, Pantoea
agglomerans, and Azospirillum sp., help wheat crops cope
with biotic and abiotic stress (Grover et al. 2011), so crop
development might be favored in wet sowing than in dry
sowing.

The aim of this study was to determine changes in
bacterial population brought on by fluctuations in water
content due to dry and wet sowing under PB (permanent
beds) and CB (conventional tilled beds).

2 Materials and methods

2.1 Field experiment

Soil samples were taken from an experiment at the Norman
Borlaug experimental station (CENEB) (lat. 27.33 N, long.
109.09 W, 38 masl) located in the Yaqui Valley, near Ciudad
Obregon (Mexico) with an arid climate and a soil classified as
a Hyposodic Vertisol (Calcaric, Chromic) (Verhulst et al.
2011).

The experiment was initiated in the winter of 2007–2008
and had a maize (Zea mays)–durum wheat (Triticum
turgidum) rotation with maize in the summer and wheat in
the winter. The experiment had two tillage treatments: PB,
with permanents beds where only the furrows were reshaped
each season but the soil on top of the beds is not tilled, and
CB, with conventionally tilled beds that were tilled and re-
made each season. Crop residues were left on the soil surface
in PB and incorporated through tillage in CB. The tillage
treatments have been in place since 1996 and were divided
in treatments with dry and wet sowing. Sub-plots had six
different N management treatments, of which the treatment
fertilized with 240 kg urea-N ha−1 (30% applied pre-planting
and 70% at first node) was selected for this study. This result-
ed in four treatments (n = 4), including PB and CB, each with
a wet and dry sowing practice, with three replicated plots (n =
3). As such, 12 plots were sampled (n = 12) (Fig. S1,
Table S1). Each plot contained four raised beds of 0.75 m
width and 10 m length (total plot size 30 m2), with two wheat
rows sown on the bed at 24-cm spacing.

The PB and CB under wet sowing were first irrigated on 6
November, approximately 2 weeks before the wheat cultivar
CIRNO C2008 was sown on 23 November 2015 (Fig. S1).
Wheat cultivar CIRNO C2008 was also sown in the PB and
CB under dry sowing on 23 November 2015 and first irrigated
on 25 November.

2.2 Soil sampling

Soil samples were collected from 12 plots (dry and wet sow-
ing in the PB and CB treatments in triplicate) on the day the
seeds were sown, i.e., 23 November, and additionally on 2, 8,
and 16 December 2015 as described below. Bulk soil was
collected randomly in 10 sampling points from the 0–7 cm
top layer of the 12 plots and pooled separately so that 12 soil
samples were obtained on each sampling day. A 50-g subsam-
ple of each soil sample was weighed and dried at 105 °C to
determine soil water content. Overall, a total of 48 samples (12
on each sampling day (n = 4)) were obtained and each sample
was air dried before transportation to the Laboratory of
Ecology (Cinvestav, Mexico City). Soil samples were charac-
terized separately and extracted for DNA separately as de-
scribed below.
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2.3 Soil characterization

The soil samples were characterized physicochemically. A
glass electrode was used to determine pH in a soil–water sus-
pension (Thomas 1996) and electrolytic conductivity (EC)
was determined using the saturated soil-paste extract method
described by Rhoades et al. (1989). The method described by
Cassel and Nielsen (1986) was used to determine the water
holding capacity (WHC) of the soil samples Soil water content
was determined by the filter-paper method (Fawcett and
Collis-George 1967) nitrogen (TN). The hydrometer method
was used to determine soil texture (Bouyoucos 1962), total
organic carbon (TOC) was measured following Tiessen and
Moir (1993) dry oxidation method, and the Kjeldahl acid
digestion described by Bremner (1996) was used to determine
total.

2.4 Metagenomic DNA extraction and PCR
amplification of the bacterial gene

Fulvic and humic acids were removed from a 0.5-g sub-
sample of soil as described by Ceja-Navarro et al. (2010).
Three methods (enzymatic, chemical, and thermal shock lysis)
were used for DNA extraction and described in Chávez-
Romero et al. (2016). Each extraction method was done in
triplicate; hence, 1.5 g soil was extracted for DNA per method
per sample. The DNA extraction samples obtained with each
method (n = 3) were pooled, amplified, and sent for analysis.
As such, 4.5 g soil was extracted for DNA from each sample
of each plot (n = 3). Overall, 13.5 g soil was extracted per
treatment per sampling day.

The variable V3 and V4 regions of the 16S rRNA gene
were amplified using the following region of specific primers
with overhang adapters (Klindworth et al. 2013): forward (5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′);
reverse (5′-GTCTCGTGGGCTCGGAGATGTGTATA
AGAGACAG-3′). The conditions of the PCR cycles used
were as indicated by Navarro-Noya et al. (2013). Amplicons
of approximately 500 bp were purified using the Ultra Clean
PCR Clean-up kit (MO BIO Laboratories, CA) as recom-
mended by the manufacturer and quantif ied in a
NanoDrop™ 3300 (Thermo Scientific NanoDrop) using
Quant-iT™ PicoGreen® dsDNA (Invitrogen, Carlsbad,
USA). The libraries were prepared, normalized and pooled,
and subsequently sequenced on the IlluminaMiSeq system by
Macrogen, Inc. (DNA Sequencing Service, Seoul, Korea).

2.5 Analysis of Illumina sequencing data

The QIIME pipeline version 1.9.1 was used to process the raw
bacterial sequences (Caporaso et al. 2010b). Sequences were
demultiplexed and filtered for low-quality reads with a Phred
score <19 removed. Operational taxonomic unit (OTU)

clusters were generated at a similarity threshold of 97%
(OTU97) using Uclust by running open reference OTU pick-
ing pipeline to compare reads against Greengenes v13_8
database (Edgar 2010). The representative sequence for
each OTU97 was aligned with Python nearest alignment
space termination (PyNAST) version 1.2.2 and those that
did not align at a sequence identity of >75% were removed
(Caporaso et al. 2010a). The taxonomic composition was
assigned with ribosomal database project using the naïve
Bayesian rRNA classifier (http://edp.cme.msu.edu/
classifier/classifier.jps) for a representative set of
sequences selected for each OTU97 (Wang et al. 2007).
The taxonomic assignments were used to construct biolog-
ical observations matrices (BIOM). The alpha diversity
indices were calculated with BIOM tables rarefied at
3000 reads per sample (Kuczynski et al. 2011). The raw
sequences were deposited in the National Center for
Biotechnology Information (NCBI) database Sequence
Read Archive (SRA) under the BioProject PRJNA542494.

2.6 Statistical analysis

All statistical analyses were done in R (R Development Core
Team 2013). A non-parametric test (t2way test in the WRS2
package “A collection of robust statistical methods”) (Mair
2018) was used to determine the effect of the tillage practice
(PB and CB) and sowing irrigation practice (wet and dry sow-
ing) and their interaction on soil characteristics. Abundance of
the different bacterial phyla and genera was explored separate-
ly with a principal component analysis (PCA) and a
constrained analysis of principal coordinates (CAP) was used
to explore the effect of treatment on the bacterial phyla and
genera and soil characteristics. A permutational multivariate
analysis of variance (PERMANOVA) using distance matrices
test (adonis, method Bray–Curtis, argument strata) was used
to determine the effect of tillage practice and sowing irrigation
on the bacterial phyla and genera. The PCA, CAP, and adonis
tests were done with the vegan package (Oksanen et al. 2018).
Heatmaps were constructed with the pheatmap package
(Kolde 2018). The random forest algorithm was used to eval-
uate the effect of the tillage practices and sowing irrigation on
soil characteristics, alpha diversity, and bacterial phyla and
genera over time (Breiman et .al 2018).

3 Results

3.1 Soil physicochemical properties

Water content, and total C and N showed highly significant
differences between the treatments over time (Table S2).
Tillage practices (PB or CB) (F = 8.41, p = 0.008) and sowing
irrigation (wet or dry sowing) (F = 8.84, p = 0.007)
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significantly affected EC (Table 1, S3). Other soil characteris-
tics were not affected significantly by sowing irrigation or
tillage practices.

3.2 Bacterial community structure

The number of reads was filtered and rarefied at 2996 to in-
clude all 48 samples in the analysis, generating a total of
143,808 reads whose sequences resulted in 42,050 OTUs.
The rarefication curves showed that analyzing more se-
quences would generate a limited number of new OTUs
(Fig. S2). The Chao1 (F = 4.20, p = 0.008), Shannon (F =
18.48, p < 0.001), and Simpson indexes (F = 4.09, p = 0.009)
were highly significant different between the treatments on the
different sampling days (Table S4). Tillage practices had a
significant effect on the Shannon (F = 9.18, p = 0.006) and
Simpson (F = 10.01, p = 0.004) index, but not wet or dry sow-
ing (Table S5).

Overall, phylotypes belonged to 37 phyla with the most
abundant being Proteobacteria (relative abundance 33.38 ±
4.66%, mostly Alphaproteobacteria 12.12 ± 1.66%), followed
by Acidobacteria (19.69 ± 3.11%) and Actinobacteria (11.96
± 2.55%). These three phyla were clustered together, i.e., they
were affected in the same way by tillage practices and sowing
irrigation (Fig. 1a).

Steroidobacter (relative abundance 1.80 ± 0.56%) was the
most abundant genus followed by Bacillus (1.66 ± 0.73%),
Kaistobacter (1.46 ± 0.51%), Flavisolibacter (1.27 ± 0.42),
Acinetobacter (1.08 ± 1.72), and Rubrobacter (1.07 ± 0.35),
the 50 most abundant genera with relative abundance
>0.10% (Fig. 1b). These most abundant bacterial genera gen-
erally responded in the same way to tillage practices and wet
or dry sowing.

3.3 Effect of sowing irrigation and tillage practices
on the bacterial community

Wet sowing or dry sowing had a significant effect on the
bacterial community structure in both PB and CB (F ≥ 2.36,
p ≤ 0.015) (Table 2). The PCA separated the wet from the dry
sowing in both CB and PB, but the separation was more

accentuated when the 50 most abundant genera were consid-
ered than when the bacterial phyla were used (Fig. 2). In CB,
Pedobacter and Streptomyces were enriched in dry sowing
and Pseudonocardia in wet sowing. In PB, Balneimonas and
Thermomonas were enriched in dry sowing and Methylibium
in wet sowing.

Tillage practices had a highly significant effect on the bac-
terial community structure in wet sowing considering the bac-
terial phyla and 50most abundant genera (F ≥ 4.42, p ≤ 0.003),
but not in dry sowing (Table 2). The PCA separated CB from
PB in the wet sowing, but not in the dry sowing (Fig. 3). In the
wet sowing, the separation between the PB and CB treatments
was more accentuated when the 50 most abundant genera were
considered than when the bacterial phyla were used. In wet
sowing, Cellvibrio, Flavisolibacter, Pontibacter, and
Proteobacteria were enriched in CB and Actinobacteria,
Nitrospirae, Rhodoplanes, and [Thermi] in PB.

On each of the sampling days, the PCA with the bacterial
phyla and genera separated the different treatments (Figs. S3
and S4). The effect of sowing irrigation, i.e., wet versus dry
sowing, on the bacterial community structure considering the
different bacterial phyla (p ≤ 0.009) and genera (p ≤ 0.022)
was significantly different, except on 2 December 2015. The
effect of tillage practices on the bacterial phyla was only sig-
nificant on 23 November and 8 December, and on 16
December 2015 considering the 50 most abundant genera
(Table S6).

Considering the mean of the four sampling days, the
PERMANOVA test indicated that the bacterial phyla (F =
6.11, p < 0.001) and genera (F = 2.33, p = 0.013) were affected
significantly by wet or dry sowing. Tillage practices had a sig-
nificant effect on the bacterial community structure considering
the different genera (F = 2.33, p = 0.013), but not when consid-
ering the bacterial phyla (F = 2.48, p = 0.081) (Table S6).
Considering the mean of the four sampling days, the relative
abundance of Acidobacteria, Cyanobacteria, Elusimicrobia,
Nitrosovibrio, Nitrospirae, and Virgisporangium was higher in
soil with wet sowing compared to dry sowing, while that of
Bacteroidetes, Balneimonas, Kaistobacter, and Proteobacteria
and WS3 was lower (Fig. S5). The relative abundance of
Verrucomicrobia was highly positive correlated with soil water

Table 1 Characteristics of soil at CIMMYT’s Norman E. Borlaug (CENEB) experimental station near Ciudad Obregón (Sonora, Mexico)

ECa WCb WHCc Total N Total C Clay Silt Sand
Tillage Sowing pH (dS m−1) (g kg−1 soil)

Conventional tilled beds Dry 8.5d ± 0.1e 1.58 ± 0.29 296 ± 261 590 ± 36 0.65 ± 0.07 11.4 ± 3.6 440 ± 20 170 ± 50 390 ± 30

Wet 8.5 ± 0.1 1.88 ± 0.39 151 ± 98 598 ± 41 0.64 ± 0.09 11.0 ± 2.5 430 ± 20 190 ± 30 380 ± 30

Permanent beds Dry 8.5 ± 0.2 1.39 ± 0.20 298 ± 200 602 ± 33 0.70 ± 0.10 11.4 ± 3.4 430 ± 30 190 ± 30 380 ± 40

Wet 8.5 ± 0.1 1.52 ± 0.32 170 ± 113 595 ± 35 0.68 ± 0.09 9.8 ± 1.7 440 ± 20 180 ± 30 380 ± 20

a EC: electrolytic conductivity, bWC: water content, cWHC: water holding capacity, dmean of four sampling days and three replicated plots, e plus and
minus standard deviation of the mean
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content (p < 0.01) and Streptomyces negatively with total N
content (p < 0.001) (Fig. S6).

On each sampling day, the CAP separated the different
treatments considering the bacterial phyla and genera (Fig.
S7 and S8). The function capscale (CAP) in the vegan pack-
age in R is a constrained version of metric scaling, a.k.a. prin-
cipal coordinates analysis, which is based on the Euclidean

distance, but can be used, and is more useful, with other dis-
similarity measures (Oksanen et al. 2018). The capscale func-
tion (vegan) was used to constrain the physicochemical param-
eters analyzed and the means of the different bacterial phyla
and genera relative abundances of the combined sampling days
(Bulgarelli et al. 2015). The CAP analysis showed a clear shift
with wet sowing compared to dry sowing in both PB and CB

Fig. 1 Heatmap with relative abundance (%) of the bacterial (a) phyla
and (b) genera in wet (Wet) and dry sowed soil (Dry) with conservation
agriculture (PB) and conventional agricultural practices (CB) at
CIMMYT’s Norman E. Borlaug experimental station (CENEB) near

Ciudad Obregón (Sonora, Mexico). Soil was sampled on 23 November
(d1), 2 December (d2), 8 December (d3), and 16 December 2015 (d4).
Boolean values were used to cluster rows (bacterial groups) and columns
(different treatments on different sampling days)
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and variations between the plots were smaller in wet sowing
than in dry sowing (Fig. 4). The relative abundance of
Actinobacteria, Bacteroidetes, and Proteobacteria was higher
in soil under dry sowing compared to wet sowing and that of
Acidobacteria was lower (Fig. 4a). The relative abundance of
Acinetobacter and Stenotrophomonas decreased generally in
soil with dry sowing compared to wet sowing, and that of
Bacillus and Steroidobacter increased (Fig. 4b).

3.4 Effect of sampling time on the bacterial
community

A PCA with the different bacterial phyla and genera did not
clearly separate the different sampling days in the different
treatments (Fig. S9 and S10). However, considering the mean
relative abundance of the different bacterial phyla and genera
of the different tillage practices, the PCA separated the differ-
ent sampling days (Fig. 5). The relative abundance of
Acidobacteria, Bacillus, Elusimicrobia, Nitrospirae,
Rubrobacter, and Steroidobacter was higher on the first sam-
pling day while that of Acinetobacter and Proteobacteria was
higher on the last sampling day. The PERMANOVA analysis
indicated that the composition of the bacterial phyla (F = 6.05,
p < 0.001) and genera (F = 2.74, p = 0.003) was highly signif-
icantly different between the sampling days (Table S6). A
CAP analysis with the different bacterial phyla and genera
and soil characteristics did not clearly separate the different
sampling days in the different treatments (Figs. S11 and S12).
However, considering the mean relative abundance of the dif-
ferent bacterial phyla and genera of the different tillage prac-
tices, the CAP analysis separated the different sampling days
(Fig. 6).

4 Discussion

The bacterial community was determined in the bulk soil. The
first sampling day was before plant emergence, while seed-
lings with minimal rhizosphere development were present on
the other sampling days. As such, the effect of the crop on the
bacterial community should be absent or minimal. It is

possible that the summer crop, i.e., maize, affected the bacte-
rial community at the beginning of our sampling period, as
suggested by Alvey et al. (2003). Since a maize–wheat crop
rotation has been applied for over 10 years in both agricultural
practices studied here, the effect of plant species (root exu-
dates) on bacterial community structure to be similar in all
samples (Benitez et al. 2017).

4.1 Changes in the soil physicochemical
characteristics due to wet or dry sowing, tillage
practices, and sampling time

There was more than 2 weeks’ difference between application
of the first irrigation in wet sowed soils, i.e., 6 November, and
dry sowed soils, i.e., 25 November. Hence, the water content
was higher in wet sowed soil than in dry sowed on the first
sampling day, 23 November. Electrolytic conductivity is sus-
ceptible to fluctuations in soil water content (Zhang and
Wienhold 2002). An increase in water content during
rewetting causes an increase in water potential and diffusion
of soluble substrates. These soluble ions tend to leach to
deeper layers thus causing a decrease in EC, whereas soil
drying, hence a decrease in water availability, avoided this,
i.e., soluble salts accumulated (USDA 2011). As such, EC
was generally higher in wet sowed than in dry sowed soil.

Soil drainage, which leaches out soil minerals, is another
factor that affects EC (Grisso et al. 2009). Tillage breaks up
aggregates, decreasing pore size, ultimately decreasing infil-
tration. Additionally, the use of heavy machinery in CB com-
pacts soil, which lowers also infiltration (Manyiwa and
Dikinya 2014). Minimum tillage and crop residue cover im-
prove aggregate stability thereby preventing run-off and im-
proving water infiltration (Verhulst et al. 2011). Improved
water infiltration in PB increased drainage and the leaching
out of minerals resulting in a decrease in EC (Stagnari et al.
2009).

4.2 The bacterial community structure

The Shannon index indicated that the bacterial diversity was
similar in conservation and conventional agricultural practices

Table 2 Effect of agricultural practices (permanent (PB) versus
conventional beds (CB)) in wet or dry sowing treatments, and sowing
(wet versus dry sowing) in PB or CB treatments on bacterial phyla and

genera in soil at CIMMYT’s Norman E. Borlaug (CENEB) experimental
station near Ciudad Obregón (Sonora, Mexico)

Effect of agricultural practices Effect of sowing practices

Wet sowing Dry sowing Permanent beds Conventional beds

F value P value F value P value F value P value F value P value

Phylum 4.42 0.003 1.58 0.116 4.17 <0.001 4.25 0.002

Genus 4.57 <0.001 1.58 0.161 2.36 <0.001 2.36 0.015
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as well as in dry and wet sowing. The Shannon index in this
study was close to the value (H′ = 11.21) reported in organic
farming under similar climatic conditions where rice straw,
water hyacinth, wood chips, organic waste, clay, chicken,
and cow manure were amended to soil (Köberl et al. 2011).

High and diverse organic matter availability will increase bac-
terial diversity (Thiele-Bruhn et al. 2012).

Numerous studies have shown that soil pH helps
shape soil bacterial diversity (Wang et al. 2012), and
extreme soil alkalinity or acidity might reduce bacterial
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Fig. 2 Principal component analysis (PCA) with the relative abundance
(%) of the bacterial phyla in (a) soil with conventional agriculture
practices (CB) soil and (b) with conservation agriculture (PB), and with
the 50 most abundant bacterial genera in soil in (c) CB and (d) PB. Wet
sowed soil sampled on 23 November (○), 2 December (□), 8 December

(◊), and 16 December (Δ), and in dry sowed soil on 23 November (●), 2
December (■), 8 December (♦), and 16 December (▲) at CIMMYT’s
Norman E. Borlaug experimental station (CENEB) near Ciudad Obregón
(Sonora, Mexico). Soil was sampled in 2015
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diversity (Lauber et al. 2009). The pH in soil of
CENEB was slightly alkaline as in the study of

Köberl et al. (2011), so its effect on the bacterial diver-
sity was limited.

Fig. 3 Principal component analysis (PCA) with the relative abundance
(%) of the bacterial phyla in (a) wet sowed soil and (b) dry sowed soil,
and with the 50 most abundant bacterial genera in (c) wet sowed soil and
(d) dry sowed soil. Soil was sampled in conventional agricultural
practices (CB) on 23 November (○), 2 December (□), 8 December (◊),

and 16 December (Δ), and in conservation agriculture (PB) on 23
November (●), 2 December (■), 8 December (♦), and 16 December (▲
permanent beds at CIMMYT’s Norman E. Borlaug experimental station
(CENEB) near Ciudad Obregón (Sonora, Mexico). Soil was sampled in
2015
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The bacterial community was dominated by Proteobacteria,
Acidobacteria, and Actinobacteria, often described as the most
abundant bacterial phyla in arable soil. For instance, Zhao et al.
(2014) found also that these three phyla were dominant in ara-
ble soils with a similar wheat–maize rotation. Wang et al.
(2016) also reported that Proteobacteria, Actinobacteria, and
Acidobacteria were the most abundant phyla in conventional
and conservation tillage practices in arid to semi-arid zones.
Arid regions are prone to extremely long periods of dry weather
before rewetting, so these three bacterial phyla seemed to be

well adapted these conditions (Blazewicz et al. 2014). It made
them also well adapted to the arid conditions and sporadic
rewetting events at CENEB (Evans and Wallenstein 2012).
None of the bacterial genera was clearly dominant. The most
abundant bacterial genera have often been described in arable
soil. Moreno-Espíndola et al. (2018) reported a high relative
abundance of Bacillus, Flavisolibacter, Kaistobacter, and
Steroidobacter in soils under a conventional agricultural and
an organic milpa system in the central highlands of Mexico.

Fig. 4 Canonical analysis of principal coordinates (CAP) with the mean
of the relative abundance (%) of (a) the bacterial phyla and (b) the 50
most abundant bacterial genera and physicochemical characteristics of the
soil sampled on 23 November, 2 December, 8 December, and 16

December 2015. Wet sowed soil with conventional agricultural
practices (CB) (□) and conservation agriculture (PB) (○), and dry
sowed soil with CB (■) and PB (●) at CIMMYT’s Norman E. Borlaug
experimental station (CENEB) near Ciudad Obregón (Sonora, Mexico)
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4.3 Effect of wet or dry sowing on the bacterial
community

Since our team has extensively investigated the effect of dif-
ferent agricultural practices on dynamics of C and N in arable
soil (Ramirez-Villanueva et al. 2015; Chavez-Romero et al.
2016), the focus of this study was strictly to investigate how
the difference in water content as a result of different irrigation
strategies explained affected the bacterial community
structures.

Water content is one of the major factors shaping the bac-
terial community structure in arid soils (Lennon et al. 2012).
In our study, for instance, the relative abundance of
Verrucomicrobia was directly affected by fluctuations in water
availability and it increased as soil water content increased.
Maestre et al. (2015) found the same in their study on the
effects of drying and rewetting in drylands. Prolonged dry
conditions inhibit normal functioning of the soil microorgan-
isms and they become mostly inactive, but they have

developed different mechanisms to survive (Fierer and
Schimel 2002). For instance, some members of Bacillus form
spores while some strains of Cyanobacteria and Pseudomonas
secrete mucilage, extracellular polymeric substances, to pro-
tect themselves against drought (Costa et al. 2018). When a
dry soil is wetted, microbial activity resumes (Muhr et al.
2010). Organic material that was previously physically
protected is released providing microorganisms with an easily
decomposable organic C substrate, while microorganisms that
died under dry conditions further increase the available organ-
ic material (Mavi and Marschner 2012). Copiotrophs that fa-
vor nutrient-rich environments are enriched, while oligotrophs
that favor nutrient deficient conditions are replaced
(Blazewicz et al. 2014; Naylor and Coleman-Derr 2018).
Under prolonged wet conditions, O2 diffusion is restricted
and facultative or obligated anaerobes flourish (Yan et al.
2015). Nitrification and CH4 oxidation, both aerobic process-
es, are inhibited and denitrification and methanogenesis, an-
aerobic processes, are favored (Lennon et al. 2012).
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Fig. 5 Principal component analysis (PCA) with the mean relative
abundance (%) of (a) the bacterial phyla and (b) the 50 most abundant
bacterial genera in wet sowed and dry sowed soil with conservation
agriculture and conventional practices on 23 November (□), 2

December (■), 8 December (○), and 16 December (●) 2015 at
CIMMYT’s Norman E. Borlaug experimental station (CENEB) near
Ciudad Obregón (Sonora, Mexico)
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Microorganisms involved in the latter processes are enriched,
while those involved in the first cease to be active (Moreno-
Espíndola et al. 2018).

Water was applied in the wet sowing treatment on 6
November. Microbial activity was reactivated, and the avail-
ability of easily decomposable organic material subsequently
changed the bacterial community structure (Miller et al.
2005). The relative abundance of Acidobacteria, Bacillus,
and Rubrobacter was higher on the first sampling day (23
November) compared to the other sampling days.
Acidobacteria respond opportunistically to rewetting. Their
relative abundance decreases during desiccation, but rapidly
increases when the soil is rewetted (Maestre et al. 2015). The
phylum also responded opportunistically in this study.
Members of Bacillus form spores to protect against abiotic
stress factors, such as desiccation, remaining in a dormant
state with little or no metabolic activity until conditions for
growth improve, such as increased water and nutrient

availability (Setlow 2014). After irrigation was applied in
wet sowing, the number of spores (relative abundance of
Bacillus) was high due to the germination of their dormant
spores and their enrichment as conditions were favorable on
the first sampling day. Many species of the genus Rubrobacter
are known to resist desiccation as they are mostly mesophilic,
moderately thermophilic, or thermophilic (Chen et al. 2018).
Phylotypes belonging to Rubrobacter responded favorably to
the increased water content after irrigation was applied in wet
sowed soil and were abundant on the first sampling day.

In the dry sowing treatment, the microbial activity was still
low on the first sampling day (23 November), so the bacterial
community structure was different from that in the wet sowing
treatment. The second sampling took place 1 week after the dry
sowing treatment was irrigated and an increase in microbial
activity occurred. However, this change in microbial activity
occurred 22 days later than in the wet sowing. The changes in
the bacterial community structure followed the same pattern in

Fig. 6 Canonical analysis of principal coordinates (CAP) with the mean
relative abundance (%) of (a) the bacterial phyla and (b) the 50 most
abundant bacterial genera and physicochemical characteristics in wet
sowed and dry sowed soil with conservation agriculture and

conventional practices on 23 November (□), 2 December (■), 8
December (○), and 16 December (●) 2015 at CIMMYT’s Norman E.
Borlaug experimental station (CENEB) near Ciudad Obregón (Sonora,
Mexico)
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the dry as in the wet sowing treatments, but later. Consequently,
the bacterial community structures were different between the
wet and dry sowing. For instance, Bacteroidetes and
Proteobacteria exhibited copiotrophic characteristics as previ-
ously reported by Fierer et al. (2007). Theywere enriched in the
dry sowed soil, compared to wet sowed soil, where the avail-
ability of decomposable organic matter increased after
rewetting. Acidobacteria and Acinetobacter, both oligotrophs
(Fierer et al. 2007), were more abundant in wet sowed soil than
in dry sowed soil. In the wet sowed soil, the easily decompos-
able organic material was decomposed earlier than in the dry
sowed soil. Consequently, oligotrophs were enriched earlier in
the wet sowed soil than in dry sowed soil.

In this study, the timing of rewetting the soil had a strong
effect on the bacterial community independent of the tillage
practices applied. The timing of moistening the soil had such a
strong impact on the bacterial community that considering all
sampling days or averaging them did not alter its highly sig-
nificant effect. The difference in bacterial community struc-
ture between wet and dry sowing also lasted at least a month.
For instance, Acinetobacter was more abundant on the fourth
sampling day (16 December) compared to the other sampling
days. This suggests that the genus can survive lower water
availability. Marasco et al. (2012) found Acinetobacter in cul-
tivated desert soil where water was a major limiting factor and
confirmed that the genus can survive dry conditions with lim-
ited availability of water by forming spores.

4.4 Effect of tillage practices on the bacterial
community

The bacterial community structure was different between PB
and CB treatment in wet sowing. In the wet sowing, water was
applied on 6 November and the first sampling took place
17 days later. The effect of wetting the soil, i.e., a flush in
microbial activity as the organic material released was mineral-
ized, had ceased after 17 days. As such, differences between PB
and CB depended nearly solely on differences in soil conditions
due to differences in the treatment of crop residue in the field.
For instance, the amount of organic material available in PB
and CBwas different as it was left on the soil surface in the first
and incorporated in the second. Members of Actinobacteria
have been reported to be copiotrophic (Leff et al. 2015) and
should have thrived better in tilled soil where organic matter
would have been more accessible than in permanent beds with
no tillage. However, our results showed that this phylum was
more abundant in wet sowed soil under PB than CB so they
could not be characterized as a copiotroph in this study. Fierer
et al. (2007) also found that the abundance of Actinobacteria
did not change as expected by C availability. In the dry sowing
treatment, no significant effect of tillage practices on the bacte-
rial community was detected. On the first sampling day, i.e., 23
November 2015, the soil was still dry, so microbial activity was

low in both PB and CB and the differences in bacterial com-
munity minimal. The soil was rewetted on 25 November, so the
effect on the bacterial community structure of wetting the soil
was still strong on the second sampling day, i.e., 7 days later. As
such, the effect of increased water content masked a possible
effect of tillage practices on the bacterial community, i.e., ap-
plying water trumped the effect of the different tillage practices
in this study. It was only after the effect of water application on
the short-termmicrobial activity had ceased that the effect of the
tillage practices became evident in the microbial community in
the dry sowing treatment.

It is worth pointing out that although no screening was
done for specific traits. Bacterial genera, such as
Acinetobacter, Bacillus, Pseudomonas, and Streptomyces,
abundant in this study, have been identified as plant growth–
promoting bacteria. They stimulate plant growth and increase
their resistance to biotic and abiotic stresses (Beneduzi et al.
2012). They may secrete antibiotics and other metabolites to
suppress the activity and growth of plant pathogens (Beneduzi
et al. 2012). Plant growth–promoting bacteria might produce
also hormones, such as auxins and cytokinins, and other sub-
stances that aid in the uptake of nutrients (Dias et al. 2015).

5 Conclusions

This study revealed that soil water content was important in
shaping the bacterial community structure, regardless of the
tillage practice applied, i.e., conventional practices or conser-
vation agriculture. In fact, the most abundant bacterial groups
identified in this study were affected more by wet and dry
sowing than by tillage practices and the effect of tillage prac-
tices on bacterial structure was only significant in wet sowed
soil. The changes in relative abundance over time were due to
the sudden increase in soil water content on the different irri-
gation days in dry and wet sowing.
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