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Abstract
Purpose Comparing to conventional laboratory methods, visible–near-infrared reflectance (vis–NIR) spectroscopy is a more
practical and cost-effective approach for estimating soil physical and chemical properties.
Materials and methods This paper aims to build statistical machine learning models to investigate the efficiency of
spectral data for comprehensive evaluation of the soil quality indicators. Seventeen physical and chemical properties
were measured using standard methods as indicators of soil quality. Soil samples were scanned in the laboratory in
the vis–NIR range (350–2500 nm), the calibration set of 31 samples and the validation set of 13 samples for cross-
validation and independent validation; twenty-four preprocessing methods were tested to improve predictions, and a
partial least squares regression (PLSR) was used to predict soil quality indicators.
Results and discussion Comparing model indices, the model constructed based on the PLSR machine learning method
has a good predictive power (R2 > 0.9, ratio of performance to deviation (RPD) > 3.0). For physical and chemical
properties, the bulk density (BD, R2 = 0.97, RPD = 5.90), soil organic matter (SOM, R2 = 0.98, RPD = 8.56), pH
(R2 = 0.95, RPD = 4.40), and TN (R2 = 0.98, RPD = 6.67) concentration were predicted. This indicates that the method
is suitable for the prediction of these soil elements in this study area. For the heavy properties, except for Mn, Zn,
Cd, and As, the other five heavy metal concentrations were well predicted. It can be seen that the prediction ability
of the construction model is Hg, Cr, Pb, Ni, and Cu in order of superiority to inferiority. The results show that a
combination of spectroscopic and chemometric techniques can be applied as a practical, rapid, low-cost, and quan-
titative approach for evaluating soil physical and chemical properties in Shaanxi, China.
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Abbreviations
BD Bulk density
SW Gravimetric soil water

M Soil organic matter
TN Total nitrogen
NN Nitrate nitrogen
AK Available potassium
AP Available phosphorus
SG Savitzky-Golay
FD First deviation
SD Second deviation
SNV Standard normal variate
MSC Multiplicative scatter correction
NOR Normalization
Max Maximum
Min Minimum
SD Standard deviation
CV Coefficient of variation
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1 Introduction

Soil is a fundamental natural resource that consists of organic
and inorganic mineral matter, water, and air, which people rely
on for the production of food and energy (Palma et al. 2007;
Cuffney 2010). Soil is an environmental filter for metals, nu-
trients, and other contaminants that may leach into the envi-
ronment. The ability of a soil to support any of these functions
depends on its structure, composition, and chemical, biologi-
cal, and physical properties (Karlen et al. 1997). Evaluation of
soil quality usually utilizes a combination of physical and
chemical indicators as a minimum data set (Bo et al. 2010;
Rossel et al. 2016). Compared with conventional analyt-
ical methods, vis–NIR is nondestructive, fast, and cost-
effective (Shepherd and Walsh 2002; Rossel et al. 2006;
Hong et al. 2017).

Soil spectral properties are affected by soil minerals, water
content, organic matter, and texture. The transitional abilities
of different soil components are different, and when NIR ra-
diation interacts with a soil sample, it is the overtones (Hbroge
et al. 2004; Rossel et al. 2008). Therefore, the different ab-
sorption bands in the soil absorption spectrum allow quantita-
tive analysis of the soil component content. In the visible
region (400–780 nm), molecules of various components of
the soil produce electron absorption spectra. Electronic exci-
tations are the main process as the energy of the radiation is
high and this region contains useful information in organic
and inorganic materials in the soil (Mortimore et al. 2004;
Schoell et al. 2005). For absorptions in the NIR region
(780–2500 nm), the absorption of soil is mainly caused by
fundamental frequency vibration of C–H, N–H, O–H, and
frequency-doubling vibration absorption (Bo et al. 2010;
Rodionov et al. 2014). Water has a strong influence on vis–
NIR spectra of soil, the absorption bands around 1400–
1900 nm, and other parts of the vis–NIR region.

Several literatures have shown the capacity of the com-
bined use of vis–NIR spectroscopic and chemometrics to pre-
dict soil physical and chemical properties in the most recent
20 years (Rossel et al. 2006; Mouazen et al. 2010; Dotto et al.
2017). For example, soil bulk density and soil water content
with spectroscopy have been discussed with satisfied predic-
tive results (Quraishi and Mouazen 2013; Al-Asadi and
Mouazen 2014; Liu et al. 2014; Morellos et al. 2016).
Regarding the chemical properties, several researchers have
demonstrated accurate predictions of soil chemical content.
Hong et al. (2017) and Jiang et al. (2016) demonstrated new
possibilities to estimate SOM using vis–NIR spectroscopy
with multivariate modeling techniques. Besides, combined
vis–NIR spectroscopy with partial least squares regression
(PLSR) has been applied in total nitrogen (TN), moisture con-
tent, and pH (Buondonno et al. 2012; Kuang and Mouazen
2013; Morellos et al. 2016; Filippi et al. 2018). In some agri-
cultural areas, the vis–NIR spectroscopy-based approach has

also been widely used in monitoring agricultural pollution,
especially for heavy metal pollution (Angelopoulou et al.
2017; Todorova et al. 2018).

In this study, we collected 44 soil samples from common
parent materials and textures in the three regions of Shaanxi,
China. Soil samples were scanned in the laboratory in the
range of 350–2500 nm; twenty-four preprocessing methods
and correlation analysis were tested to improve predic-
tions, and a partial least squares regression was used to
predict soil quality indicators. Our goal is to establish a
quantitative model of soil quality and evaluate the abil-
ity of soil spectra for predicting soil physical and chem-
ical properties in Shaanxi Province.

2 Materials and methods

2.1 Study area and soil sampling

The study site was located in the middle of Guanzhong Plain,
Shaanxi Province, China (Fig. 1). The terrain is high in the
northwest and low in the southeast. It descends from north to
south and is divided into three roads. It consists of four land
types: the frontal alluvial fan, the loess plateau, the flood plain,
and the alluvial terrace. The annual average temperature is
12.9 °C, and the average annual precipitation is between
552.6 and 663.9 mm.

We collected 44 soil samples in February 2013. The soil
type is earth–cumulic–orthic anthrosols, and the sampling
depth was the thickness of the tillage layer, usually 0–30 cm.
These soil samples consist of different physical and chemical
properties, and these substances affect the reflectance and ab-
sorption spectral characteristics of soil. In order to establish a
more accurate spectral quantitative model for the study area,
seventeen soil property indicators were measured including
soil organic matter (SOM); total nitrogen (TN), bulk density
(BD), soil water (SW), total nitrogen (TN), nitrate nitrogen
(NN), available potassium (AK), available phosphorus (AP),
Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, and lead (Pb).

2.2 Chemical analysis and spectral measurement

2.2.1 Soil physical measurements

Soil samples were air-dried and crushed, and crop residues,
root material, and stones were removed so the soil could pass
through the 2-mm sieve. Bulk weight was analyzed by
collecting a known volume of soil using a metal ring pressed
into the soil (intact core), and determining the weight after
drying (Ito et al. 2002). The moisture content was determined
gravimetrically after heating the samples at 105 °C for 24 h
(Ruberto et al. 2010).
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2.2.2 Soil chemical measurements

SOM was measured by the combustion method using a
LECO® FP2000 analyzer (Laboratory Equipment
Corporation, St Joseph, MI, USA). Soil pH was measured in
deionized water (Zornoza et al. 2008). TN was measured by
the Kjeldahl method (Houba 1997). NN was determined by a
UV spectrophotometer (Gross et al. 2010). AP was measured
by the NaHCO3 method (Yaseen and Malhi 2009). AK was
measured by the acetic acid-flame photometric method
(Kataoka et al. 1991). The heavy metal content was deter-
mined by inductively coupled plasma mass spectrometry

(ICP-MS, Agilent 7700), and included Cr, Mn, Ni, Cu, Zn,
As, Cd, Hg, and lead (Pb) (Gajek et al. 2013).

2.2.3 Soil reflectance measurements

Diffuse reflectance spectra of soil samples were measured using a
portable spectroradiometer (Fieldspec 4, Analytical Spectral
Devices, Inc.) with a spectral range of 350–2500 nm. The
spectroradiometer had a bandwidth of 1.4 nm at 350–1000 nm
and 1.1 nm at 1001–2500 nm. Measurements were made with a
Hi-Brite Contact Probe that uses halogen bulb color temperature
(2901 ± 10K) for illumination. The contact probe measures a spot

Fig. 1 Study area and sampling point distribution
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size of 10 nm. The sensor was calibrated with a white reference
panel once every ten measurements. For every sample, the Petri
dish was rotated 4 times, each time by 90°, and 40 spectra were
averaged to minimize noise and to maximize the signal-to-noise
ratio, then averaged in order to form a representative spectrum.
Spectra were recorded with a sampling resolution of 1 nm, and
thus, each spectrum comprised 2151 reflectance channels in the
range of 350–2500 nm.

2.3 Spectral preprocessing

Spectral preprocessing with mathematics was commonly used
to correct measurements and noisy spectra. In addition to chem-
ical properties, soil structural properties also influence soil spec-
tra, such as light scattering effects. To enhance the more chem-
ically relevant peaks in the spectra and reduce the effects

baseline shifts and overall curvature, various spectral prepro-
cessing approaches have been studied. For example, Savitzky–
Golay (SG) smoothing with the first and second derivatives
with a second-order polynomial and window size of 9 wave-
lengths were used to reduce baseline variation and increase
resolutions of spectral peak features (Peng et al. 2014; Fu
et al. 2018). Standard normal variable transformation (SNV)
transform was used to reduce the particle size effect and curvi-
linear trend of the spectrum (Dhanoa et al. 1995).Multiplication
scattering correction (MSC) and normalization (NOR) removes
additive or multiplicative signal effects (Burger and Geladi
2007). Logarithmic transformation (LOG (1/R)) not only en-
hances the difference in visible spectrum but also reduces the
influence of multiplicative factors under light conditions (Liu
et al. 2018). In this paper, prior to building the predictive
models, twenty-four spectral preprocessing methods were ex-
plored, in order to improve the final soil physical and chemical
predictions performances. The treatments included SG smooth-
ing with the first and second derivatives with a second-order
polynomial and a window size of 9 wavelengths alone and in
conjunction with SNV, MSC, NOR, and LOG (1/R).

2.4 Prediction model building and testing

Partial least squares regression (PLSR) is a primary statistical
method, and it combines features from principal component
analysis and multiple regression in order to reduce complex
spectral matrix (Ergon 2014). It is particularly useful when we
need to predict a set of dependent variables from a very large
set of independent variables. Because it can handle the large
dimensionality and collinearity of data produced by vis–NIR
spectroscopy, this method has been widely applied in the field
of chemometrics (Qiao et al. 2015). To train and then test our
models, we selected at random 70% of the soil samples to
represent the calibration set (33 samples) to build PLSR
models, and the remaining 30% was used for the validation
set (13 samples).

Table 1 Statistical analysis of the attributes of soil properties

Soil quality indicators Mean Max Min SD CV

BD (g cm−3) 1.23 1.61 1.02 0.133 0.11
SOM (g kg−1) 18.39 26.93 11.83 3.60 0.20
SW (%) 0.18 0.38 0.09 0.04 0.25
pH (unitless) 8.12 8.38 7.47 0.18 0.02
TN (g kg−1) 1.35 1.60 0.61 0.16 0.12
NN (mg kg−1) 4.68 13.75 0.88 2.82 0.60
Ak (mg kg−1) 142.6 368.9 80.1 56.85 0.40
AP (mg kg−1) 26.0 105.1 0.8 17.15 0.66
Cr (mg kg−1) 17.95 19.99 16.06 0.93 0.05
Mn (mg kg−1) 274 310 249 13.58 0.05
Ni (mg kg−1) 12.77 14.15 14.15 0.68 0.05
Cu (mg kg−1) 7.29 8.37 6.37 0.45 0.06
Zn (mg kg−1) 15.81 19.79 12.71 1.88 0.12
As (mg kg−1) 7.51 13.40 4.78 1.87 0.25
Cd (mg kg−1) 0.40 0.51 0.32 0.04 0.11
Hg (mg kg−1) 12.58 23.92 6.49 5.17 0.41
Pb (mg kg−1) 21.05 24.98 19.28 1.16 0.05

SOM soil organic matter, TN total nitrogen, BD bulk density, SW soil
water, TN total nitrogen, NN nitrate nitrogen, AK available potassium,
AP available phosphorus, Max maximum, Min minimum, SD standard
deviation, CV coefficient of variation
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Fig. 2 Reflectance curves of soil
samples with different content
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For each PLSR model, several performance metrics were
used for model evaluation. The coefficient of determination
(R2) and the root mean squared error (RMSE) give indica-
tions of the validity of the prediction models. The standard
error (SE) measures the precision of the prediction models.
The ratio of performance to deviation (RPD) was calculated
as the standard deviation (SD) of the validation set divided
by the RMSE (Sarathjith et al. 2014; Gholizadeh et al.
2017). Equations (1)–(4) are as follows:

R2 ¼
∑n

i¼1 xi−yi
� �2

∑n
i¼1 yi−yi

� �2 ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1

byi−yi
� �2

N

vuut
ð2Þ

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1

byi−y
� �2

N−1ð Þ

vuut ð3Þ

RPD ¼ SD

RMSE
ð4Þ

where byi indicates the values estimated by the model, yi indi-
cates the observed values, andN is the number of observations
of the variable to bemodeled. The RPDwas evaluated with the
following criteria: RPD> 3 represents an excellent prediction;
2 < RPD< 3 has limited predictive ability; RPD < 2 has no
predictive ability (Prs et al. 2012; Sun et al. 2018).

3 Results and discussion

3.1 Soil properties

The statistics of reference values of soil property concentrations
are summarized in Table 1. The research areas’ soil texture is silt.
The pH values ranged from 7.47 to 8.38, neutral to weak alka-
line. The mean value of pH indicators shows that the soil is
alkaline in the study area. The BD values ranged from 1.02 to
1.61. The content of SOM ranged from 11.83 to 26.93 g kg−1. In
addition, the ranges of TN, NN, AK, and AP concentrations
were 0.61–1.60 mg kg−1, 0.88–13.75 mg kg−1, 80.1–
368.9 mg kg−1, and 0.8–105.1 mg kg−1, respectively.
According to the Soil Environment Quality standards in China,
the Hg, Pb, and Mn concentrations showed more skewed and
irregular distributions. This is probably caused by irrational use
of mercury, which is usually contained in fertilizers and pesti-
cides. In addition, compared with Ni, Cu, As, and Cd, the Hg
concentrations presented a higher standard deviation (SD=5.17) Ta
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and a high coefficient of variation (CV=41%), thereby exceeding
the critical value. The contamination may result from sewage irri-
gation. This indicated that the selected properties were spatially
variable within the study area, and the wide range of physical and
chemical properties provides vis–NIR calibration and validation
accuracy (Abdi et al. 2012; Xu et al. 2018).

3.2 Soil spectral analysis

Because of the transition energy levels of different soil com-
ponents, there are different absorption bands in the soil ab-
sorption spectrum curve. The calculated mean reflectance

spectrums for soil samples with different SOM content are
shown in Fig. 2. In general, the soil samples have similar
spectral patterns. In particular, the spectral reflectance in-
creases with wavelength and has three prominent absorptions
near 1400 nm, 1900 nm, and 2100 nm; this is because of soil
moisture was strongly absorbed. The first absorption region at
approximately 1400 nm is the first overtone of the O–H
stretch and C–H combination of aromatic structures from lig-
nin (Vasques et al. 2008). The second absorption at approxi-
mately 1900 nm is due to the combination of O–H and H–O–
H. The third absorption at approximately 2200 nm results
from O–H stretches and the Al/Fe-OH bend (Bendor 2002;

Table 3 The results of calibration and validation using the preprocessing in the soil properties

Indicators Optimum preprocessing Pc Calibration Validation

R2 RMSE SE R2 SE RMSE RPD

BD log(1/R) + SG +MSC + FD 11 0.96 0.03 0.03 0.97 0.02 0.02 5.90

SOM SG+MSC+ FD 8 0.97 0.49 0.50 0.98 0.46 0.45 8.56

SW log(1/R) + SG + SNV + FD 6 0.87 0.02 0.02 0.80 0.01 0.01 2.09

pH R + SG+ SNV+ FD 8 0.95 0.03 0.03 0.95 0.05 0.05 4.40

TN R + SG+NOR+ SD 9 0.96 0.03 0.03 0.98 0.02 0.02 6.67

NN log(1/R) + SG + FD 5 0.87 1.09 1.11 0.90 0.64 0.62 3.07

Ak R + SG+ SNV+ SD 5 0.84 2.44 2.48 0.89 1.44 1.39 2.91

AP log(1/R) + SG +MSC + SD 6 0.82 5.82 5.92 0.85 5.98 5.75 3.58

Cr log(1/R) + SG +MSC + FD 8 0.93 0.23 0.24 0.97 0.10 0.10 5.96

Mn log(1/R) + SG + SNV + FD 7 0.88 4.22 4.29 0.80 3.08 2.96 2.09

Ni R + SG+MSC+ SD 7 0.94 0.14 0.15 0.93 0.13 0.13 3.74

Cu R + SG+NOR+ FD 6 0.91 0.11 0.11 0.92 0.08 0.08 3.38

Zn log(1/R) + SG +MSC + FD 5 0.80 0.75 0.76 0.91 0.33 0.31 3.13

As log(1/R) + SG +MSC + SD 6 0.89 0.62 0.63 0.87 0.65 0.62 2.58

Cd log(1/R) + SG +NOR + FD 9 0.94 0.01 0.01 0.97 0.03 0.03 2.77

Hg log(1/R) + SG + SNV + FD 8 0.98 0.61 0.62 0.99 0.13 0.12 8.59

Pb R + SG+ SNV+ SD 6 0.93 0.33 0.33 0.97 0.10 0.10 5.57

SG Savitzky–Golay, SNV standard normal variate, MSC multiplicative scatter correction, NOR normalization, Pc principal component score
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Ding et al. 2013). Between 350 and 760 nm, the reflectance
curves showed an increasing trend. The absorption regions
between 350 and 950 nm were caused by the iron oxides
and organic matter, and the absorptions between 1100 and
1550 nm result from clay minerals and water; between 1700
and 1800 nm, they were caused by carbon, and absorptions

between 2100 and 2500 nm result from kaolinite, smectite,
carbonates, and organic compounds (Bishop et al. 2008;
Nawar et al. 2016). Despite the similarity, it is also clear to
see that the samples with higher SOM content tend to have
lower reflectance values. This is because as the SOM content
increases, the soil color gradually becomes deeper. When light

Table 4 Best results of
calibration and validation in the
soil chemical properties

Indicators Optimum preprocessing Calibration Validation

R2 RMSE SE R2 SE RMSE RPD

SOM SG+MSC + FD 0.97 0.49 0.50 0.98 0.46 0.45 8.56

pH R + SG+ SNV+ FD 0.95 0.03 0.03 0.95 0.05 0.05 4.40

TN R + SG+NOR + SD 0.96 0.03 0.03 0.98 0.02 0.02 6.67

SG Savitzky–Golay, SNV standard normal variate,MSCmultiplicative scatter correction, NOR normalization, Pc
principal component score
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Fig. 4 Scatter plots of the
measured and vis–NIR predicted
soil chemical contents. Note:
SOM, soil organic matter; TN,
total nitrogen; NN, nitrate nitro-
gen; AK, available potassium;
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Table 5 Calibration and validation statistics of the best results of five heavy metals

Indicators Optimum preprocessing Calibration Validation

R2 RMSE SE R2 SE RMSE RPD

Cr log(1/R) + SG +MSC+ FD 0.93 0.23 0.24 0.97 0.10 0.10 5.96

Ni R + SG+MSC+ SD 0.94 0.14 0.15 0.93 0.13 0.13 3.74

Cu R + SG+NOR+ FD 0.91 0.11 0.11 0.92 0.08 0.08 3.38

Hg log(1/R) + SG + SNV+ FD 0.98 0.61 0.62 0.99 0.13 0.12 8.59

Pb R + SG+ SNV+ SD 0.93 0.33 0.33 0.97 0.10 0.10 5.57

SG Savitzky–Golay, SNV standard normal variate, MSC multiplicative scatter correction, NOR normalization, Pc principal component score
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Fig. 5 Scatter plots of the measured and vis–NIR predicted soil heavy metal contents
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hits the surface of the soil, the incident light is absorbed by the
soil, causing the soil reflectivity to gradually decrease.

3.3 Correlation analysis

Soil is the product of weathering and soil formation of the
surface rocks of the crust. Generally, the chemical composi-
tion of the soil is relatively stable, and the content level and
variation range of the elements are low. Therefore, the content
of soil chemical elements is highly comparable. In studying
the correlation between elements, it could be inferred whether
the sources are the same. Various elements in the soil have
different migration and enrichment trends, showing that the
correlation of each element content is different. The Pearson
correlation coefficient was used to analyze relationships be-
tween soil elements (Table 2).

From the results, we founded that strong correlations were
observed between SOM with Zn (r = − 0.45), which was
mainly caused by zinc accumulation in soil with high humus
content. The zinc content of soil increases with the increase of
humus and organic matter content (Wang et al. 2014). Also,
the correlations between heavy metal elements are significant.
For example, strong correlations were observed between Cr
and Ni (r = 0.94), Mn (r = 0.88), Pb (r = 0.64), Cu (r = 0.62),

and Hg (r = 0.59). The correlation coefficients of Ni and Cu,
Zn, Hg, and Pb were 0.83, 0.57, and 0.59, respectively; the
correlation coefficients of Cu and Zn, Cd, Hg, and Pb were
0.61, 0.55, 0.50, and 0.68, respectively. The correlation coef-
ficients of Zn and Hg and Pb were 0.83 and 0.55, respectively.
The correlation coefficient of Hg and Pb was 0.68. The Cu,
Zn, and Pb elements are sulfur-philic elements, and the similar
elements have a certain commonality in epigenetic geochem-
istry, and thus have significant correlation. It shows that these
heavy metals are more likely to come from the same source of
pollution and have a strong companion effect.

3.4 Model performance

After S–G nine-point smoothing, transformation of NOR,
MSC, and SNV, the first deviation (FD), second deviation
(SD), and LOG (1/R) combination PLSR were used to estab-
lish the prediction model. At the same time, in order to avoid
over-fitting, the dimension of the input variables was kept as
small as possible.

The model performances for different soil indicators are
summarized in Table 3, and accuracies were reported on the
testing dataset. For physical indictors BD and SW, the best
result was achieved for BD, the best preprocessing was
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log(1/R) + SG +MSC + FD, the accuracies were R2 = 0.97,
RPD = 5.90, RMSE = 0.02, and SE = 0.02, which can be con-
sidered as an excellent model. For the SW, the R2 < 0.90,
RPD = 2.09 < 3, which cannot be considered an excellent
model (Fig. 3). The predictions of BD and SW have been
obtained, as observed in previous studies (Quraishi and
Mouazen 2013; Al-Asadi and Mouazen 2014; Liu et al.
2014). The BD could be affected by good soil structure that
leads to overall good soil quality (Figueroa 2003).

Calibration and validation model results show that different
preprocessing methods have significant effects on soil physi-
cal and chemical properties. For chemical properties, com-
pared with performance metrics R2, RMSE, SE, and RPD,
best results of calibration and validation in the soil chemical
properties were achieved for SOM (R2 = 0.98, RPD = 8.56,
RMSE = 0.45), pH (R2 = 0.95, RPD = 4.40, RMSE = 0.05),
and TN (R2 = 0.98, RPD = 6.67, RMSE = 0.02) (Table 4).
The three best optimum preprocessing models include SG +
MSC + FD, R + SG + SNV + FD, and R + SG + NOR + SD.
The performances of SOM, pH, and TN prediction were better
than AK (R2 = 0.89, RPD = 2.91 < 3.0, RMSE = 1.39), AP
(R2 = 0.85 < 0.90, RPD = 3.58, RMSE = 5.7495), and NN
(R2 = 0.90, RPD = 3.07, RMSE = 0.62) (Fig. 4), resulting
from the overtone and combinations of O–H, C–H (Rossel
et al. 2006; Vasques et al. 2008). Therefore, further research
needs to improve the calibration and validation accuracy of
soil properties, especially AK, AP, and NN.

Regarding the heavy properties, calibration and valida-
tion statistics of the best results of five heavy metals are
presented in Table 5. Models for five heavy metals include
Hg (R2 = 0.99, RPD = 8.59, RMSE = 0.12), Cr (R2 = 0.97,
RPD = 5.96, RMSE = 0.10), Ni (R2 = 0.93, RPD = 3.74,
RMSE = 0.13), Pb (R2 = 0.97, RPD = 5.57, RMSE = 0.10),
and Cu (R2 = 0.92, RPD = 3.38, RMSE = 0.08). Models for
As (R2 = 0.87, RPD = 2.58), Mn (R2 = 0.80, RPD = 2.09),
and Cd (RPD = 2.77) had R2 < 0.9 and RPD < 3.0; for the
model of Zn, although R2 = 0.91 > 0.90, RPD = 3.13 > 3.0,
the offset had too much deviation (Fig. 5). According to the
results, Mn, Zn, and As were not as good as the others, and
the essential reason is that these heavy metals in soil are
spectrally featureless and are limited in vis–NIR spectra
(Wu et al. 2007; Wang et al. 2014).

4 Conclusions

Vis–NIR spectroscopy and chemometric analysis have been
demonstrated to be reliable tools for estimating soil physical
and chemical properties. In this study, based on collected soil
spectral data and chemical indicators, we have established a
prediction model of seventeen soil elements and analyzed the
potential of vis–NIR spectroscopy to predict the contents of
soil properties using the PLSR technique.

Our results show that accurate calibration and validation
models in the soil chemical properties were achieved, includ-
ing BD, SOM, pH, and TN. In addition, Hg, Cr, Ni, Pb, and
Cu concentrations were well predicted. Moreover, vis–NIR
spectroscopy is as an effective, nondestructive, fast, and
cost-effective tool for accurate predictions of soil properties,
and combined with methodology can be used for rapid acqui-
sition of spectra, multi-parameters, and assessment of soil
physical and chemical properties in the center of Shaanxi
Province. Although the predictions were less accurate than
the laboratory, we are optimistic of the potential of vis–NIR
and chemometric methods in the prediction of soil properties.
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