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Abstract
Purpose Hulunbuir steppe has flat terrain and wide riparian zone of rivers and lakes on it. Owing to climate change, these riparian
zones are often submerged or dried. This not only results in the instability of biodiversity in these regions but also affects the soil
biogeochemical cycles. Soil C:N:P ecological stoichiometry plays a vital role in predicting and understanding the balance of
multiple chemicals in ecological interactions. However, few studies have examined the soil C:N:P ecological stoichiometry in
riparian zones of Hulunbuir steppe under different submergence states. Our objectives were to explore whether submergence
frequencies impact soil C:N:P stoichiometry and identify the key factors.
Materials and methods Four study sites were selected along the Hui river in Hulunbuir steppe, and three plots of different
submergence frequencies, high (HF-sub, 5 to 7 times per year), moderate (MF-sub, 2 to 3 times per year), and low (LF-sub,
unflooded or flooded once per year), were selected for each study site. Soil organic carbon (SOC), total nitrogen (TN), total
phosphorus (TP), their ecological stoichiometric ratios (soil C:N, N:P, and C:P), soil ammonia nitrogen (NH4

+-N), nitrate
nitrogen (NO3

−-N), available phosphorus (AP), soil pH, electrical conductivity (EC), soil moisture content (SMC), soil bulk
density (SBD), porosity, and hardness were measured and analyzed.
Results and discussion The results indicated that soil C:N:P ecological stoichiometry was notably affected by submergence
frequency across the four study sites (P < 0.05). SOC, TN, TP, and their stoichiometric ratios changed regularly with the
submergence frequency change, whereas their trends were inconsistent at different drainage basins. Soil C:N decreased with
the decrease in submergence frequency but kept in a narrow scope, whereas the N:P and C:P were changed greatly under different
submergence frequencies. Further analysis found that these significant variations in N:P and C:P were mainly due to the changes
in soil TP which suggested there might be a P limitation in the riparian zones. The results of redundancy analysis (RDA) and path
analysis indicated that soil AP and NO3

−-N were the key indirect factors affecting soil C:N:P ecological stoichiometry under
different submergence frequencies, and SMC was an indirect factor.
Conclusions We demonstrated that the soil C:N:P ecological stoichiometry was significantly affected by the submergence
frequency in the riparian zones of Hulunbuir steppe. Soil N:P and C:P were more susceptible to change than C:N under different
submergence frequencies. If the contents of soil AP and NO3

−-N were appropriate, soil C:N:P ecological stoichiometry will be
more beneficial to regulating the cycle and balance of soil nutrient elements in the riparian zones, which can promote the riparian
zones to provide better ecological functions.
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1 Introduction

Hulunbuir steppe, located in Inner Mongolia of Northeast
China, is the best preserved steppe in the eastern Eurasian
steppe (Werger and Staalduinen 2012; He et al. 2017). The
riparian zones formed by rivers or lakes are the transition and
connection zones of grassland and rivers or lakes on the
Hulunbuir steppe, which have abundant biodiversity, water,

Responsible editor: Claudio Colombo

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11368-019-02533-x) contains supplementary
material, which is available to authorized users.

* Derong Su
suderong@bjfu.edu.cn

Extended author information available on the last page of the article

https://doi.org/10.1007/s11368-019-02533-x
–Journal of Soils and Sediments (2020) 20:1 –1480 493

Published online:/  December 2019 7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11368-019-02533-x&domain=pdf
http://orcid.org/0000-0001-8493-6516
https://doi.org/10.1007/s11368-019-02533-x
mailto:suderong@bjfu.edu.cn


and forage resources (Zhu et al. 2018, 2019). In the pastoral
regions, herders live and herd their livestock around open
areas of grassland according to seasons and the changing
availability of water and pasture (Fernández-Giménez 1999).
Due to high plant diversity and productivity as well as abun-
dant water resources, the areas around the riparian zones are
usually a better pasture and camp for herders, especially at the
dry season: the forage productivity and plant diversity of the
Hulunbuir steppe are weak and poor, whereas the riparian
zones are vibrant and lush (Caihong et al. 2013; He et al.
2017). On the other hand, these riparian zones also are the
important habitats and water and food resources for migratory
birds and wildlife. However, due to climate change and an-
thropogenic disturbance, such as reclamation and overgrazing,
most Hulunbuir steppes have severely degenerated in recent
decades (Sun et al. 2016; Na et al. 2019; Zhao et al. 2019). In
these degraded processes, the riparian zones were the most
fragile and sensitive ecosystems, which reflected in the shrink-
age of the riparian area, degradation of ecological functions,
soil salinization, etc. (Wang et al. 2017; Na et al. 2019; Zhao
et al. 2019).

Unlike other riparian zones, the riparian zones on the
Hulunbuir steppe are relatively wide and flat. In the high-
water period, such as the snowmelt season and rainy season,
almost all the areas of the riparian zones are submerged by the
flood from rivers or lakes, and the width of the submerged
areas is approximately 200 to 300 m. However, in the with-
ered water period, flood recedes and the water areas of rivers
or lakes decrease rapidly, and the riparian zones are drained
(Tonkin et al. 2018; Joseph et al. 2019; Larson et al. 2019). In
this cycling of flooding and draining, the riparian zones suffer
the periodic cycle of submergence and drought, and the fre-
quency of submergence or drought varies in the land perpen-
dicular to the river channel (Deslippe et al. 2014; Holt et al.
2017). The areas near the river channel or margin of the ripar-
ian zones are almost flooded or drained all year around,
whereas between these two regions, submergence and de-
submergence alternately cycle due to the fluctuation of the
water table (Wu and Liu 2015). The difference of submer-
gence frequency in the direction perpendicular to the river
channel will greatly affect vegetation community composi-
tion, plant diversity, forage productivity, soil physicochemical
properties, soil nutrient cycling, and even soil C:N:P stoichi-
ometry of the riparian zones (Wilson et al. 2011; Jiang et al.
2015; Stromberg et al. 2017). However, the research focusing
on the effect of submergence frequency on soil C:N:P ecolog-
ical stoichiometry is limited (Ren et al. 2018; Wang et al.
2018b), particularly the riparian zones on grassland.

Soil ecological stoichiometric ratio (C:N:P) plays the most
important role in revealing the cycling and equilibrium mech-
anisms of soil carbon (C), nitrogen (N), phosphorus (P), and
other nutrient elements (Sinsabaugh and Follstad Shah 2012).
It relates to the important soil biological processes, such as the

coupling and transformation of C, N, and P (Amoros and
Bornette 2002; Li et al. 2018), and soil litter decomposition,
as well as the biochemical cycle of nutrients and organic mat-
ter breakdown or oxidation (Sinsabaugh and Follstad Shah
2012). In riparian zones, the C:N:P stoichiometric ratio of soil
or plants can be used as an indicator to evaluate the health
quality of riparian zones (Huang et al. 2019); however, previ-
ous research studies mostly focused on exploring the effects of
the changes in submergence frequency on the riparian zones’
plant succession (Bourgeois et al. 2016), community structure
(Garssen et al. 2015; Stromberg et al. 2017), invasive plant
species (Pattison et al. 2019), soil erosion, physicochemical
properties (Shu et al. 2017), C and N cycle (Fellows et al.
2011; Harrison-Kirk et al. 2014; Gao et al. 2018), eutrophica-
tion (Ricker and Lockaby 2015), greenhouse gas emissions
(Jacinthe et al. 2015), etc. The literature studying on soil
C:N:P stoichiometric ratio of the riparian zones on the
Hulunbuir steppe was limited (Frost et al. 2005; Lin et al.
2013), particularly the effect of different submergence fre-
quencies on the riparian zones’ soil C:N:P ecological
stoichiometry.

The flooding-draining alternation of riparian zones not on-
ly affects plant diversity and growth on the ground but also
affects soil physical and chemical properties and soil C:N:P
ecological stoichiometry. Therefore, in the present study, we
selected four riparian zones with different submergence fre-
quencies along the upper, middle, and lower reaches of the
Hui river on the Hulunbuir steppe to explore the effects of
submergence frequency on soil C:N:P ecological stoichiome-
try and its key control factors. The objective of this study is to
investigate the response of soil C:N:P stoichiometry to differ-
ent submergence frequencies and to identify the main soil
physicochemical factors affecting soil C:N:P ecological stoi-
chiometric ratios in order to provide a basis for the manage-
ment of riparian ecosystems on the Hulunbuir steppe.

2 Materials and methods

2.1 Study region description

The current research was conducted in Huihe National Nature
Reserve, Hulunbuir steppe, northeastern China, with a latitude
of 48° 10′–48° 57′ N and longitude of 118° 48′–119° 45′ E,
which had a total area of 3468 km2. This region is strongly
affected by the temperate continental monsoon climate and
has an annual average temperature of − 2.4 to 2.2 °C. The
frost-free period is 100 to 120 days, and the annual average
precipitation (2008 to 2014 years) is 375 mm, 70% of which
falls in June to September of each year. The nature reserve is
one of the 151 critical areas for biodiversity protection that
joined the China Biosphere Reserve Network (CBRN) in
2007. In this reserve, Hui river crosses the whole reserve.
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Influenced by the landforms of Hulunbuir steppe, the riparian
zones of Hui river are broad and flat, approximately 50 to
300 m in width. These broad riparian zones are abundant in
water, food, and biodiversity and are an ideal habitat for mi-
gratory birds. Due to locating in the core zone of the reserve,
the riparian zone of Hui river is less disturbed by anthropo-
genic activities except local herders, livestock, and wild ani-
mals, is relatively primitive, and has a high species richness.
The vegetation community is mainly constituted by
Gramineae, Asteraceae, and Cyperaceae, such as Agrostis
alba, Phragmites communis, Leymus chinensis, and Carex
Linn. Scattered shrubs are occasionally found in the riparian
zones near the river channel, such as Tamarix ramosissima.
The soils in the riparian zones of Hui river are classified as
Fluvisols and Kastanozems (WRB 2015).

2.2 Experimental design and soil sampling

Due to the flat topography and continuous landscape of
Hulunbuir steppe, the landforms and soil types of Hui river’s
riparian zones change slightly in response to longitudinal var-
iability. However, due to the differences in the flooding fre-
quency and hydraulic energy in the direction perpendicular to
the river channel, the soil and vegetation types sharply change
in response to transversal variability. Our field survey identi-
fied four sites with similar landforms and soil types in the
direction perpendicular to the river channel, and they were
covered by native species, including Carex Linn, Phragmites
australis, and Leymus chinensis. Muqiao (MQ) (48° 27′ 17.2″
N, 119° 02′ 28.8″ E) located in the upstream of the Hui river
was 667.2 m above sea level, with 65% vegetation coverage
and 6.7 cm average community height, a nearly 3° slope, and
130 m average riparian width. Chagan mountain (CGM) (48°
36′ 30.1″ N, 118° 52′ 56.5″ E) located in the midstream and
average elevation was 657.6 m, with 80% grass cover and
45.3 cm average height, a less than 3° slope, and 200 m aver-
age riparian width. Xiboqiao (XBQ) (48° 49′ 29.1″ N, 119°
13′ 49.1″ E) located in the mid-downstreamwas 641.5 m, with
70% coverage and 25.3 cm average community height, a flat
slope, and 170 m average riparian width. Temohuzhu
(TMHZ) (48° 55′ 24.4″ N, 119° 40′ 20.0″ E) located in the
downstream and elevation was 637.4 m, with 50% grass cover
and 10.3 cm average community height, a flat slope, and ap-
proximately 200 m riparian width (Fig. 1).

In each study site, three replicate transects that were orient-
ed perpendicular to the river channel were established, spaced
3 m (Fig. 1), totally 12 transects in the four study sites.
According to interviewing native residents and historical data,
we developed a submergence frequency schedule to match
natural conditions. Using this schedule, three 2 m × 2 m study
plots were developed within each transect, totally 36 study
plots. The plots close to the river stream were frequently sub-
merged approximately 5 to 7 times per year with high

hydraulic energy (high-frequency submergence, henceforth
HF-sub). They were about 10 m, 20 m, 15 m, and 20 m from
the river flow at MQ, CGM, XBQ, and TMHZ sites, respec-
tively (Fig. 1). The plots farther from the river were sub-
merged approximately 2 to 3 times per year with low hydrau-
lic energy (moderate-frequency submergence, MF-sub). They
were about 60m, 90 m, 80 m, and 90m from the HF-sub plots
at MQ, CGM, XBQ, and TMHZ, respectively. The plots near
the riparian margin were far from MF-sub plots and were
unflooded or flooded once per year (low-frequency sub-
merged, LF-sub). They were approximately 50 m, 70 m,
65 m, and 80 m from the MF-sub plots at MQ, CGM, XBQ,
and TMHZ, respectively (Fig. 1). Due to the differences in
flooding frequency and hydraulic energy in the direction per-
pendicular to the river channel, in the HF-sub areas, the soil is
frequently affected by flooding with high hydraulic energy;
the soil type is Arenic Fluvisols (WRB 2015). In the MF-sub
areas, the soil is occasionally flooded with low hydraulic en-
ergy; the soil type is Humic Fluvisols (WRB 2015). In the LF-
sub areas, the soil is almost unaffected by flooding or is only
submerged once per year; the soil type is similar to the grass-
land soil and is classified as Kastanozems (WRB 2015).
About 15 days after the submergence event receded in the
HF-sub areas, soil samples (0–30 cm) were collected during
August 1 to August 7, 2018. Because the soil was heteroge-
neous, three soil samples were collected from each sampling
plot using the soil auger, obtaining a total of 27 soil samples
from each study site. Then each soil sample was immediately
divided into two after removing the visible roots, residues, and
stones. Half of each sample was stored at 4 °C to measure soil
ammonia nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N),

available phosphorus (AP), soil pH, and electrical conductiv-
ity (EC). Another half of each sample was shipped to the
laboratory and then air-dried, crushed, sieved, and used to
analyze soil organic carbon (SOC), total nitrogen (TN), and
total phosphorus (TP). To determine soil moisture content
(SMC), soil bulk density (SBD), and total porosity, undis-
turbed soil samples (0–10 cm, 10–20 cm, and 20–30 cm) were
also collected from the same plots using a thin-walled steel
cylinder of 5 cm height and 100 cm3 volume. Three repeats
were collected in each soil layer, getting a total of 81 undis-
turbed soil cores from each study site. A total of 324 soil cores
from all study sites were collected for determining soil phys-
ical properties.

2.3 Soil physicochemical analysis

SOC (g kg−1) contents were examined using the potassium
dichromate-sulfuric acid oxidation method (Lu 1999). TN
(g kg−1) was measured by the Kjeldahl method. TP (g kg−1)
was determined by the colorimetric method (Murphy and
Riley 1962) using the sulfuric acid digestion procedure,
whereas AP (mg kg−1) was extracted using 0.5 M NaHCO3
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by colorimetric Assyrian at 880 nm. Soil NH4
+-N and NO3

−-
N were extracted using 2 M KCl, then the mixture was

filtered, and NH4
+-N and NO3

−-N in the filtrate were analyzed
colorimetrically using a flow injection analyzer (QuikChem

Fig. 1 Study site locations (MQ, CGM, XBQ, and TMHZ) and field
sampling schematic diagram under different submergence frequencies,
in Hulunbuir, Inner Mongolia, China. MQ, Muqiao; CGM, Chagan
mountain; XBQ, Xiboqiao; TMHZ, Temohuzhu; HF-sub, high-

frequency submergence (5 to 7 times per year); MF-sub, moderate-
frequency submergence (2 to 3 times per year); LF-sub, low-frequency
submergence (unflooded or flooded once per year)
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8000, Hach Company, Loveland, CO, USA). Soil pH values
were measured electrometrically using an Orion Model 720A
pH meter in water at a ratio of 1:2.5 (mass/volume). Soil EC
(μs cm−1) was determined using a conductivity meter in water
at a ratio of 1:2.5 (mass/volume).

The undisturbed soil cores were used to evaluate SMC (%)
and SBD (g cm−3) at 105 °C for 24 h. Soil total porosity (%)
was calculated using values of SBD and particle density
which was assumed to be 2.65 g cm−3. Soil hardness
(kg cm−2) (0–10 cm, 10–20 cm, and 20–30 cm) was
measured using a manual Eijkelkamp penetrometer
(Zadorozhnaya et al. 2018), four repeats at each soil
layer.

2.4 Statistical analysis

One-way analysis of variance (ANOVA) was used to compare
the differences in soil C:N:P ecological stoichiometry (includ-
ing SOC, TN, TP, C:N, N:P, and C:P) and soil physicochem-
ical properties (NH4

+-N, NO3
−-N, AP, soil pH, SMC, SBD,

EC, soil total porosity, and soil hardness) for each submer-
gence frequency (HF-sub, MF-sub, and LF-sub) within the
study sites, and we then used Fisher’s least significant differ-
ence (LSD) test to compare the average values. Because of the
four study sites from different watersheds of the Hui river and
with different altitudes, we used to two-way ANOVA to ana-
lyze the influences of the different submergence frequencies,
study sites, and interactions of these factors on soil C:N:P
ecological stoichiometry. To visualize the group separation
of soil C:N:P ecological stoichiometry under different sub-
mergence frequencies at the four sites, the discriminant func-
tion analysis (DFA) was conducted. DFA is a statistical anal-
ysis used to predict a categorical dependent variable (called a
grouping variable) by one or more continuous or binary in
independent variables (called predictor variables)
(Rutherford 2003). The model is composed of a discriminant
function based on linear combinations of independent vari-
ables, and those independent variables provide the best dis-
crimination between groups. DFA is used to maximally sepa-
rate the groups, to determine the most parsimonious way to
separate groups or to discard variables which are little related
to group distinctions. DFA is similar to regression analysis. A
discriminant score can be calculated based on the weighted
combination of the independent variables. Soil C:N:P ecolog-
ical stoichiometry as independent variable to calculate dis-
criminant functions and the squared Mahalanobis distances
between group centroids were determined. In order to deter-
mine the relationship between soil C:N:P ecological stoichi-
ometry and physicochemical properties, a redundancy analy-
sis (RDA) was conducted. Through the RDA, we screened the
significant physicochemical factors affecting soil C:N:P eco-
logical stoichiometry. Then, to further clearly visualize the
relationships between soil physicochemical properties and soil

C:N:P ecological stoichiometry, a confirmatory path analysis
was conducted using these significant physicochemical fac-
tors and soil C:N:P ecological stoichiometry by R “lavaan”
and “semPlot” packages. All statistical tests were at a 0.05
significance level except otherwise stated. The statistical tests
were performed using OriginPro v. 2015 (OriginPro for
Windows, ver. 2015; OriginLab, Northampton, MA, USA)
and R. The RDA and path analysis were performed and
graphed using Canoco software (Microcomputer Power,
USA) and R, respectively, and the others were visualized
using OriginPro v. 2015.

3 Results

3.1 Soil physicochemical properties

Soil physical properties (SMC, SBD, soil porosity, and hard-
ness) greatly differed at different submergence frequencies
among the four study sites (Fig. 2) (P < 0.05). At 0–30 cm soil
depth, SMC and soil porosity of all study sites ranged from
70.7 to 18.5% and 73.8 to 42.4%, respectively, and with the
increase in inundation frequency, these two parameters grad-
ually increased but decreased with soil depth (P < 0.05). On
the contrary, SBD and hardness ranged from 1.5 to 0.7 g cm−3

and 9.6 to 0.5 kg cm−2, respectively, and increased with soil
depth (P < 0.05) but decreased with submergence frequency
(P < 0.05).

Soil NH4
+-N, NO3

−-N, AP, pH, and EC were also signifi-
cantly affected by the different submergence frequencies at the
four study sites (Table 1) (P < 0.05). As the submergence fre-
quencies increased, soil NH4

+-N notably decreased, whereas
soil pH and EC increased (P < 0.05). In contrast, soil NO3

−-N
increased first and then decreased with the increase in submer-
gence frequencies at the four study sites (P < 0.05). Soil AP
was obviously different (P < 0.05) under different submer-
gence frequencies but irregular with the change in submer-
gence frequencies.

3.2 Soil C:N:P ecological stoichiometry

The variations in SOC, TN, TP, soil C:N, N:P, and C:P were
significantly different under different submergence frequen-
cies among the four studied sites (Fig. 3) (P < 0.05). SOC
and TN showed similar trends to different submergence fre-
quencies at the four studied sites. For example, SOC and TN
increased initially but then decreased from HF-sub to LF-sub
at CGM, whereas decreased continuously from HF- to LF-sub
at XBQ and TMHZ. TP also increased initially then de-
creased, but except at the TMHZ site.

Soil C:N changed in a narrow scope (5.5 to 12.1) but was
significant (P < 0.05) (Fig. 3). It notably increased with the
decrease in submergence frequency from HF- to LF-sub at
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MQ, whereas decreased with the frequency change at CGM,
XBQ, and TMHZ. Soil N:P and C:P greatly fluctuated under
different submergence frequencies. For example, as the sub-
mergence frequency decreased, they obviously decreased ini-
tially but then increased at MQ and XBQ sites, whereas at
CGM site, they continuously decreased (P < 0.05) even the
variabilities were slighter than those of other sites,

Two-way ANOVA showed that the interactions between
submergence frequency and study site were significant
(Table 2) (P < 0.01). Overall, SOC, TN, and TP significantly
increased initially and then decreased from HF- to LF-sub and
also from upstream (MQ) to downstream (TMHZ) under the
same submergence frequency. Soil C:N:P decreased as the
submergence frequency decreased, whereas increased from
upstream to downstream, even though C:P and N:P greatly
fluctuated.

3.3 DFA of soil C:N:P ecological stoichiometry

DFA results of SOC, TN, TP, soil C:N, N:P, and C:P under
different submergence frequencies were graphically described
in two dimensions (Fig. 4). The DFA results showed that
79.6%, 90.0%, 97.2%, and 92.0% of the variance of the inves-
tigated dataset can be correctly classified by DFA at MQ,
CGM, XBQ, and TMHZ, respectively. Interestingly, HF-sub
and both MF-sub and LF-sub were almost completely separat-
ed by canonical variable 1 at the four studied sites, and the
separation of MF-sub and LF-sub was illustrated by canonical
variable 2 at CGM, XBQ, and TMHZ. The separation by ca-
nonical variable 2 was weaker than that by canonical variable 1.
It was observed that the centroid of the MF-sub group was
closer to that of HF-sub than to that of LF-sub at all study sites.
The contribution of SOC, TN, TP, soil C:N, N:P, and C:P to the

Fig. 2 Soil physical characteristics under different submergence
frequencies, high-frequency submergence (HF-sub, 5 to 7 times per
year), moderate-frequency submergence (MF-sub, 2 to 3 times per
year), and low-frequency submergence (LF-sub, unflooded or flooded
once per year), at four study sites (MQ, CGM, XBQ, and TMHZ).
Capital letters (A > B > C) above the mean ± SE represent differences

between different submergence frequencies at each study sites under the
same soil layer (LSD test, P < 0.05), and lowercase letters (a > b > c)
indicate discrepancies between different soil layers at each study sites
under the same submergence frequencies (LSD test, P < 0.05). SMC,
soil moisture content; SBD, soil bulk density
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calculated functions was different. Appendix 1 (Electronic
Supplementary Material) shows that function 1 was dominated
by soil C:P and function 2 was mainly affected by N:P and C:N
at MQ. Function 1 of CGM was dominated by soil C:N, N:P,
and C:P, whereas function 2 was dominated by SOC, TN, and
TP. Soil C:N dominated function 1, whereas N:P and C:P dom-
inated function 2 at XBQ and TMHZ. Overall, the separation of
the soil C:N:P ecological stoichiometry in function 1 was main-
ly dominated by soil C:P and C:N, particularly C:P under the
different submergence frequencies at the four study sites,
whereas function 2 was mainly affected by soil N:P.

3.4 Effects of soil physicochemical properties on soil
C:N:P ecological stoichiometry

RDA was used to explain the relationship among soil physi-
cochemical properties and soil C:N:P ecological stoichiome-
try under different submergence frequencies (HF-sub,
Fig. 5A; MF-sub, Fig. 5B; LF-sub, Fig. 5C; a summary of
the three submergence frequencies, Fig. 5D) at the four study
sites. To clearly visualized the RDA results, only the soil
physicochemical properties with P < 0.05 were showed in
Fig. 5A–D. The RDA eigenvalues indicated that most of the
variances under HF-sub (Fig. 5A), MF-sub (Fig. 5B), and LF-
sub (Fig. 5C) were explained by axis 1 (83.2%, 85.7%, and
93.3% for Fig. 5A–C, respectively), whereas the Fig. 5D was
mainly explained by axis 2 (75.5%). The longer arrows mean
the stronger correlation (Kennedy et al. 2005). The RDA re-
sults showed that SMC, NH4

+-N, NO3
−-N, AP, and pH had

higher effects on soil C:N:P ecological stoichiometry, espe-
cially AP, under different submergence frequencies among the
four studies sites (Fig. 5).

To further clarify the relationship between soil physico-
chemical properties and soil C:N:P ecological stoichiometry
under different submergence frequencies, the path analysis
was conducted, and only the physicochemical factors with
P < 0.05 in the RDA were used in the path analysis (Fig. 6).
Because the differences of submergence frequencies directly
cause the differences in soil moisture content (SMC) in the
direction perpendicular to the river channel, so we defined
SMC as an endogenous variable, defined SOC, TN, TP,
C:N, N:P, and C:P as the exogenous variables, and defined
soil hardness, NH4

+-N, NO3
−-N, AP, and pH as the mediator

variables in the path analysis. Figure 6 (CFI = 0.928, TLI =
0.750, and P value < 0.0001) shows that SMC significantly
and positively affected soil AP and NO3

−-N but negatively
affected soil NH4

+-N, hardness, and pH (P < 0.01). Both soil
AP and NO3

−-N obviously positively (P < 0.01) influenced
SOC, TN, and TP, especially NO3

−-N. Soil AP significantly
negatively affected soil C:N, N:P, and C:P, especially N:P and
C:P (P < 0.01). In addition, SOC, TN, TP, and their stoichio-
metric ratios were also indirectly affected by SMC, soil hard-
ness, and pH, and the latter two factors also notably affected
soil AP and NO3

−-N (P < 0.01).

4 Discussion

4.1 Variation in soil C:N:P ecological stoichiometry

Previous research has found that water level fluctuations are
major events which affect riparian ecosystem of river and
lakes (Hirabayashi et al. 2013; Shu et al. 2017; Luo et al.
2018). Soil physicochemical properties, nutrients, and

Table 1 Soil chemical properties under different submergence frequencies (HF-sub, MF-sub, and LF-sub) at the four study sites (MQ, CGM, XBQ,
and TMHZ)

Site Condition NH4
+-N (mg kg−1) NO3

−-N (mg kg−1) AP (mg kg−1) pH EC (μs cm−1)

MQ HF-sub 21.6 a (0.5) 13.1 b (0.2) 6.8 c (0.3) 7.5 b (0.0) 122.1 c (3.4)

MF-sub 17.1 b (0.5) 27.0 a (1.1) 39.8 a (0.6) 7.6 b (0.0) 167.4 b (4.4)

LF-sub 6.3 c (0.5) 11.3 b (0.1) 14.2 b (0.1) 8.5 a (0.1) 238.9 a (8.6)

CGM HF-sub 9.5 a (0.7) 28.7 b (0.4) 28.7 b (1.1) 7.6 c (0.1) 119.2 a (11.8)

MF-sub 9.5 a (1.2) 53.1 a (1.0) 31.2 b (1.1) 7.9 b (0.0) 149.8 a (8.3)

LF-sub 6.8 a (0.7) 17.5 c (0.9) 37.8 a (0.7) 8.5 a (0.0) 137.7 a (7.3)

XBQ HF-sub 11. 1 a (1.0) 21.4 b (3.1) 13.6 a (0.0) 8.5 a (0.0) 121.1 b (7.5)

MF-sub 7.9 b (0.3) 32.8 a (0.8) 10.1 b (0.4) 8.5 a (0.0) 201.0 ab (10.2)

LF-sub 3.8 c (0.2) 13.2 c (0.4) 8.2 c (0.3) 8.6 a (0.2) 213.8 a (42.4)

TMHZ HF-sub 12.7 a (0.3) 19.8 b (0.6) 6.2 b (0.1) 8.3 b (0.0) 211.8 b (3.5)

MF-sub 11.1 ab (1.2) 23.1 a (0.0) 5.8 b (0.1) 8.4 b (0.0) 213.7 b (2.3)

LF-sub 8.7 b (1.1) 14.5 c (0.5) 7.6 a (0.1) 8.8 a (0.1) 309.8 a (7.4)

Data are average and standard error (in parenthesis). Different lowercase letters behind the average represent significant difference (LSD test, P < 0.05).
MQ, Muqiao; CGM, Chagan mountain; XBQ, Xiboqiao; TMHZ, Temohuzhu; NH4

+ -N, soil ammonium nitrogen; NO3
− -N, soil nitrate nitrogen; AP,

soil available phosphorus; EC, soil electrical conductivity. HF-submeans high-frequency submergence (submerged 5 to 7 times per year);MF-submeans
moderate-frequency submergence (submerged 2 to 3 times); and LF-sub means low-frequency submergence (unflooded or flooded once per year)
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structure are significantly related with the frequencies of the
water level fluctuations (Shu et al. 2017). In this study, we
found that SOC, TN, and TP changed regularly as the sub-
mergence frequency changed, whereas their trends were in-
consistent at different drainage basins. At the midstream ripar-
ian zones (CGM), SOC, TN, and TP increased initially but

then decreased fromHF-sub to LF-sub. This might be resulted
by the changes in soil organic matter content, litters, concen-
trations of nutrients, texture, porosity, aggregate stability, and
redox potential due to the long-standing and frequent submer-
gence and de-submergence events (Baastrup-Spohr et al.
2016; Shu et al. 2017; Yan et al. 2019). At the HF-sub areas

Fig. 3 Soil carbon, nitrogen, and
phosphorus characteristics under
different submergence
frequencies (HF-sub, MF-sub,
and LF-sub) at four study sites
(MQ, CGM, XBQ, and TMHZ).
Lowercase letters (a > b > c)
above the mean ± SE indicate
differences at P < 0.05 using
Fisher’s least significant
difference (LSD) test between
different submergence
frequencies at each study sites.
SOC, soil organic carbon; TN,
total nitrogen; TP, total
phosphorus

Table 2 Two-way ANOVA
analysis for soil C:N:P ecological
stoichiometry

Factor SOC TN TP C:N C:P N:P

Submergence (Sub) 1035.0** 1146.6** 539.3** 19.9** 72.3** 36.1**

Sub (sig) b, a, c b, a, c c, a, b a, a, b a, a, b a, a, b

Site (S) 1378.1** 1878.4** 1587.9** 26.8** 173.5** 88.7**

S (sig) c, a, b, c c, a, b, d c, a, b, c b, b, b, a b, d, c, a a, c, b, a

Interaction (Sub × S) 985.7** 1133.1** 243.5** 8.6** 198.7** 111.2**

The categorical factors are submergence frequency (HF-sub: submerged 5 to 7 times per year, MF-sub: sub-
merged 2 to 3 times per year, LF-sub: unflooded or flooded once per year) and study sites (MQ, CGM, XBQ, and
TMHZ) and their interactions. Data are F values and level of significance (**P < 0.01). Lowercase letters indicate
difference (P < 0.05). Sub (sig) represents discrepancies among different submergence frequencies. S (sig) rep-
resents discrepancies among study sites. SOC, soil organic carbon; TN, soil total nitrogen; TP, total phosphorus
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of the upper or middle stream of the river, the hyporheic ex-
change and hydrologic pulsing are common and have high
hydraulic energy (Shrestha et al. 2014), which will decrease
soil porosity, oxygen content, redox ability (Lee et al. 2009)
and then decrease soil physicochemical activity. These above
changes can further weaken the transformation and decompo-
sition of soil organic matter and litters and decrease the con-
tent of SOC (Lee et al. 2009), also affecting soil N cycling,
such as decreasing N mineralization and increasing the deni-
trification due to the low porosity and oxygen (Nishio et al.
1993; Fellows et al. 2011), which will promote the soil N loss
and decrease. On the other hand, the frequent hydrologic puls-
ing and high hydraulic energy can promote the movement of
soil organic matter and plant residues from HF-sub to MF-sub
areas (Viparelli et al. 2015), resulting in decreased contents of
SOC, TN, and TP at HF-sub areas, whereas increased contents
at MF-sub areas (Haywood et al. 2018). Meanwhile, the years
of frequent and high-energy flooding pulsing will also gradu-
ally change soil types (Shu et al. 2017). For example, the soil
type of MF-sub was gradually changed to Humic Fluvisols
having thick litters and humus deposits. This type of soil has
high porosity, biophysical activity, and nutrients such as high

SOC, TN, and TP (Kercheva et al. 2017). However, at the
mid-downstream (XBQ sampling site) and downstream
(TMHZ sampling site) of the river, the velocity of the river
is slow. And the riparian zones of these drainage basins are
flatter and broader than the upstream. Therefore, although the
submergence and de-submergence are still frequent at HF-sub
areas, the flooding energy and substance exchanges are weak-
er than the upstream, resulting in the deposits, litters, and
nutrients remaining at the HF-sub areas rather than being
transported to MF-sub areas (Li et al. 2017). This might be
the reason why the contents of SOC, TN, and TP of HF-sub
areas were higher than MF-sub and LF-sub areas at the mid-
downstream and downstream of the river. In addition, at the
MF-sub areas, the occasional submergence can promote the
decomposition and mineralization of soil organic matter and
residues (Nguyen and Lehmann 2009, Harrison-Kirk et al.
2014), which resulted in the gradually decrease of contents
of SOC, TN, and TP. However, at the LF-sub areas of the
whole river basin, the soil was almost unflooded or only once
per year, and the soil type was similar to the grassland soil
having lower nutrients, better porosity, physicochemical ac-
tivity, and organic matter mineralization cycling than the other

Fig. 4 Calculated discriminant
function analysis (DFA) under
different submergence
frequencies (HF-sub, MF-sub,
and LF-sub) among the four study
sites (MQ, CGM, XBQ,
and TMHZ)
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two submergence conditions. This might explain why the con-
tent of SOC, TN, and TP significantly decreased with the
decrease in submergence frequencies, particularly at XBQ
and TMHZ sites.

C, N, and P biologically coupled through their effects on
the biogeochemical cycle that controls the process of respira-
tion, photosynthesis, and decomposition in the terrestrial eco-
systems (Finzi et al. 2011; Peñuelas et al. 2013). Compared
with the absolute value of SOC, TN, and TP, the variation in
soil C:N:P ecological stoichiometry is more meaningful in
ecology (Agren 2004). It plays a vital role in predicting and
understanding the balance of multiple chemicals in ecological
interactions (Cleveland and Liptzin 2007; Elser et al. 2008). In
the present study, our results showed that soil C:N kept in a
narrow scope (5.5 to 12.1) although the submergence frequen-
cy changed greatly. Overall, soil C:N significantly decreased
with the decrease in submergence frequency from HF- to LF-
sub areas. The lowest soil C:N found in LF-sub areas can be
explained by the low contents of SOC (Wang et al. 2018b). In
addition, the low soil C:N (< 12) also implied the that there
might be a relatively constrained C:N in the topsoil of our
study areas and a feedback between soil and their biotas

(Zhang and Elser 2017; Delgado-Baquerizo et al. 2018), es-
pecially at the LF-sub areas. The relatively lower disturbance
frequency, which resulted in the stable soil physicochemical
and biological properties and biogeochemical cycle (Kogel-
Knabner et al. 2010; Shu et al. 2017), might be the key factor
leading to the relatively stable soil C:N. However, the N:P and
C:P varied significantly with the submergence frequency
change at the four study sites, particularly at MQ and XBQ
sites. This can be explained by the opposite response trends of
soil TN and TP to the changes in submergence frequency. For
example, soil TN decreased initially and then increased from
HF- to LF-sub at MQ, whereas soil TP increased initially and
then decreased (Fig. 3). On the other hand, the high N:P and
C:P values, as well as their great variability, might mainly be
due to the low P contents and great P variability, which might
imply that there was a P limitation (Wei et al. 2017). Soil P
mainly comes from soil parent materials and is easy to be the
precipitates, which results in a decrease in effectiveness of P
element (Lambers et al. 2015). The long-term anaerobic or
frequent flooding events caused an increase in the dissolution
and diffusion for soil P, which further led to a decrease in P
and high C:P and N:P (Wei et al. 2017). Furthermore, the

Fig. 5 Redundancy analysis
(RDA) for the relationship
between soil physicochemical
properties and C:N:P ecological
stoichiometry (including SOC,
TN, TP, C:N, N:P, and C:P) under
different submergence
frequencies (HF-sub, MF-sub,
and LF-sub) among the four study
sites (MQ, CGM, XBQ, and
TMHZ). In (A–D) the black line
arrows indicate soil C:N:P
ecological stoichiometry and the
red line arrows indicate soil
physiochemical properties. To
clarify the RDA results, only the
soil physiochemical properties
withP < 0.05 were showed in (A–
D). The RDA for the relationship
between soil physicochemical
properties and soil C:N:P
ecological stoichiometry was
(A) under HF-sub of the four
study sites, (B) under MF-sub,
(C) under LF-sub, and (D) under
the three submergence
frequencies. SOC, soil organic C;
TN, total N; TP, total P;
C:N = SOC:TN; N:P = TN:TP;
C:P = SOC:TP; SMC, soil
moisture content; NH4

+-N,
ammoniacal N; NO3

−-N, nitrate
N; AP available P; pH, soil pH
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effectiveness of soil P was affected by soil pH and SMC.
Drought and high soil pH can slow down the transport of
phosphate ion, especially inorganic P, and promote the absorp-
tion by cations, particularly divalent cations, such as the Ca2+,
which further resulted in the utilization and cycling of de-
creased P (Jiao et al. 2016; Brodlin et al. 2019). These might
be the reasons why the N:P and C:P were varied significantly.
Through analyzing the datasets, we found that the average
values of soil N:P (24.8 > 16) and C:P (202.7) values in the
studied regions were higher than the average values of
Chinese soils, i.e., 5.2 and 61, respectively (Tian et al.
2010), and also higher than the mean values found in wetland
soils of Sanjiang Plain (12.8 and 162) (Zhang et al. 2012) and
Dongting Lake (5.39 and 65.3) (Hu et al. 2017). These sug-
gested that the cycling of soil nutrients was mainly limited by
P in the riparian zones of Hui river on the Hulunbuir steppe.

4.2 The key soil physicochemical factors affecting soil
C:N:P ecological stoichiometry

In riparian zones, the submergence frequency steadily decreases
as the distance and altitude increased in the direction perpen-
dicular to the river channel. When the soil is submerged, the

channel fluvial process from longitudinal and lateral flows cre-
ated a heterogeneity in the soil physicochemical properties and
soil nutrients (Wang et al. 2018a). The heterogeneity of soil
physicochemical properties will affect the cycling of soil C,
N, P, and their ecological stoichiometric ratios (Li et al. 2018).
Consistent with previous research studies (Wang et al. 2015,
2018c), in this study, the results of RDA showed that soil NH4

+-
N, NO3

−-N, AP, pH, and hardness, particularly soil AP, were
the main physicochemical factors affecting soil C:N:P ecolog-
ical stoichiometry under different submergence frequencies.
The results of path analysis showed that the difference in
SMC in the direction perpendicular to the river channel, due
to the change in submergence frequency, directly affected the
changes in soil AP, NO3

−-N, NH4
+-N, and hardness, which

indirectly resulted in the change in soil C:N:P ecological stoi-
chiometry. Also, the changes in soil AP and NO3

−-N, especially
AP, directly influenced soil C:N:P ecological stoichiometry.
These results might imply that, in the direction perpendicular
to the river channel, the differences in SMC caused by the
changes in submergence frequency were the indirect factors
causing the differences in soil C:N:P ecological stoichiometry,
whereas the changes in AP and NO3

−-N, especially AP, caused
by the changes in SMCwere the key direct factors affecting soil

Fig. 6 Path analysis for soil
physicochemical properties and
soil C:N:P ecological
stoichiometry among the four
study sites (MQ, CGM, XBQ,
and TMHZ). Blue and red arrows
indicate positive and negative
relationships, respectively;
numbers on the arrows indicate
the standardized path coefficients,
with arrow thickness proportional
to the coefficient strength; and
only the arrows with significant
standardized path coefficients
(P < 0.01) were showed. CFI,
comparative fit index; TLI,
Tucker-Lewis index. These two
indexes were used to estimate the
model of path analysis, and they
are more near 1 mean better
model
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C:N:P ecological stoichiometry under different inundation fre-
quencies in the riparian zones of Hui river on the Hulunbuir
steppe. SMC is greatly related with soil physicochemical and
biological activity (Shu et al. 2017). Both high and low SMC
were not beneficial to soil biophysical activity and soil nutrient
cycling, such as organic matter mineralization (Kercheva et al.
2017). These might explain why SMC directly affected soil AP,
NO3

−-N, and NH4
+-N and why soil AP and NO3

−-N increased
initially but then decreased.Moreover, the changes in soil phys-
icochemical properties caused by SMC indirectly influenced
soil C:N:P ecological stoichiometry (Wang et al. 2015). In this
study, the great variabilities in soil N:P andC:Pmight mainly be
caused by the P limitation. Relative to other macronutrients, soil
P element is considerably less and is main source from phos-
phate rocks which is nonrenewable (Singh et al. 2015; Ahmed
et al. 2018). Generally, 35–70% soil TP is inorganic P which is
variable and easy to be bonded to metal oxides in acidic and
highly weathered soils, such as submerged soil (Pritchett and
Comerford 1982; Pierzynski et al. 2005). Soil AP is one of the
main components of soil inorganic P (Sharpley 1985).
Therefore, the changes in soil AP will have great effect on soil
TP, N:P, C:P, and even C:N although the relationship between
soil AP and TP is nonlinear (Delgado and Torrent 1997). These
might explain why soil AP directly influenced soil C:N:P eco-
logical stoichiometry. In addition, we found that soil hardness is
also an important indirect factor affecting soil C:N:P through
influencing the contents of soil AP. Thismight be due to the fact
that soil hardness was closely related to soil texture, porosity,
and nutrients transport which would indirectly influence the
mineralization, adsorption, and ion diffusion of phosphates in
soil (Kristoffersen and Riley 2005).

5 Conclusions

In the present study, wewanted to evaluate the response of soil
C:N:P ecological stoichiometry to different submergence fre-
quencies in the riparian zones of the Hui river on the
Hulunbuir steppe and its main control factors.

Our data have demonstrated that the submergence frequen-
cy significantly affected soil physicochemical properties and
soil C:N:P ecological stoichiometry. SOC, TN, TP, and their
ecological stoichiometric ratios changed regularly with the
submergence frequency change, whereas their trends were
inconsistent at different drainage basins. Soil C:N was rela-
tively stable, whereas the N:P and C:P were changed greatly
under different submergence frequencies. The significant var-
iations in N:P and C:P were mainly due to the changes in soil
TP, which suggested there might be a P limitation in the ripar-
ian zones.

Soil AP, NH4
+-N, NO3

−-N, pH, and hardness were the
main physicochemical factors affecting soil C:N:P ecological
stoichiometry under different submergence frequencies in the

riparian zones, where AP and NO3
−-N were the key direct

factors, and SMC was the indirect factor. Accordingly, we
propose that if the contents of soil AP and NO3

−-N were
appropriate, soil C:N:P ecological stoichiometry will be more
beneficial to regulating the cycle and balance of soil nutrient
elements in the riparian zones, which can promote the riparian
zones to provide better ecological functions.
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