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Abstract
Purpose The aims of the current study were to (1) examine the interactive effects of biochar addition and differently textured soils
(clayey and sandy soils) on nutrient leaching and (2) identify potential mechanisms related to the leaching.
Materials andmethods A repacked soil column experiment was set up to test the effects of five biochar rates added to clayey and
sandy soils grown with rice (Oryza sativa L. ssp. japonica) for 3 months. Four leaching events were conducted to measure
concentrations of ten elements in the leachate, including calcium (Ca), sodium (Na), potassium (K), magnesium (Mg), aluminum
(Al), iron (Fe), manganese (Mn), ammonium nitrogen (NH4

+), nitrate nitrogen (NO3
−), and phosphorus (P).

Results and discussion On the sandy soil, biochar addition linearly and significantly reducedCa concentration (by 38%), but increased
Na (by 92%), K (by 292%), and P (by 411%) concentrations in the leachate, compared to the non-biochar-added soil. In contrast, on the
clayey soil, biochar addition showed no obvious effect on the leaching of these elements. Biochar addition significantly reduced
leaching of Al, Fe,Mn, and NH4

−, but increased leaching ofMg.Mechanisms related to the reduced leaching of NH4
−, Ca, Al, Fe, and

Mn could be involved in the liming effect and increased nutrient holding capacity by biochar addition, and those responsible for
increased leaching of Na, K, and P could be involved in co-addition of these elements with the added biochar.
Conclusions Biochar addition had contrastive effects on nutrient leaching, which wasmore profound on sandy soil than on clayey
soil grown with rice crop.

Keywords Biochar . Nutrient leaching . Paddy soil . Soil texture

1 Introduction

Nutrient losses through leaching from the soil surface layer
may pollute groundwater, deplete soil fertility, and thus reduce
soil productivity (Bronswijk et al. 1995; Lehmann and
Schroth 2002). A number of factors could potentially affect
nutrient leaching, including soil texture, e.g., clay content,
organic matter, nutrient holding capacity, fertilizer application,
rainfall, plant growth, agricultural management, hydraulic
conductivity, and water holding capacity (Liu et al. 2015;
King et al. 2016; Tahir and Marschner 2017; Li et al. 2018).
Available nutrients, quantitatively indicated through cation
exchange capacity (CEC), could be presented and retained
in soil through binding to exchange sites mostly derived from
clay minerals and organic matter (Parfitt et al. 1995). Soil
having higher clay content may retain more nutrients,
resulting in lower nutrient leaching than that having lower
clay content (Tahir and Marschner 2017). Chen et al. (2006)
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found that as much as 97% of P added as water-soluble fertil-
izer was leached from the sandy soil. At soil moisture of field
capacity, up to 44% of total potassium (K) applied on a sandy
soil was leached, while around 3.3% of total K applied on a
clayey soil was leached (Mendes et al. 2016). As a result, an
increase in either clay fraction or organic matter content would
enhance nutrient holding capacity, an important feature of soil
to hold nutrients, thereby reducing nutrient leaching.

Moreover, to reduce leaching, the addition of biochar to soil
has been a well-studied option. Biochar is a carbon-rich sub-
strate and is derived from plant residues. Biochar can be pro-
duced in an oxygen-limited condition for a temperature range
of 300–700 °C (Lehmann and Joseph 2009; Spokas 2010).
Biochar is porous, high in negative charge density, and has a
large surface area (Liang et al. 2006; Laird et al. 2010). These
specific features may enable biochar to adsorb and hold inor-
ganic forms of elements, thereby reducing their leaching from
the biochar-added soil. Likewise, Zheng et al. (2013) explained
that NH4

− could be absorbed on the surface of biochar through
acid functional groups. On the other hand, contained in the
biochar with a considerable portion, some inorganic elements
such as Na, K, and P could be added to the soil with the applied
biochar, facilitating leaching of these elements. With these dif-
ferent mechanisms, biochar addition was found to reduce
leaching of N, P, K, and Si (Lehmann et al. 2003; Laird et al.
2010; Knowles et al. 2011; Sika and Hardie 2014), while in-
crease leaching of N, Ca, Mg, K, and P (Major et al. 2012; Bu
et al. 2017; Silva et al. 2017), or even both increase and de-
crease leaching of K, Na and Ca, Mn, P, Zn, respectively, in the
same study (Novak et al. 2009). These varying results could be
a consequence of numerous reasons, such as different biochar
properties, experimental conditions, and soil properties.
Similarly, Yao et al. (2012) concluded that nutrient leaching
effect of biochar could vary with biochar and nutrient
elements. Moreover, a study by Li et al. (2018) even showed
that biochar addition at 1 and 4% increased, but at 2% reduced
NO3

− leaching from the sandy soil. These indicate that more
studies could be in need to address the leaching of different
elements as affected by varying biochar application rates.

In addition, there are limited studies from literature addressing
the leaching effect of biochar on paddy differently textured soils.
Although the interaction effect of biochar and soil texture on soil
fertility was recently reported (El-Naggar et al. 2018), such the
effect on nutrient leaching was scarcely understood (Borchard
et al. 2019). The authors concluded that biochar addition to sandy
soil could reduce NO3

− leaching, but the similar result on the
clayey soil was not reported. Teutscherova et al. (2018) found
that biochar addition had a different effect on NH4

+ and NO3
−

leaching from two contrasting soils. Nevertheless, the authors did
not examine such the effect on leaching of other elements, such
as K, Na, Ca,Mg, Al, Fe,Mn, and P, which are much different in
chemical behavior from NH4

+ and NO3
−. Understanding water

conditions such as paddy fields, nutrient leaching from the fields

added with rice residue-derived biochar is not clearly discussed,
although the rice crop is cultivated for more than 161 million ha
globally (Statista 2018).Moreover, due to relatively continuously
flooding condition of paddy field, some mechanisms of biochar
mentioned above could be modified, possibly resulting in differ-
ent effects of biochar on nutrient leaching, compared to the dry
and rewetting condition of other crops. A typical example could
be that oxidation, a mechanism developing negative charges of
biochar (Liang et al. 2006), could be weakened in an anaerobic
and flooding condition, minimizing the effect of biochar on in-
organic nutrients adsorption, and thus their leaching from the
paddy soil. These necessitate a study to examine the effects the
biochar on nutrient leaching from flooded paddy soils.

Therefore, the current study was conducted on two differ-
ently textured soils added with five biochar rates and grown
with rice crop. The aims of the current study were to (1) exam-
ine the interactive effects of biochar addition and the tested soils
(clayey and sandy soils) on nutrient leaching and (2) identify
potential mechanisms related to the leaching. It is hypothesized
that the effect of biochar on nutrient leaching on the sandy soil
could be more profound than that on the clayey soil.

2 Materials and methods

2.1 Experimental materials

Soil samples were taken from two paddy fields, which were
different in soil texture. The clayey soil was taken from a
Dystric Fluvisol (FAO/UNESCO) in Long Hoa commute
Can Duoc district, Long An province (106o 35′ E and 10o

34′ N) and the sandy soil was from a Haplic Acrisols in
Xuan Thoi Son commute, Hoc Mon district, Ho Chi Minh
City (106o 35′ E and 10o 52′ N), Vietnam. The clay content
of the clayey soil was 61% and that of the sandy soil was
5.5%. After being taken, soil material was transferred to a
laboratory at the Industrial University of Ho Chi Minh City
(IUH) for pretreatment. The soil material was air-dried and
ground to pass a 2-mm sieve and be ready for the experiment.

Biochar used for the current study was the ones used in our
previous study (Nguyen et al. 2018). It was produced from
rice husk and rice straw at temperatures from 400 to 450 °C.
Because our previous results showed that the effects of the two
biochar types (one derived from rice husk and the other from
rice straw) on extractable nutrient concentrations of the
amended soil were not obviously different (Nguyen et al.
2018), the two biochar types were mixed at 1:1 ratio (hereaf-
ter, called biochar) for the current study. Two feedstocks (rice
husk and rice straw) were used to produce biochars for the
current study because they are the most common agricultural
residue in Vietnam, the fifth largest rice producer in Asia
(FAO 2018) having over 4.5 million ha of paddy land.
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2.2 Soil column experimental setup

The column leaching method used for the current study was
similar to that used by Laird et al. (2010) with some modifi-
cations. The leaching column was established, using a PVC
tube (diameter 17.5 cm by length 18 cm = 4329 cm3). One end
of the tube was covered with a PVC cap, which was drilled to
create a hole for leaching. The hole was covered with nylon
mesh to prevent solid material inside from being drained out
and the tube bottom was added with 200 g of coarse sand to
facilitate even leaching. A small plastic pipe (diameter 5 mm,
draining pipe) was used to connect the column bottom to a
pre-washed plastic bottle (sampling bottle) for leachate
collection. The draining pipe was attached with a controller
to control the leaching rate. The sampling bottle had a lid to
minimize leachate loss through evaporation. Another hole was
drilled on the lid to connect with the draining pipe.

The experiment was triplicated and thirty leaching columns
(2 soils × 5 biochar rates × 3 replicates) were established. Each
of two air-dried ground soils was mixed with biochar at five
rates, including 0, 0.5, 1, 2, and 5% (w/w). Around 4–5 kg of
each biochar-soil mixture (depending on soils and biochar
rates) was repacked into the leaching columns, and gentle
tamps were applied to the columns along with the addition
of the mixture. The height of the mixture was 14 cm and a
few centimeters from the top were for standing water. The
repacked columns were added with tap water to 3 cm—
water depth for 10 days before rice (Oryza sativa L. ssp. ja-
ponica) seed sowing. Rice seed germination, sowing, and cul-
tivation practices were applied following protocol applied in
(Nguyen et al. 2018). Inorganic fertilizers were applied as
4.6 g urea-N, 1.7 g superphosphate-P, and 1.7 g potassium-
K per 24 columns. These rates are equivalent to 80 kg N,
30 kg P, and 30 kg K per ha (Luu and Nguyen 2006). P
fertilizer was applied at the same time of mixing biochar and
soil; N fertilizer was applied in three splits and K fertilizer was
in three splits (Luu and Nguyen 2006). Surface water depth
was kept around 1–3 cm for the 3-month life cycle of the rice
crop. This means that soil in the leaching columns was totally
submerged for the entire experimental period. All columns
were arranged in a completely randomized design.

2.3 Leaching event and chemical analysis

Four leaching events were conducted on the 29th, 39th, 49th, and
59th day from the sowing day to get the leachate for chemical
analysis. We intended to delay conducting leaching events in
order to capture maximum leaching of Ca and Mg due to their
delay in leaching (Lehmann et al. 2003) and to distribute the four
leaching events over the strong-growth period of rice plants. For
each of the leaching event, around 1 l of leachate was collected
for about 24 h by controlling the controllers attached to the sam-
pling pipe. The collected leachate was sent to a laboratory at the

IUH for chemical analysis. The procedure by Carter and
Gregorich (2008) was applied to determine the concentration of
Ca, Mg, Na, K, Al, Mn, and Fe in the leachate using an induc-
tively coupled plasma spectroscopy–optical emission spectrom-
eter (ICP-OES, Spectro Analytical Instrument GmbH, 47,533
Kleve Germany).

The concentrations of NH4-N, NO3-N, and PO4
3− (P) in the

leachate were determined using manual spectrometric method
(ISO 7150-1:1984), 2,6-dimethylphenol spectrometric meth-
od (ISO 7890-1:1986), and ammonium molybdate spectro-
metric method (ISO 6878:2004), respectively.

Before the experiment, three sub-samples of each soil and
biochar were taken to analyze for effective cation exchange
capacity (ECEC) and exchangeable nutrients the same as the
leachate. The analyses were conducted by weighing 0.5 g of
each sample into a centrifuge tube, adding 30.0 mL of
0.1 mol L−1 BaCl2, and analyzing with ICP-OES (Carter and
Gregorich 2008). ECECwas calculated as a sum of exchange-
able concentrations of Ca,Mg, Na, and K. In addition, the pre-
experimental materials (two soils and biochar) were analyzed
for total organic carbon using Walkley–Black method, for
concentrations of NH4-N and NO3-N using 2 mol L−1 KCl
and for P concentration using 2.5 mol L−1 H2SO4 (Carter and
Gregorich 2008). The pH of these sub-samples was also de-
termined from a 1:2.5 (soil:water) solution using a pH meter.
All these data are shown in Table 1 and Table S1, Electronic
Supplementary Material - ESM).

2.4 Statistical analysis

The data of the leachate concentrations were statistically
analyzed using the analysis of variance (ANOVA), follow-
ing a three-factor completely randomized design, using JMP
10 (SAS Institute Inc., North Carolina, USA). The overall
ANOVA model is γijek = μ + βi + ∝j + ∝ βij + τe + βτie +
∝ τje +αβτije + εijek, where γijke is the response of individual
treatment; μ is overall mean; βi is a fixed effect of the ith
soil; αj is the fixed effect of the jth biochar rate; βαij is the
interaction effect of soil and biochar factors; τe is fixed
effect of eth leaching event; βτie is the interaction effect
of soil and leaching event; ∝τje is the interaction effect of
biochar and leaching event; αβτije is the interaction effect of
soil, biochar, and leaching event; and ∈ijek is the random
error with mean zero and having normal distribution
(Akhtar and Memon 2009). When the ANOVA result indi-
cated a significant effect at P ≤ 0.05, a Tukey honestly
significant different test was used to classify treatment
means. Linear and nonlinear regression fittings were per-
formed to examine dependent patterns of the concentrations
of leached nutrients on biochar application rates. The re-
gression analysis and figures were performed using
Sigmaplot 12 (Systat Software Inc.).
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3 Results

3.1 Leaching of base cations

Overall, the three-way interaction of biochar, soils, and
leaching event was not significant on the concentrations of
the examined elements in the leachate. Nevertheless, the
two-way interaction was found on all examined elements,
except Al and NO3-N. The Ca concentration in the leachate
was significantly affected by the interaction of soil with
leaching event and of biochar with soil (Fig. 1a, b). For sandy
soil, Ca concentrations in the leachate were similar among
four leaching events, varying from 336 to 418 mg L−1

(Fig. 1 and Table S2 - ESM). For the clayey soil, Ca concen-
trations decreased significantly with leaching events (days af-
ter sowing) at a rate of − 5.1 mg L−1 per day. Twenty-nine days
after sowing, the Ca concentration in the leachate from clayey
soil was 217 mg L−1, lowered to 55 mg L−1 after 59 days. Ca
concentrations in the leachate from the clayey soil added with
different biochar rates were not significantly different
(Fig. 1b), varying from 109 to 180 mg L−1. In contrast, the
leached Ca concentration was significantly higher from the
sandy soil added without biochar (477 mg L−1) and was lower
from the same soil added with 5% biochar (293 mg L−1).
Change in the leached Ca concentration from sandy soil with
biochar application rate was an exponential decay pattern. The
leached Mg concentration was significantly affected by the
interaction of soils with leaching events and by the main effect
of biochar application rate (Fig. 1c, d). On the clayey soil, the
concentration ofMg in the leachate was decreased significant-
ly from leaching event 1 (29 days after sowing, 119mg L−1) to
leaching event 4 (59 days after sowing, 33 mg L−1), while on
the sandy soil, the leached Mg concentration was similar
among the four events. Biochar addition at 5% significantly
increased the leached Mg concentration from both soils, com-
pared to the other rates of 0, 0.5, 1, and 2% (Fig. 1d).

The leached Na concentration was significantly decreased
with leaching events, changing from 108 mg L−1 at the first

event (29 days after sewing) to 84 mg L−1 at the last event
(59 days after sowing) (Fig. 2a and Table S2 - ESM). The
leached Na concentration was significantly affected by the
interaction of soil and biochar. At lower biochar rates (less
than 2%), the leached Na concentrations were not clearly dif-
ferentiated between the two soils, whereas at 5% rate, sandy
soil leached a greater Na concentration (153 mg L−1) than
clayey soil (111 mg L−1). The leached K concentration was
significantly affected by the interaction of soil with leaching
event and of soil with biochar (Fig. 2c, d). For the clayey soil,
the leached K concentrations in four events were similar, vary-
ing from 101 to 29 mg L−1, but for sandy soil, the leached K
concentration was decreased significantly from the first event
(385 mg L−1) to the last event (141 mg L−1). The decreased
rate was 8.1 mg L−1 for every increasing day after sowing. The
K concentration in the leachate was also influenced by the
combination of soil and biochar (Fig. 2d). On the clayey soil,
biochar addition at different rates did not affect K leaching,
whereas on the sandy soil, biochar addition linearly increased
the concentration of K in the leachate. The increased rate of
the leached K concentration from sandy soil was
105 mg L−1 day−1, while that from clayey soil was
13 mg L−1 day−1.

3.2 Leaching of Al, Mn, and Fe

The Al concentration in the leachate was not clearly affected
by any interaction but was significantly influenced by the
main effects of the two experimental factors (Fig. 3). An in-
crease in biochar rate reduced Al concentration in the leachate,
from 1.4 to 1.0 mg L−1, following an exponential decay, with a
rapid decrease in leached Al concentration when the biochar
rate increased from 0 to 2% (Fig. 3a). The leached Al concen-
tration also decreased with leaching event, being highest at the
first event (1.4 mg L−1) and lowest at the third event
(1.0 mg L−1) (Fig. 3b). The clayey soil had a significantly
higher leached Al concentration (0.13 mg L−1) than sandy soil
(0.09 mg L−1) had (Fig. 3c).

Table 1 Selected properties of the studied materials (mg kg−1 dried matter)

Materials Statistics TOC (%) pH* ECEC (**) Exchangeable form Available form

Ca Mg Na K Al Mn Fe NH4-
N

NO3-
N

P

Clayey soil Mean 1.8 6.8 25.0 2284 1220 290 889 12.6 19.3 4.0 32.9 100.7 2.7

SE 0.03 0.18 0.3 16 9 24 34 0.3 0.7 0.3 3.7 14.6 0.03

Sandy soil Mean 0.8 7.0 5.6 1007 31 29 77 2.1 1.1 1.2 24.2 80.5 4.6

SE 0.13 0.13 0.1 6 1 11 6 0.9 0.1 0.2 1.4 2.5 0.13

Biochar Mean 37.2 8.7 33.7 1032 146 1271 8495 2.0 18.7 6.8 12.3 54.0 105

SE 1.04 0.02 0.4 11 2 12 46 0.2 0.1 0.2 2.5 10.4 4.3

For the clayey soil, clay and sand contents were 61 and 6%, respectively. For the sandy soil, clay and sand contents were 5.5 and 91%, respectively. TOC
total organic carbon, SE standard error; ECEC effective cation exchange capacity; *pH unit; (**) cmolc kg

−1 ; n = 3
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Different from Al, Mn and Fe concentrations in the leachate
were significantly affected by the interaction of soil with
leaching event, and of leaching event with biochar (Fig. 4).
The leached Mn concentration was decreased exponentially
with leaching event but more rapidly on the clayey soil than
on the sandy soil. On the clayey soil, Mn concentration in the
leachate was decreased from 8.9 (the first leaching event) to
0.4 mg L−1 (the last leaching event). Meanwhile, on the sandy
soil, Mn concentration was decreased from 4.3 to 1.2 mg L−1,
for the first to the last event, respectively (Fig. 4a). An increase
in biochar rate reduced the leached Mn concentration exponen-
tially that happened only in the first leaching event after 29 days
from sowing. Similar patterns of the Mn concentration in the
leachate were not found in the last three events. When biochar
rate increased from 0 to 5%, the leachedMn concentration at the
first event was decreased from 10.9 mg L−1 to 3.9 mg L−1,
respectively. Meanwhile, at the other events, the leachate Mn
concentration varied from 0.6 to 2.8 mg L−1, irrespective of
biochar rate (Fig. 4b). On the clayey soil, the Fe concentration
in the leachate was exponentially decreased from the first to the
last leaching events, whereas on the sandy soil, Fe concentra-
tions were not obviously different among the four leaching
events (Fig. 4c). The leached Fe concentration was significantly

decreased exponentially with biochar application rate for the
first event, whereas the Fe concentration was similar among
the five biochar rates for the last three events (Fig. 4d).

3.3 Leaching of NH4-N, NO3-N, and P

Overall, the NO3-N concentration in the leachate varied from
27 to 77 with a mean of 51 mg L−1 (Fig. 5c and Table S3 -
ESM) and was not significantly affected by any interaction or
single effects of the experimental factors. The NH4-N concen-
tration in the leachate was significantly affected by the main
effect of biochar and by a combination of soil and leaching
event (Fig. 5a, b).With an increase in biochar rate, the leached
NH4-N concentration significantly decreased exponentially
from 17.3 in the non-biochar treatment to 12.0 mg L−1 in the
5% biochar treatment (Fig. 5a). The leached NH4-N concen-
tration was similar between the two soils for the first two
events, whereas its concentration was significantly higher in
the clayey soil (17.7) than in the sandy soil (11.4 mg L−1) for
the last two events (Fig. 5b). The P concentration in the leach-
ate was significantly affected by a combination of soil with
biochar and of soil with leaching events. On the sandy soil,
biochar addition significantly increased the P concentration in

Fig. 1 Calcium (Ca) and magne-
sium (Mg) concentration in the
leachate. Errors bars are standard
errors. Within a panel, data at-
tached with the same letter are not
significantly different from each
other. Only significant relation-
ship was fitted and shown with a
fitted equation, r2 (coefficient of
determination) and p (probability)
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the leachate linearly, from 1.9 in the zero biochar treatment to
11.9 (mg L−1) in the 5% biochar treatments, whereas on the
clayey soil, biochar addition at five rates resulted in similar
leached P concentration (Fig. 5d). For the clayey soil, the
leached P concentration was similar between the first two
combined leaching events and the last two combined events,
whereas for the sandy soil, the P concentration in the leachate
was significantly lower in the last two combined events
(3.7 mg L−1) than in the first two combined events
(5.9 mg L−1) (Fig. 5e).

4 Discussion

Of the ten leached elements selected to test in the current
study, four (Ca, Na, K, and P) were significantly affected by
the combination of the two experimental factors (biochar and
soil): one (NO3-N) is not affected by both factors and the rest
were affected by single factors. An interesting finding from
the current study is that the effect of biochar added to the
sandy soil on element leaching (Ca, Na, K, and P) was stron-
ger (either reducing or increasing) than that added to the clay-
ey soil. This is in line with our initial hypothesis that biochar

affected nutrient leaching more profoundly on the sandy soil
than on the clayey soil.

4.1 The single effect of biochar and tested soils

In the current study, the clayey soil has higher clay content
(61%) and lower sand content (6%) than sandy soil has (5.5%
clay and 91% sand) (Table 1). The clayey soil also had higher
total organic carbon (TOC), ECEC, exchangeable concentra-
tions of Ca, Na, and K than the sandy soil (Table 1 and
Table S1 - ESM). Due to having high clay content, TOC,
and CEC, the clayey soil could have higher nutrient holding
capacity than the sandy soil (Tahir and Marschner 2017),
which may restrict nutrient loss from leaching. This could
result in lower leaching of Ca, Na, K, and P in the clayey soil
than in the sandy soil (compared two soils applied without
biochar in the current study). This is an important reason to
explain K leaching from the clayey soil, less obvious than
from the sandy clay loam soil (Rosolem et al. 2010).
Similarly, Vinten et al. (1994) found that the clayey soil had
a significantly lower total leaching in the second and third year
than sandy soil.

Fig. 2 Sodium (Na) and potassi-
um (K) concentration in the
leachate. Errors bars are standard
errors. Within a panel, data at-
tached with the same letter are not
significantly different from each
other. Only significant relation-
ship was fitted and shown with a
fitted equation, r2 (coefficient of
determination) and p (probability)
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For the biochar, several mechanisms could explain the
findings (biochar reducing leaching of Al, Mn, Fe, and NH4-
N) from the current study. Biochar was reported to have a
great surface area, which increased CEC of biochar-
amended soil (Liang et al. 2006). Because biochar was also
demonstrated to have great nutrient adsorption (Ding et al.
2016), its addition may increase nutrient adsorption of the
biochar-added soil, leading to significantly lower leaching of
NH4-N on a paddy field (Wang et al. 2017). Biochar was
reported to adsorb Al on its surface (Qian and Chen 2014)
that may contribute to reduced Al leaching as observed in
the current study. Liming effect induced by biochar addition
(Borchard et al. 2019; Gao and Deluca 2016) could be another
mechanism in affecting nutrient leaching. Biochar had a
higher pH value (8.7) than the two examined soils did (6.8
for clayey and 7.0 for sandy soil, Table 1) in the current study.
After the experiment, the pH of the clayey soil added with 5%
biochar was increased by 0.38 units, and of sandy soil was
0.33 units compared to the soil added without biochar (data
not shown). The increased pH by biochar addition was report-
ed by El-Naggar et al. (2018) and Silva et al. (2017). Because
of the increased pH, the available concentrations of some
metals in soil such as Al, Fe, and Mn were reported to

decrease (Patra et al. 1994; Dong et al. 1999; Li and
Johnson 2016; Pandit et al. 2018). These may explain the
reduced leaching of these ions from the biochar-added soil,
comparing the non-biochar-added soil in the current study.

Although the reason responsible for the increased concen-
tration of Mg in the leachate because of biochar addition was
not clearly understood, there could be some possibilities.
Addition of 1.0 mol L−1 KCl solution was used to extract
exchangeable Mg cation in soil (Bortolon and Gianello
2010), indicating that a sufficiently high concentration of K
in soil might displace Mg ion from exchange sites, increasing
Mg concentration in the soil solution. A similar mechanism
could happen in the current study that an increase in K con-
centration in the leachate and possibly in the soil solution,
because of biochar addition, might increase exchangeable—
Mg concentration in the soil solution and subsequent in the
leachate. In addition, Mg was demonstrated to bind to ex-
change sites less strongly than Ca due to the smaller ionic
radius and larger hydrated radius (Shaul 2002; Gransee and
Führs 2013). This is in line with the assumption that sufficient-
ly high K concentration in soil solution might firstly push
exchangeably bound Mg to soil solution, increasing Mg con-
centration in the leachate as found in Fig. 1d.

Fig. 3 Aluminum (Al) concen-
tration in the leachate. Errors bars
are standard errors. Within a pan-
el, data attached with the same
letter are not significantly differ-
ent from each other. Only signifi-
cant relationship was fitted and
shown with a fitted equation, r2

(coefficient of determination) and
p (probability)
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4.2 Interaction effects of biochar with soil

However, biochar addition was found to reduce Ca leaching
significantly from the sandy soil but insignificantly from the
clayey soil (Fig. 1b). The related reason could be that because
the effective magnitude of biochar on cation leaching could be
similar to that of clay mineral (Dempster et al. 2012); the addi-
tion of biochar to the clayey soil did not significantly influence
Ca leaching from the biochar-added soil. Meanwhile, with a
high-leaching feature, sandy soil amended with biochar could
reduce Ca leaching significantly due to high Ca adsorption of
the amendment, compared to the sandy soil.

An increase in leaching of Na, K, and P, because of biochar
addition, stronger on sandy soil than clayey soil was also
found in the current study (Figs. 2b, d, and 5d). The exchange-
able K concentration of biochar (8495 mg kg−1) was 110 and
9.6 times higher than that of sandy (77) and clayey soil
(889 mg kg−1), respectively. Similarly, the exchangeable Na
concentration of biochar (1271) was 44 and 4.4× higher than
that of sandy (29) and clayey (290 mg kg−1) soil, respectively
(Table 1). As a result, the concentration of these nutrients in

the leachate was linearly proportional with biochar rates on
sandy soil. Likewise, Major et al. (2012) and Lehmann et al.
(2003) found that biochar addition increased K leaching from
the topsoil layer. Novak et al. (2009) reported that the leached
K and Na concentrations were increased with biochar rates on
sandy soil. On the other hand, the clayey soil, having a higher
ECEC (Table 1) and a higher buffering capacity (Jansen van
Rensburg et al. 2009) compared to the sandy soil, could min-
imize the change in dissolved-nutrient concentrations of K
and Na, and subsequently, reduce their concentration in the
leachate, caused by biochar addition.

The leaching of P increased linearly with biochar applica-
tion rates on sandy soil in the current study is similar to other
studies. Bu et al. (2017) found that biochar addition increased
P leaching by up to 108% from the sandy soil. Silva et al.
(2017) found that P leaching was increased linearly with bio-
char application rate on an Oxisol having 78% of clay content.
Three possibilities could explain the increased P leaching. An
available P concentration (105 mg kg−1) of biochar was 23×
higher than that of sandy (4.6 mg kg−1). Therefore, the first
possibility could be that the increased P concentration in the

Fig. 4 Manganese (Mn) and iron
(Fe) concentration in the leachate.
Errors bars are standard errors.
Within a panel, data attached with
the same letter are not signifi-
cantly different from each other.
Only significant relationship was
fitted and shown with a fitted
equation, r2 (coefficient of deter-
mination) and p (probability)
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leachate could be derived from biochar. With an increase in
biochar addition rate, an increase in pH of the biochar-added
soil (see above discussion) could be the second possibility.
The increased pH may dissolve a portion of immobilized P
in soil (Devau et al. 2009), making P more soluble, and thus
susceptible to leaching. The third possibility could be related
to soil Al and Fe solubility, which could be reduced, indicated
through lowered Al and Fe leaching (Figs. 3 and 4), as biochar
application rate increased. Because P ion could precipitate
with Fe and Al (Hinsinger 2001), the reduced Al and Fe sol-
ubility in soil may make P more soluble in the soil solution
and more P leaching. Nevertheless, the effect of biochar on P
leaching was not obvious on clayey soil. This could be due to
higher exchangeable concentrations of Al, Fe, and Mn in the
clayey soil than in the sandy soil (Table 1), resulting in P
precipitation with these metals.

4.3 Interaction effects of soil with leaching event

The interactive effects of soil and leaching event were also
observed on Ca, Mg, K,Mn, Fe, NH4-N, and P concentrations
in the leachate. On the clayey soil, the leached concentrations
of these nutrients (Ca, Mg, Mn, and Fe) were decreased rap-
idly over leaching events, whereas on sandy soil, the leached
concentration of Ca and Mg remained similar, or reduced at a
slower rate (Mn and Fe) over the leaching events. Similarly,
Singh et al. (2010) reported a significant interactive effect of
soil and leaching event on NH4-N leaching that the Vertisol
had higher NH4-N leaching in the first leaching event than in
the second event, whereas the Alfisol did not. One possible
reason to explain the dynamics could be related to a high clay
content of the clayey soil that may rapidly immobilize the
soluble nutrients due to high nutrient holding capacity,
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compared to the sandy soil. After being dried and ground, two
experimental soils were added with water to prepare the ex-
periment, stimulating nutrient solubilization and/or minerali-
zation due to drying and rewetting effect (Venterink et al.
2002; Annkathrin and Egbert 2018). The initial flush effect
of drying and rewetting could be decreased (Iovieno and
Baath 2008) quickly on clayey soil than on sandy soil due to
a higher buffering capacity of clayey soil than sandy soil
(Dondeyne et al. 2001; Jansen van Rensburg et al. 2009).
Nevertheless, this mechanism may not explain the dynamics
of the leached K concentration, which was decreased more
rapidly from the sandy soil than from clayey soil (Fig. 2c).
Mechanisms related to this observation are still unclear and
thus need more studies.

5 Conclusions

On the sandy soil, biochar amendment significantly reduced
Ca concentration, but increased Na, K, and P concentration in
the leachate, whereas on the clayey soil, increased biochar
addition rates did not show a significant effect on Ca, K, and
P concentration in the leachate. The concentration of Al and
NH4-N in the leachate was decreased significantly with bio-
char application rates. Mn and Fe leaching were significantly
reduced with biochar rates for the first leaching events, but not
for the other leaching events. Liming effect and increased
nutrient adsorption by biochar addition could be involved in
the reduced leaching of Al, Mn, Fe, Ca, and NH4-N. Co-
addition of Na, K, and P with added biochar could be respon-
sible for an increase in leaching of these elements.
Nevertheless, the increased or decreased effects of biochar
were more profound on sandy soil than soil clayey soil.
With these, the biochar amendment could decrease leaching
of some nutrients while increasing some others and the short-
term effect of biochar on nutrient leaching from paddy soils
was significantly depended on soil texture.
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