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Abstract

Purpose Collapsing gully erosion is a specific form of soil erosion that is widely distributed in the hilly granitic region of tropical
and subtropical southern China and resulted in extremely rapid water and soil loss. The aim of this study was to investigate the
correlations between soil physicochemical and shear properties and the clay mineralogical of different profiles of the non-eroded
soils (without soil erosion) and collapsing gully soils in Changting County, Fujian Province, southeastern China.

Materials and methods A total of 32 sampling soils collected from four pedons of non-eroded and collapsing gully soils were
subjected to conventional soil analyses for physicochemical properties. The soil shear strength of collected soils was measured
using a triaxial shear apparatus according to the unconsolidated-undrained (UU) method. The clay mineralogical of different
profiles soils was examined with an X-ray diffraction (XRD) analysis.

Results and discussion The results showed that non-eroded soils had superior physicochemical characteristics. The cohesive
force of the non-eroded soils was generally greater than that of collapsing gully soils. The XRD patterns of the clay fraction
indicated that kaolinite, illite, hydroxy-interlayered vermiculite (HIV), and gibbsite were the dominant clay minerals in the
studied soils. Pearson’s correlation analysis showed that the cohesive force of the studied soils had significant and positive
correlations with CEC, exchangeable AP + H*, Fey, Aly, and Fe,; the correlation coefficients (R value) for cohesive force were
greater than those of internal friction angle. The stepwise multiple linear regression analyses indicated that exchangeable AI** +
H* and Aly were the dominant factors affecting cohesive force.

Conclusions Compared with collapsing gully soils, non-eroded soils had superior physicochemical and shear properties, indi-
cating that non-eroded soils were better able to resist soil erosion. The findings obtained in the present study were of fundamental
significance in understanding the correlation between shear strength and the soil physicochemical properties in the non-eroded
soils and collapsing gully soils of tropical and subtropical China.
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1 Introduction erosion occurs on hill slopes covered by a thick granite
weathering mantle and had been given the local name
“Benggang” (Xu 1996; Jiang et al. 2014) or permanent gully
(Lin et al. 2015) (Fig. 1a). The concept of a collapsing gully
was first proposed by Zeng in 1960, in which composite ero-

sion forms via hydraulic scouring and gravitational collapse

In the hilly granitic region of tropical and subtropical southern
China, a serious type of soil erosion called collapsing gully
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(Zeng 1960). These particular types of gullies are generally
composed of an upper catchment, collapsing wall, colluvial
deposit, scour channel, and alluvial fan (Fig. 1b). According to
a national survey by the Monitoring Center of Soil and Water
Conservation of China, more than 239,100 permanent gullies
are present in the granitic red clay soil regions of southern
China, which includes the seven provinces of Guangdong,
Guangxi, Jiangxi, Hubei, Fujian, Hunan, and Anhui (Jiang
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* Upper catchment

Collapsing wall

Fig. 1 A typical collapsing gully in Fujian Province. a Aerial photo of a
collapsing gully in the study area. b Upper catchment, collapsing wall,
colluvial deposit, scour channel, and alluvial fan

etal. 2014). These gullies develop quickly and forcefully, with
an annual average rate of erosion of over 50 kt km” yr ' in
these areas, which is more than 50-fold faster than the rate of
erosion on gentler slopes or on slopes covered with high veg-
etation. From 1950 to 2005, gully erosion affected 1220 km?
ofland in the granitic red clay soil region, leading to the loss of
more than 60 Mt of soil (Zhong et al. 2013). These gullies
cause soil loss, downstream aggregation, and increase degra-
dation of agroecological systems; thus, increasing research is
focusing on gully erosion.

Most of the relevant research in recent decades focused on
the mechanisms of collapsing gully formation (Xu 1996; Luk
et al. 1997a; Munro and Huang 1997; Woo et al. 1997); the
factors influencing collapsing gully erosion, including varia-
tions in the soil physical properties of different soil profiles of
collapsing gully walls (Xu 1996; Luk et al. 1997b; Xia et al.
2015); and monitoring of the water and sediment yield from
collapsing gullies in the hilly granitic regions (Luk et al.
1997b; Lin et al. 2018). Numerous factors have been consid-
ered responsible for collapsing gully development, such as
slope steepness and aspect, geology, precipitation, vegetation,
and human activity (Liggitt and Fincham 1989; Kakembo
et al. 2009; Le Roux and Sumner 2012; Vincent 2013). The

slope steepness, aspect, and altitude can affect the scale and
rate of collapsing gully development (Xu 1996; Ge et al.
2007). Additionally, low vegetation coverage and unreason-
able human activities can induce or promote the development
of collapsing gully (Prosser and Slade 1994; Xu 1996).
Finally, parent rock characteristics and geological structure
can also considerably affect collapsing gully formation.
Granite is widely distributed in southern China with a humid
tropical climate, and thus a well-developed, thick weathering
mantle, which provides the material basis for collapsing gully
development, while intense rainfall in the tropical monsoon
climate acts as a powerful driver of collapsing gully. More
than 85% of collapsing gullies have occurred on granite, while
a few are on glutenite, phyllite, and basalt (Ge et al. 2007).
Geotechnical properties, such as the physicochemical and me-
chanical characteristics of rock and soil inherited from the
parent rock, are important factors contributing to collapsing
gully (Imarhiagbe and Williams 2014; Okunlola et al. 2014;
Okengwo et al. 2015).

Soil shear strength represents the soil’s ability to resist
shearing under the influence of external forces. Two soil shear
strength parameters (cohesion force (¢) and internal friction
angle (¢)) are important factors associated with soil collapse
(Lohnes and Handy 1968; Hessel and Van Asch 2003).
Rainfall is abundant in the red soil region of southern China.
The soil shear strength of collapsing wall decreases after
adsorbing water, which results in the instability of the collaps-
ing wall and can cause further collapse. Therefore, the mois-
ture characteristic is closely related to the formation of a col-
lapsing gully and also regarded as a critical factor affecting
soil shear strength (Xu 1996; Dong et al. 2011; Lin et al.
2013). Lin et al. (2013) analyzed the regularity of shear
strength with soil moisture content in different soil layers with
a triaxial shear test; the result indicated that with increasing
moisture content, cohesive forces showed a trend of initial
increase and then a decrease, while the internal friction angle
decreased with increasing moisture content. The same results
were reported by Wei et al. (2018), while they studied to
determine how indicators of soil shear strength vary with the
soil water content and dry density.

However, correlation between shear strength and soil phys-
icochemical properties of different weathering profiles of the
non-eroded and collapsing gully soils in southern China with a
triaxial shear apparatus still remained obscure. Therefore, two
different non-eroded soils were collected from the towns of
Sidu (SD) and Tongfang (TF) without collapsing gully erosion
and other two soil pedons were collected from collapsing
gullies from the town of Hetian (HT) in Changting County,
Fujian Province, southeastern China. The aims of the present
study were to (1) identify the similarities and differences in
soil physicochemical and mineralogical properties of different
weathering profiles in the non-eroded and collapsing gully
soils, (2) investigate the shear strength (cohesive force and
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internal friction angle) with a triaxial shear apparatus in the
four pedons of 32 soil samples, and (3) study the correlations
between shear strength (cohesive force and internal friction
angle) and soil physicochemical properties by analyzing the
status and variation in shear strength.

2 Materials and methods
2.1 Study area

Fujian Province is located in southeastern China, and
Changting County is located in southwestern Fujian
Province. The county is located within the latitudes of 25°
18’ 40"N to 26° 02’ 05"N, and the longitudes of 116° 00’
45"E to 116° 39" 20"E in a subtropical region. The climate
in this region is humid, with a mean annual air temperature of
17.5-18.8 °C and a mean annual precipitation of 1737.1 mm,
71.9% of which occurs from April to September. The natural
vegetation at the sites consists of Pinus massoniana, shrubs,
weeds, and secondary vegetation. Changting County covers
an area of 3099 km” and is underlain by granitoid rocks and
metamorphosed equivalents. In geological history, Changting
County was part of a shallow sea and coastal location in a
subtropical monsoon climate with abundant rainstorms and a
highly complex geological structure. The Changting basin is a
residual sedimentary basin consisting of Upper Triassic to
Lower-Middle Jurassic strata, which are compressed into
NNE-striking folds. The Upper to Lower Jurassic sedimentary
rock series consists of conglomerates and sandstones, while
the Middle Jurassic series consists of fine- to medium-grained
quartz sand and silt stones. The folded layer is intruded by a
granitic pluton (Xu et al. 2011). However, most of the soil
parent material of Changting County is coarse-grained biotite
granite, which consists of quartz, plagioclase, K-feldspar, and
biotite. In granite areas, tropical weathering of the granite
often produces a deep weathering profile that occasionally
reaches depths of more than 50 m, and the regolith consists
of quartz grains and felsic clay minerals (Sheng and Liao
1997). The weathered materials are easily eroded, which give
rise to mass wasting and erosion by rain and runoff on steep
slopes when protective vegetative covering is removed (Luk
et al. 1997a). After several wet-dry cycles, deep and wide
cracks are easily formed, triggering gully erosion.

2.2 Soil samplings

Two pedons of non-eroded soils were sampled from the towns
of Sidu (SD; pedon I) and Tongfang (TF; pedon II), and other
two pedons of the collapsing gully soils were sampled from
the town of Hetian (HT; pedon III and pedon I'V) in Changting
County (Fig. 2). According to the height of weathering pro-
files of the soils, the soil samples were collected from two
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Fig. 2 Sampling sites: a pedon I, b pedon II, ¢ pedon III, and d pedon IV

non-eroded soil pedons (pedon I and pedon II) and were sep-
arated into 7 and 6 soil horizons, respectively; 11 and 8 soil
samples were collected from two collapsing gullies (pedon 111
and pedon 1V), respectively, with a total of 32 sampling soils.
The information of soil sample sites and soil sampling depth is
presented in Table 1.

2.3 Soil analyses

The bulk samples of each soil were air-dried at room temper-
ature and ground to pass through a 2-mm sieve. The pHs of
the bulk soils (< 2 mm) were measured at a soil to water ratio
of 1:2.5 using a pH meter (STARTER 2100, OHAUS
Instruments Co., Ltd., Shanghai, China). The particle size dis-
tribution of the soil samples was measured using a Laser
Granulometer (BT-9300ST, Bettersize Instruments Ltd.,
Liaoning, China). Soil organic matter (SOM) was determined
with wet-oxidation method (Jackson 1979). The cation-
exchange capacity (CEC) and exchangeable cations (K, Na,
Ca, and Mg) in the soils were determined using the ammoni-
um acetate method buffered at pH 7 (Rhoades 1982), and the
concentrations of exchangeable K, Na, Ca, and Mg were de-
termined with an inductively coupled plasma optical emission
spectrometer (ICP-OES) (Optima 8000, PerkinElmer, New
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Table 1 Descriptions of the pedons L, II, III, and IV
Location Latitude Longitude Sample Depth (cm) Moist color Description RI*
Sidu (SD) 25°40"41"N 116° 12’ 29"E I-A 0-10 7.5YR3/1 Root (50%) 0.83
I-B; 10-30 7.5YR4/4 Root (20%) 2.50
I-B, 30-45 7.5YRS5/4 Subangular 2.00
1-B; 45-70 7.5YRS/6 Subangular 3.00
I-B,4 70-90 7.5YRS/6 Subangular 3.00
I-Bs 90-105 7.5YRS/8 Subangular 4.00
I-C > 105 7.5YRS/6 Subangular 3.00
Tongfang (TF) 25° 47" 25"N 116°35' 01"E II-A 0-10 7.5YR4/4 Root (50%) 2.50
1I-AB 10-30 7.5YR4/6 Subangular 3.75
1I-B, 30-50 7.5YRS5/6 Subangular 3.00
1I-B, 50-78 7.5YRS/8 Subangular 4.00
1I-B; 78-100 7.5YR5/6 Subangular 3.00
1I-B,4 > 100 7.5YRS5/6 Subangular 3.00
Hetian (HT) 25°39'21"N 116° 28' 08"E II-A 0-8 7.5YR3/2 Root (80%) 1.67
1I-B, 8-24 SYRS/3 Subangular 3.00
1I-B, 24-61 SYRS5/4 angular 4.00
1II-B; 61-94 2.5YR5/6 angular 9.00
1I-B4 94-143 2.5YR4/6 angular 11.25
111-Bs 143-177 2.5YR5/6 angular 9.00
1I-Bg 177-203 2.5YRS5/6 angular 9.00
111-B; 203-222 7.5YR6/6 Subangular 2.5
1II-Bg 222-254 7.5YR7/6 Subangular 2.14
1I-Bo 254-278 7.5YR8/6 Subangular 1.88
1I-C >278 7.5YR7/2 Gravel (80%) 0.71
Hetian (HT) 25° 35" 52"N 116° 27" 39"E IV-A 0-7 7.5YR4/2 Root (80%) 1.25
IV-AB 7-15 7.5YRS5/4 Root (40%) 2.00
IV-B, 15-32 7.5YRS5/6 Subangular 3.00
IV-B, 32-59 7.5YRS/6 angular 3.00
IV-B; 59-81 7.5YRS5/6 angular 3.00
IV-B,4 81-100 7.5YR5/6 angular 3.00
IV-Bs 100-125 7.5YR5/8 angular 4.00
IV-Bg > 125 7.5YRS/6 angular 3.00

4RI redness index [(10 — hue) x chroma / value] (Aniku and Singer 1990)

York, NY). Base saturation and exchangeable AI** + H* con-
centrations were calculated and estimated as (K + Na + Ca +
Mg) / CEC x 100% (Jackson 1979). Free Fe-, Al-, Si-, and
Mn-oxides (Fey, Alg, Sig, and Mny) were extracted with
dithionite-citrate-bicarbonate (DCB) solutions (Mehra and
Jackson 1960); X-ray non-crystalline Fe-, Al-, Si-, and Mn-
oxides (Fe,, Al,, Si,, and Mn,) were extracted with pH 3
ammonium oxalate solution (0.2 M) (Schwertmann 1964),
and organically bound Fe-, Al-, Si-, and Mn oxides (Fe,,
Al,, Si,, and Mn,) were treated with 0.1 M Na-
pyrophosphate solution (McKeague et al. 1971). Total soil
Fe (Fe,) was determined after digestion with hydrofluoric acid
and aqua regia solutions. The concentrations of extracted Fe-,
Al-, Si-, and Mn-oxides and Fe; were determined using ICP-
OES. All chemicals were reagent grade, and all experiments
were conducted in triplicate.

2.4 Soil shear strength tests

The soil cohesive force and internal friction angle were measured
using the triaxial shear strength test. A triaxial shear apparatus
(TKA-TTS-3N, Nanjing TKA Technology Co., Ltd., Shanghai,

China) was used to conduct the shear strength test according to
the unconsolidated-undrained (UU) method. The water content
of the soil samples was controlled according to the natural bulk
density in a cylindrical mold (diameter 31.9 mm, height 80 mm)
and uniformly tamped with a rod. The water content of the
remolded specimen and the test temperature were held at 15%
and 25 °C, respectively. The UU shear strength triaxial tests were
performed under three cell pressures with 50, 100, and 200 kPa,

and sheared with a strain rate of 0.4 mm min .

2.5 X-ray diffraction

Soil samples were pretreated with 30% H,O, to remove or-
ganic matter and treated with DCB to remove iron-oxide coat-
ings. Then, the soil samples were dispersed using a 5% sodi-
um hexametaphosphate solution and stirred, and following
settling for 8 h, the clay minerals were extracted according
to Stokes’ law. For improved identification of soil clay min-
erals by X-ray diffraction (XRD) analysis, clays were dis-
persed in H,O and separated by centrifugation. The silt was
separated from the sand by wet sieving (53-um sieve). All
fractions (sand, silt, and clay) were freeze dried.
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The tested samples were saturated with Mg-glycerol
(Mg-gly) and potassium (K). The Mg saturation of vari-
ous samples was examined at 25 °C before and after glyc-
erol solvation. The K-saturation of various samples was
examined by XRD analysis at 25 °C before and after
heating at 110, 250, 350, 450, and 550 °C for 2 h
(Jackson 1979; Pai et al. 1999). The oriented clay speci-
mens were examined with an X-ray diffractometer
(Ultima IV, Rigaku Corporation, Tokyo, Japan) using
Cu-K« radiation (A=1.5418 A) generated at 40 kV and
40 mA. Diffraction patterns were recorded in the range of
20 =3 to 40° with a scanning speed of 1° 20 min'. The
random powder XRD patterns of the silt and sand frac-
tions were scanned from 3 to 60° 20 at 1° 20 min .
Semi-quantitative estimations of clay minerals were per-
formed according to the methods of Brindley (1980) and
Pai et al. (1999).

2.6 Scanning electron microscopy

Morphological studies of clay samples were performed with a
scanning electron microscope (Phenom ProX, Phenom-
World, Netherlands). A conductive double-sided adhesive
was pasted onto clay powder samples. Then, the samples were
coated with gold using a sputter coater prior to scanning.

2.7 Statistical analyses

A one-way analysis of variance (ANOVA) was performed to
examine the effects of soil depth on soil physicochemical
properties and soil shear properties. Pearson’s correlation
analysis was performed to correlate the soil physicochemical
properties across soil depth in the different pedons with shear
properties. Regression analysis was used to analyze the rela-
tionships between the soil shear properties and the soil param-
eters. All tests were performed using the statistical program,
SPSS 18.0. Figures were prepared in Origin 7.5.

3 Results
3.1 Descriptions of studied soils

The characteristics of each soil horizon are summarized in
Table 1. The moist color and redness index [(10 — hue) x
chroma / value] showed some variations in the four pedon
soils (Table 1) (Aniku and Singer 1990). Homogeneous
lateritic soils were classified as red soils according to their
moist color, the red pedon was presented with diffuse
horizon boundaries of soil features and redness indices,
and the gravel soil layers were found at a depth of >
278 cm and redness indices (e.g., RI=0.71), indicating
that the degree of weathering varies with soil depths.

@ Springer

Compared with non-eroded soils, the RI of collapsing
gully pedon soils had slight high redness indices, indicat-
ing that the collapsing gully soils suffer high-degree
weathering than non-eroded soils.

3.2 Soil physical and chemical properties

The chemical and physical properties of the studied pedons
are summarized in Table 2. The pH of non-eroded and col-
lapsed soils ranged from 4.42 to 5.09 and from 4.46 to 5.48,
respectively. The CEC of non-eroded and collapsed soils
ranged from 4.34 to 12.96 cmol kg ' and from 2.82 to
10.80 cmol kg ', respectively. In general, the SOM in each
pedon decreased with increasing soil depth due to the humi-
fication of litter from the vegetative cover in the upper soil
layers and indirectly from root exudate contributions to SOM
content. The base saturation and exchangeable cations (K, Na,
Ca, and Mg) ranged from 1.47 to 8.69% in the non-eroded
soils and from 2.03 to 8.41% in the collapsed soils with low
exchangeable Ca, Mg, K, and Na. The exchangeable AI** +
H* concentrations ranged from 4.08 to 12.69 cmol kg ' in the
non-eroded soils and from 2.66 to 10.43 cmol kg™' in the
collapsed soils. The texture of the non-eroded soils was silt
loam, and almost all of the collapsed soils ranged from loam to
sandy loam, except pedon III-Bs.

The concentrations of Fe-, Al-, Si-, and Mn-oxides in
all pedons are presented in Table 3. The concentrations of
free Fe-oxide (Feq) of the non-eroded soils ranged from
33.09 to 39.51 g kg ', while the concentrations in the
collapsed soils ranged from 1.87 to 23.71 g kg™ '. The
concentrations of Al-oxides (Aly) were ranged from 6.89
to 11.46 g kg 'and 1.71 to 5.80 g kg™ ' of non-eroded and
collapsed soils, respectively. Both of Fey and Aly of the
non-eroded soils were greater than in the collapsed soils,
and the concentrations of free Fe-, Al-, Si-, and Mn-
oxides were always greater than those of X-ray non-crys-
talline and organically bound Fe-, Al-, Si-, and Mn ox-
ides, especially for Feq and Aly. However, the amounts of
Sig, Mng, Si,, Mn,, Sip, and Mn,, did not differ consider-
ably between the non-eroded and collapsed soils.

Concentrations of Fe, in the non-eroded soils ranged from
46.63 10 65.10 g kg ', and those in the collapsed soils ranged
from 3.99 t0 30.20 g kg ', indicating greater amounts of Fe, in
the non-eroded soils than in the collapsed soils. The propor-
tion of crystalline Fe oxides (Fe.) was calculated according to
the difference in the amount of Fe extracted by DCB and by
acid ammonium oxalate solution (Feq — Fe,) X 100% / Feq
(Table 3). The proportions of Fe, ranged from 94.12 to
99.19% in the non-eroded soils and from 80.25 to 97.06% in
the collapsed soils, indicating that the non-eroded soils had
slightly higher proportions of Fe. than that in the collapsed
soils.
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3.3 Soil shear properties

The shear properties of the soils are represented as the cohe-
sive force and internal friction angle in Table 3. The cohesive
force of the non-eroded soils was generally greater than that of
the collapsed soils and ranged from 56.17 to 81.55 kPa
(73.45 kPa on average) in the non-eroded soils and from
51.50 to 73.52 kPa (61.66 kPa on average) in the collapsed
soils; the cohesion force of the non-eroded soils and the col-
lapse soils was statistically significantly different (P <0.01),
indicating that non-eroded soils were better able to resist soil
erosion from external forces. However, there were no signif-
icant differences in the internal friction angle between non-
eroded soils and collapsed soils.

3.4 Scanning electron microscopy

The morphology of the clay particles in the soil samples was
revealed to be hexagonal and elongated flakes (Fig. S1,
Electronic Supplementary Material (ESM)). This morphology
indicates that kaolinite is a major mineral in studied pedons.
Kaolinite is a mineral with two types of surfaces, basal and
edge, each of which has different surface properties and di-
mensions (Sayed Hassan et al. 2006). The pseudo-hexagonal
plates with angular edges suggest that the kaolinite in the
sample was also well crystallized. Particle shape is a funda-
mental feature of phyllosilicates and depends on the physico-
chemical conditions of geological crystallization, growth,
transport, and deposition (Bergaya et al. 20006).

3.5 Powder and oriented X-ray diffraction analyses

The powder X-ray diffractograms of the sand and silt fractions
indicated that feldspar, quartz, and ferrimagnetic magnetite
(Fe304) were present. Quartz was the major component, with
intense XRD reflection peaks at 3.34 and 4.26 A. X-ray ori-
ented diffraction patterns of the clay fractions of pedons I-By,
1I-B3, 1I-A, and IV-A are shown in Fig. 3. The Mg-gly (the
sample saturated with MgCl, and glycerol solvation) XRD
pattern of all samples showed peaks at 14.1, 10.1, 7.1, 5.1,
4.85, 3.57, and 3.34 A. In the Mg-saturated clay, the d-001
value was 14.1 A and did not shift to higher d-spacing with
glycerol solvation, indicating the absence of smectite in the
soil clay fractions. The XRD pattern of K-saturated clay at
25 °C showed an XRD reflection peak at 14.1 A and partly
shifted toward 10.1 A and completely disappeared after being
heated to 350 °C. This response to heating indicates the loss of
hydroxy-interlayer vermiculite (HIV) materials (Rich 1968;
Barnhisel and Bertsch 1989; Chiang et al. 1999). The 10.1-,
5.1-, and 3.34-A XRD reflection peaks remained unchanged
after K-saturation and heat treatments, which indicates the
presence of illite. The 7.1- and 3.57-A XRD reflection peaks
disappeared after heating to 550 °C, which indicates the

@ Springer

presence of kaolinite. The 4.85-A peak of the K-saturated
sample disappeared after heating to 350 °C, which indicates
the presence of gibbsite. A small, broad diffraction reflection
between 14.1 and 10.1 A (12.1 A) in pedon I was detected in
the K-saturated sample and disappeared after being heated to
550 °C, indicating the presence of a mixed layer in pedon I.

The results of the semi-quantitative analysis of clay min-
erals are shown in Table S1 (ESM) to illustrate the differences
between the non-eroded and collapsed soils. Hydroxy-
interlayered vermiculite (HIV), illite, kaolinite, and gibbsite
(Al(OH)3) were the major components in both non-eroded
and collapsed soils. The amount of kaolinite in collapsed soils
was greater than in non-eroded soils, which ranged from 71.4
to 86.9% in collapsed soils and 29.4 to 64.9% in non-eroded
soils, while the content of HIV and gibbsite in non-eroded
soils was greater than in collapsed soils. The HIV in the soils
indicated that in the low SOM and moderate acidity environ-
ment with frequently wetting and drying cycles, the vermicu-
lite interlayer hydroxyl species is an intermediate product of
the weathering of 2:1 clay minerals to kaolinite (Rich 1968;
Chiang et al. 1999). A large amount of kaolinite was present in
the collapsed soil because the weathering intensity was en-
hanced due to greater leaching. Long periods of weathering
and leaching can result in the formation of minerals such as
kaolinite in Ultisols (Sanchez and Buol 1974).

3.6 Relationship between soil physicochemical
properties and shear properties

Correlation between different soil physical and chemical prop-
erties of the study samples are shown in Table S2 (ESM). For
the same forms of sesquioxides, Fe oxides showed significant
positive relationships with Al oxides (P <0.05). This result
was similar to the findings of Wu et al. (2016). Moreover,
sesquioxides had significant correlation with pH, CEC,
SOM, AP** + H*, and soil texture except Mn-oxides, but did
not show significant correlation with K, Na, Ca, and Mg. For
instance, Aly had a significant positive correlation with Feq
(0.934%%), Feq + Alyq (0.959%%), Fe, (0.649*%), Fe, + Al,
(0.632%%*), Fe, (0.597*%), Al, (0.618*%*), Fe, + Al,
(0.634%**), CEC (0.818**), SOM (0.527*%*), exchangeable
AP + H* (0.823%%), silt (0.931%%), clay (0.500%%), Fe,
(0.892%#%), and Fe, (0.540%*) and a significant negative corre-
lation with Si, (—0.470%%), Si, (—0.625%%), pH (= 0.530%%),
and sand (— 0.936%*%).

Table 4 shows the relationship between the physicochem-
ical properties of the soil samples and their shear properties.
For all pedons, cohesive force had a significant positive cor-
relation with Fey (0.669%%), Aly (0.774%%), Feq + Aly
(0.698**), Fe, (0.536%*), Al, (0.508**), Fe, + Al,
(0.587%%), Fe, (0.519%%), Al, (0.544%%), Fe, + Al,
(0.553%%) CEC (0.814%%), exchangeable AI’* + H*
(0.818**), silt (0.650%*), clay (0.457**), and Fe, (0.638%%*)
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é" and a significant negative correlation with Sigq (—0.493%%), Si,
g P (= 0.571%%), pH (—0.452**), and sand (—0.672**). The re-
E « maining soil parameters, i.c., Mn, exchangeable cations, and
= S Fe,, did not show significant correlations with cohesive force.
E < The internal friction angle was correlated with Al (0.522%%),
= o « Al, (0.518%%), CEC (0.532%%), exchangeable AI’* + H*
© . (0.530**), and Fe, (0.481**). For the non-eroded soils, the
55: ‘,g cohesive force showed a significant positive correlation with
2 N Alg (0.683%), Fe, (0.560%), Al, (0.595%), Fe, + Al, (0.604%),
s = CEC (0.850%%), and exchangeable A" + H* (0.860%*). The
S& (S correlation coefficients (R value) for cohesive force were
& greater than those for internal friction angle. In contrast, for
L: collapsed soils, the internal friction angle had a significant
E positive correlation with Aly (0.659*%), CEC (0.586%%),
= AP + H* (0.589*%), and Fe, (0.628**), while the cohesive
= - force had a significant positive correlation with Aly (0.579%%),
% 2 é CEC (0.554*%), and A** + H* (0.562*) but did not show a
‘-? S _§ 5 significant correlation with Fe.
g © E % § Stepwise multiple linear regression analyses were per-
= < = T formed to determine the dominant factor equations of
3 é = shear properties (cohesive force (¢) and internal friction
= b :C angle (¢)). According to the relationships between cohe-
H 5 o« sive force, internal friction angle, and physicochemical
& E § = properties of the different pedons, the physicochemical
3 % properties had significant correlation with cohesive force
- - :j ;; and internal friction angle were selected as independent
) § o 5 % g variables. The shear properties (cohesive force (c¢) and
3 288 |2 & internal friction angle (y)) of the different pedon groups
5 § z E % go 2 were selected as the dependent variables, respectively, the
S S22 S % -E; cohesive force and internal friction angle of all pedons
) T; g (c1, ¢1), pedons I and II (non-eroded soils) (c,, ¢5), and
< % f § pedons III and IV (collapsing gully soils) (c3, ¢3). The
) % :“’ o % % '% dominant factor equations were shown as follows:
= HESH | & L _ 3+ +
;ig %%g% %; c1—2.490(A1 +H)
. +47.487 (* = 0.818,P < 0.01) (1)
2=
B cer é % E ¢, = 0.421 CEC + 29.334 (r2 =0.532,P < 0.01) (2)
- ssse| 2 g _ 3 2 _
z § % % % § 5 ¢y =2.982 (APT + H") +43.525(r* = 0.860,P < 0.01) (3)
< A I ¢, = 0.976 (Fe, + Al,) 4+ 30.232(r* = 0.597,P < 0.05)  (4)
§ 25 g g E c3 =3.260Al, +47.617 (¥ =0.579,P < 0.01)  (5)
%:T g3 % =a é ¢y = 1.545A1,+25.665 (2 = 0.659,P < 0.05)  (6)
o~ o o =
E %2 § E E § S E For all pedons, exchangeable AP* + H* was the dominant
" % _E factor of cohesive force (Eq. (1)) and CEC was the dominant
2 % % % factor of internal friction angle (Eq. (2)). In non-eroded soils,
Rl p ﬁ exchangeable AI** + H* and Fe, + Fe, were the dominant
g g . E = factors affecting cohesive force (Eq. 3) and internal friction
: . g £ angle (Eq. (4)), respectively. In the collapsing gully soils, Aly
2 TEJ. o g 2 was the dominant factor affecting cohesive force (Eq. (5)) and
G > s 3 internal friction angle (Eq. (6)).
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4 Discussion

The reddish acid soils of Changting County contained low
base saturation and exchangeable cations (Table 2). The
CEC and exchangeable AI’* + H* concentrations of the
Changting red soils ranged from 2.82 to 12.96 cmol kg™’
and from 2.66 to 12.69 cmol kg, respectively. The Feq con-
centrations of the non-eroded soils ranged from 33.09 to
39.51 gkg !, while the concentrations in the collapsing gully
soils ranged from 1.87 to 23.71 g kg '; the concentrations of
Alyranged from 6.89 to 11.46 gkg 'and 1.71 t0 5.80 gkg ' of
non-eroded and collapsed soils (Table 3). This was similar to
the result of Xia et al. (2019), who reported the concentrations
of Fey and Aly in collapsing gully soils. High Feyq and Aly
content usually indicated chemical weathering of silicates
and the formation of Fe oxides (Zhang et al. 2017). It had been
suggested that Fe- and Al-oxides play an important role in
maintaining soil structural stability (Harris et al. 1966;
Kemper and Koch 1966; Russell 1971). Fey content was
higher than Al4 content, which might be ascribed to the higher
density of the Fe co-precipitate than that of Al, the former not
easily translocating with soil solution. Besides, Fe oxides tend
to precipitate with other anions and coat the surface of fine
particles (Kaiser and Guggenberger 2007). The cohesive force
of the non-eroded soils ranged from 56.17 to 81.55 kPa and
from 51.50 to 73.52 kPa in the collapsed soils, showing gen-
erally greater than that of the collapsed soils. These results
indicated that sesquioxides and CEC have a significant impact
on soil shear properties.

According to Tisdall and Oades’ hierarchy theory (Tisdall
and Oades 1982), sesquioxides stabilize aggregates at the
micro-scale through cationic bridges or are bound with organ-
ic polymers, forming organo-mineral complexes.
Sesquioxides are very dense and resistant to mechanical stress
but are not stable under hydraulic stress (Zhou et al. 2012).
Polyvalent AI** and Fe** cations can improve soil structure
through cationic bridging and the formation of organo-
metallic compounds and gels (Amézketa 1999). Aggregates
containing AI** and Fe®* and high-CEC clays tend to have
greater soil organic carbon (SOC) incorporation. The interac-
tion of AI** and Fe®* with kaolinite can synergistically pro-
mote aggregation with a limited impact on SOC (Six et al.
2000). However, oxides and hydroxides of AI** interact syn-
ergistically with SOC and dispersible clay to improve aggre-
gate stability (Molina et al. 2001). Six et al. (2004) summa-
rized that oxides can act as binding agents in three ways: by
creating organo-mineral complexes, by enabling electrostatic
binding between positively charged oxides and negatively
charged clay minerals, and through developing a coat of ox-
ides on the surface of minerals.

The correlation coefficients (R value) for CEC and ex-
changeable AI** + H* with cohesive forces were 0.814%
and 0.818**, respectively, and with internal friction angles
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were 0.532%* and 0.530%*, respectively, showing high corre-
lation and a significant difference (P <0.01) with cohesive
forces (Table 4). This finding indicated that in the acid soils,
CEC and exchangeable AI’* + H* concentrations played im-
portant roles related to cohesive forces. Moreover, stepwise
multiple linear regression analyses results showed that ex-
changeable AI** + H* was the dominant factor of cohesive
force both in all pedons and non-eroded soils. CEC and Fe, +
Al, were the dominant factors of internal friction angle in all
pedons and non-eroded soils, respectively. In the acid soils, H"
can dissolve soil aluminum from soil minerals, forming AI**
or H* clay (Hsu 1989). The CEC and exchangeable A" + H*
concentrations in the non-eroded soils were greater than those
in the collapsing gully soils. This finding indicated that the
acid soil CEC and exchangeable AI** + H* concentrations
played more important roles in soil aggregation of the non-
eroded soils than of the collapsing gully soils. While the re-
sults showed that Al were dominant factors affecting cohe-
sive force and internal friction angle in the collapsing gully
soils. Meanwhile, the results by Wang et al. (2016) revealed
that Aly was the most important binding agent and had prom-
inent ability in aggregation of macro-aggregates.

The R values of the Fey correlations with cohesive forces
and internal friction angles were 0.669** and 0.308, respec-
tively, showing that Fey had a high correlation with cohesive
forces but not with internal friction angles (Table 4). In all the
statistical analyses, the R values of Fey correlations were
higher than those of Fe, and Fe,. The high hydrolysis rates
of iron are faster than those of Al; the iron forms precipitates
with free Fe-oxides (Feq), X-ray non-crystalline Fe-oxides
(Fe,), and organic-bound Fe-oxides (Fe,), coating the surface
of clay and forming clay skins (Greenland and Hayes 1978;
Schwertmann and Taylor 1989). In contrast, the low hydroly-
sis rates of Al form monomeric AI** plus H* ions in soil
solutions, which then form AI**- or H*-clay complexes (Hsu
1989). It has been suggested that SOM may promote soil
aggregation through the following linkage: clay-(Al, Fe)-soil
organic matter-(Al, Fe)-clay (Edwards and Bremner 1967).

The points of zero charge (PZC) of Si-gels, Mn-oxides, and
SOM are near 2. The shear properties of red soils had poor
correlations with Si-gels, Mn-oxides, and soil organic matter
(SOM), including the Sig, Si,, Sip, Mng, Mn,, and Mn,, frac-
tions (Table 4). The PZC of Al- and Fe-oxides range from § to
9.2 (Parks 1965). The permanent negative charge and CEC of
kaolinite are low, at x=0 and CEC=3 cmol kgf1 (Dixon
1989). Sesquioxides possess amphoteric properties (i.e., Fey)
and can coat the surface of kaolinite and/or broken edges,
neutralizing the surface charge (Dixon 1989; Schwertmann
and Taylor 1989). The inert surface of quartz grains in a coarse
soil cannot serve as cementing agents, resulting in low soil
aggregation. Most SOM is negatively charged and is thus
unlikely to react directly with clay particles, although it has
been suggested that SOM enhances soil aggregation through
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Fig. 3 X-ray diffraction patterns of the clays of a pedon I-B4 (70-90 cm), b pedon II-B; (78-100 cm), ¢ pedon III-A (0-8 cm), and d pedon IV-A (0—
7 cm). HIV hydroxy-interlayered vermiculite, M mixed layer, I illite, Kaol kaolinite, G gibbsite

the formation of clay-sesquioxide-SOM-sesquioxide-clay
complexes. The low SOM concentrations in the typical col-
lapsed gullies should also be considered when assessing the
influence of gibbsite or Fe-oxides/oxyhydroxides in soil
aggregation.

El-Swaify and Emerson (1975) reported that AI(OH);
exerted little effect on soil aggregation at its PZC. In general,
well-crystallized A1(OH); may also be able to act as a
cementing agent in acidic soil conditions, although the mag-
nitude of this action may be negligible compared to that of X-
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Table 4 Pearson’s correlation

coefficients between soil Soil Shear property

parameters and shear strength parameter

properties Cohesive force Internal friction angle

Allpedon Pedonland  Pedon III and All pedon  PedonI and Pedon III and
cy e, IV &5 N Iy, IV @3

Feq 0.669%#* 0.180 0.317 0.308 0.136 0.439
Aly 0.774%* 0.683* 0.579%* 0.382% 0.500 0.659%*
Feq+ Aly 0.698%#* 0.531 0.378 0.327 0.392 0.497%*
Siy —0.493%*  —0.446 —0.250 —0.109 —0.480 0.206
Mny 0.038 0.111 0.467* 0.202 0.270 0.287
Fe, 0.536+* 0.560%* —0.027 0.212 0.587* —0.103
Al, 0.508%+* 0.595%* 0.498%* 0.522%%* 0.547 0.549%*
Fe,+Al, 0.587%+* 0.604* 0.283 0.378%* 0.597* 0.265
Si, -0.324 —0.035 0.145 0.038 0.273 0.158
Mn, —0.001 0.056 0.446 0.167 0.279 0.250
Fe, 0.519%* 0.383 -0.172 0.289 0.479 0.361
Al, 0.544+* 0.516 0.215 0.518%* 0.555* 0.554%
Fe, +Al, 0.553%#* 0.438 0.146 0.402%* 0.514 0.537*
Si, —0.571%*  —0418 —0.248 -0.117 0.093 —0.043
Mn, -0.274 0.206 0.091 0.135 0.313 0.257
pH —0.452%%  —0.642% —0.094 —0.140 -0.172 —0.052
CEC 0.814%** 0.850%* 0.554%#* 0.5327%* 0.590* 0.586%*
SOM 0.437%* 0.470 —0.019 0.400%* 0.548 0.321
K 0.234 0.469 0.210 0.263 0.631* 0.167
Na —0.399% —0.025 —0.301 —-0.012 0.196 0.040
Ca 0.269 —0.040 0.364 0.165 0.151 0.321
Mg 0.166 0.446 —0.266 0.141 0.558%* —0.095
Al+H 0.818%* 0.860%** 0.562* 0.530%* 0.561* 0.5897%*
Sand —0.672%*  —0.558* -0.253 —0.347 -0.436 —0.433
Silt 0.650%* 0.336 0.200 0.318 0.271 0.436
Clay 0.457%+* 0.362 0.248 0.333 0.275 0.363
Fe, 0.638%#* —0.022 0.290 0.278 —0.063 0.515%
Fe. 0.338 —0.547 0.268 0.4817%* —0.584* 0.628%**

* and ** means correlation is significant at 0.05 level and 0.01 level (two-tailed)

ray non-crystalline materials. Fe-oxides show a stronger effect
than those of AI(OH); to crystallize. Thus, Fe-oxides are gen-
erally less effective than that of AI(OH); in its cementing
effectiveness except in frequently alternating oxidation and
reduction cycles in soils. The AI(OH); and Fe-oxides/
oxyhydroxides in soils vary widely in their crystallinity and
particle size, thus a poor correlation between their metal-oxide
contents and aggregation. It is not necessarily indicated that
they do not exert any effect on soil aggregation.

5 Conclusions

Compared to collapsing gully soils, non-eroded soils had su-
perior physicochemical properties. For example, the non-
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eroded soils showed higher levels of CEC, Fe,, Fe-, and Al-
oxides than the collapsed soils. Additionally, the non-eroded
soils contained more fine soil particles (silt and clay) than the
collapsed soils, especially silt, while the collapsed soils had
more sand. The shear properties showed that the cohesive
force of the non-eroded soils was generally greater than that
of the collapsed soils, indicating that non-eroded soils were
better able to resist soil erosion from external forces.
Furthermore, XRD analysis indicated that the studied soils
contained HIV, illite, kaolinite, and gibbsite and that the
amount of kaolinite in the collapsed soils was greater than that
in the non-eroded soils. According to the correlation analyses
of soil physicochemical properties and shear strength, CEC,
exchangeable AI** + H*, and sesquioxides had significantly
positive correlations with cohesive force. The R value of
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cohesive forces revealed a higher correlation with sesquioxide
contents than internal friction angles. The stepwise regression
analyses indicated that exchangeable AI** + H* and Al were
the dominant factors affecting cohesive force. The results of
this research provide some new insights into the relationship
between shear strength and the soil physicochemical proper-
ties in the non-eroded soils and collapsing gully soils, and
facilitate a better understanding of mechanism on the collaps-
ing gullies. However, the internal friction angles of triaxial
tests are related to soil particle size distribution, shape and
arrangement, water contents, soil aggregation, etc. The shear
strength of internal friction angles are more complicated than
cohesive forces, thus merited further in-depth studies.
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