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Abstract
Purpose Soil organic carbon (SOC) in alpine regions is characterized by a strong local heterogeneity, which may contribute to
relatively large uncertainties in regional SOC stock estimation. However, the patterns, stock, and environmental controls of SOC
in semiarid alpine regions are still less understood. Therefore, the purpose of this study is to comprehensively quantify the stock
and controls of SOC in semiarid alpine regions.
Materials and methods Soils from 138 study sites across a typical semiarid alpine basin (1755–5051 m, ~1 × 104 km2) are
sampled at 0–10, 10–20, 20–40, and 40–60 cm. SOC content, bulk density, soil texture, and soil pH are determined. Both a
classical statistical model (i.e., a multiple linear regression,MLR) and amachine learning technique (i.e., a random forest, RF) are
applied to estimate the SOC stock at a basin scale. The study further quantifies the environmental controls of SOC based on a
general linear model (GLM) coupled with the structural equation modeling (SEM).
Results and discussion SOC density varies significantly with topographic factors, with the highest values occurring at an
elevation zone of ~3400 m. The results show that the SOC is more accurately estimated by the RF compared to the MLR model,
with a total stock of 219.33 Tg C and an average density of 21.25 kg C m−2 at 0–60 cm across the study basin. The GLM
approach reveals that the topography is seen to explain about 58.11% of the total variation in SOC density at 0–10 cm, of which
the largest two proportions are attributable to the elevation (44.32%) and the aspect factor (11.25%). The SEM approach further
indicates that, of the climatic, vegetative, and edaphic factors examined, the mean annual temperature, which is mainly shaped by
topography, exerts the most significant control on SOC, mainly through its direct effect, and also, through indirect effect as
delivered by vegetation type.
Conclusions The results of this study highlight the presence of high stocks of organic carbon in soils of semiarid alpine regions,
indicating a fundamental role played by topography in affecting the overall SOC, which is mainly attained through its effects on
the mean annual temperature.
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1 Introduction

The soils store about 1500 Pg (1 Pg = 1015 g) of organic car-
bon for the upper 1 m depth, and this amount is about two
times larger than that present in the atmosphere (Batjes 1996).
Thus, even a small fraction of the organic carbon pool being
converted into greenhouse gases and then released into the
atmosphere could trigger significant positive feedback to-
wards global warming (Melillo et al. 2002; Stockmann et al.
2013; Schuur et al. 2015). A comprehensive evaluation to the
spatial variation, stocks, and environmental controls of the soil
organic carbon (SOC) may therefore enable one to better pa-
rameterize the carbon cycle models which have been used to
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predict feedbacks of soil carbon to global environmental
change. Subsequently, this can help support new measures
for improved carbon management and climate change mitiga-
tion policy (Yang et al. 2008; Liu et al. 2011; Scharlemann
et al. 2014; Li et al. 2018).

Soils in alpine regions are of great importance in the global
carbon cycle, mainly because of the high organic carbon den-
sity and the potential carbon losses as influenced by a
warming climate (Prietzel et al. 2016; Chen et al. 2016a;
Zhu et al. 2018). It has been suggested that the warming of
the climate system in a mountainous region is likely to be
elevation-dependent (Pepin et al. 2015); thus, organic carbon
loss rate at a higher elevation zone may be subsequently en-
hanced. Additionally, as the carbon losses are highly depen-
dent on the size of the standing organic carbon stock (Yang
et al. 2010), an accurate estimation to the regional organic
carbon stocks in alpine soils should therefore be regarded as
a major research priority in the soil science area. However, due
to insufficient field measurements resulting from a limited
accessibility as well as a strong topography-induced spatial
heterogeneity, the estimation to SOC stocks in alpine regions
is still characterized by relatively large uncertainties (Chen
et al. 2016a; Zhu et al. 2017; Qin et al. 2018). To reduce these
uncertainties, a comprehensive soil sampling procedure is
necessary, and appropriate upscaling and soil modeling
methods should also be introduced to facilitate the estimation
of SOC.

The most commonly used methods for upscaling the site-
level measurements of SOC to the regional scale include the
kriging interpolations approach based on geostatistical
models, the classical statistical model that assume linear or
non-linear relationships, and the more recently adopted ma-
chine learning techniques (Meersmans et al. 2008; Prasad
et al. 2018a, b; Ghorbani et al. 2019). The ordinary kriging
interpolation in particular has been used to predict the spatial
patterns of SOC in regions that have a reasonably less strong
local heterogeneity (Yang et al. 2010; Li et al. 2018).
However, in regions characterized by complex landscape,
where the SOC profile is likely to vary sharply at a very short
distance, the interpolations-based approach (e.g., kriging)
must be further calibrated by using other environmental co-
variates that influence the SOC, to improve the prediction
accuracy (Song et al. 2016). The classical statistical models,
on the other hand, such as those based on general linear model
(Rial et al. 2016) and its modified counterpart known as the
generalized linear model (Yang et al. 2008), including linear
mixed models (Doetterl et al. 2013), and general addictive
models have also been employed to predict the SOC content
(de Brogniez et al. 2015). In recent years, with a rapid devel-
opment of artificial intelligence approaches, machine learning
techniques have evolved. Among them, artificial neural net-
work (Yang et al. 2014), support vector machines (Ding et al.
2016), boosted regression tree (Yang et al. 2016), and the

random forest models (Akpa et al. 2016; Kouadio et al.
2018) have been the most used technique in mapping and
modeling SOC and related soil parameters. These machine
learning techniques were demonstrated to have a better per-
formance compared to the other methods, since these ap-
proaches have a good ability to fit the non-linear relationships
between SOC and any of its related environmental covariates
(Grimm et al. 2008; Ding et al. 2016).

As for the environmental controls of SOC in amountainous
region, the topography, which substantially shapes the climat-
ic, edaphic, and ecological processes, may also be regarded as
a fundamental control parameter (Yimer et al. 2006; Lozano-
García et al. 2016; Zhu et al. 2017). Generally, topographic
factors do not directly affect the SOC accumulation, whereas
they may shape the spatial patterns of SOC through directly
affecting climatic factors, which can further alter the plant
production and decomposition rates of the organic matter.
Although many studies have highlighted the role of topogra-
phy in influencing SOC at hillslopes and catchment scales
(e.g., Lozano-García and Parras-Alcantára 2014; Chen et al.
2016a; Bangroo et al. 2017; Zhu et al. 2018), only a few have
quantified how topography can affect the SOC through
exerting its direct or indirect influence on other climatic, veg-
etative, and edaphic factors, especially in semiarid alpine re-
gions. This knowledge, if well researched, is likely to enable
researchers to better understand the topography-climate-
vegetation-carbon relationships under complex topography.
Furthermore, it will help reduce uncertainties in modeling
the relative direction of change and the size of the carbon-
climate feedback in a semiarid alpine region.

The Qilian Mountains, which is the focus of this study, has
elevation ranging from 1600 to 5500 m and is a typical semi-
arid alpine region in northwestern China. These mountains
have a long history of land use activities focused on grazing
pastures. However, due to their importance in providing the
main source of water flow for the oases in the middle and
lower reaches (Yang et al. 2017), human activities in the study
area are relatively limited since establishment of the National
Nature Reserve of the Qilian Mountains in 1988. Across the
range of this mountain, the topography-induced vegetation
patterns are characterized both the vertical zonality and the
horizontal patchiness. Within each vegetation and elevation
zone, the aspect- and slope-induced microclimates are able
to shape the community occurrence and plant productions at
a smaller scale (Zhu et al. 2017; Zhu et al. 2018). This com-
plex topography-induced vegetation patterns could further
promote a much stronger spatial heterogeneity in the SOC
profile within a relatively short distance (Qin et al. 2016;
Zhu et al. 2017). Taken together, the unique vegetation pat-
terns and strong spatial heterogeneity, together with the limit-
ed anthropogenic disturbances, make the Qilian Mountains an
ideal semiarid alpine region for evaluating the spatial variabil-
ity, stocks, and environmental controls of SOC.
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Considering this importance and a paucity of this information
over any semiarid alpine region, this study has conducted a soil
sampling procedure by the topography across a typical basin in
the middle Qilian Mountains. The main objectives of this re-
search study are threefold: (1) to investigate the distribution of
SOC density in respect to its topography factors, (2) accurately
estimate the regional SOC stocks based on a more appropriate
upscalingmethod, and (3) determine how the topography is able
to shape the spatial patterns of SOC density by directly exerting
influences on the other environmental controls.

2 Materials and methods

2.1 Study area

This research study was carried out in the Yingluoxia basin
(98°–101°E, 38°–42°N), located in the middle Qilian
Mountains. This region lies at the northern edge of the
Qinghai-Tibetan Plateau (Fig. 1a). The Yingluoxia basin
covers an area of 1.05 × 104 km2 with elevation ranging from
1755 to 5051 m ASL (Fig. 1a). The basin is characterized by a
typical semiarid alpine climate with regional mean annual
temperature and precipitation around − 4.6 °C and 396 mm,
respectively. The spatial patterns of climatic factors mainly
depend on the elevation, with a lapse rate of 0.58 °C for
temperature changes, and about 15.5–22.1 mm per 100 m
increasing rate of precipitation, respectively (Chen et al.
1992). Vegetation zone is strongly stratified by the elevation,
and it varies from being that of a desert steppe (< 2500 m), a
forest steppe (2500–3300 m), a subalpine shrub-meadow
(3300–3600 m), an alpine meadow (3600–4000 m) to the
alpine desert zone (> 4000 m) (Fig. 1b, c). Dominant species
in the study area include Stipa breviflora, Agropyron
cristatum, Polygonum viviparum, andKobresia spp. for grass-
lands; Potentilla fruticosa, Berberis diaphana, Caragana
jubata, and Salix gilashanica for shrublands; and Sabina
przewalskii and Picea crassifolia for forests.

The soil parent materials are mainly eolian deposits and
residual, slope, diluvial, alluvial, and fluvioglacial deposits
made of limestone, sand-shale stone, or conglomerate.
According to the Chinese soil genetic classification, the soils
along the elevation gradient are defined as sierozems,
kastanozems, chernozems, gray cinnamon, subalpine meadow
soils, subalpine shrubby meadow soils, alpine meadow soils,
and alpine frigid desert soils (Chen et al. 1992). These are
roughly referred as luvic calcisols, kastanozems, chernozems,
haplic greyzems, mollic leptosols, eutric leptosols, gelic
leptosols, and glacic cryosols, respectively, according to the
World Reference Base for Soil Resources 2014 (IUSS
Working Group WRB 2015). In the alpine desert zone, the
soil depths are generally less than 20 cm, and there appear to
be rock compositions, mainly of the limestone type that lies

below 60 cm in the sloping areas of shrublands and forests
zones. As for the steppe and desert steppe zones, the soil
profile comprises of lime concretions below the 60-cm depth.

2.2 Soil sampling and analysis

During the summer period of 2012–2015, researchers con-
ducted soil sampling campaigns across the middle of the
Qilian Mountains, and a total of 138 sampling sites were se-
lected according to the topography and its vegetation type
(Fig. 1). At each sampling site, the geographic and topograph-
ic information (i.e., the longitude, latitude, elevation, aspect,
and slope) was recorded by a hand-held GPS and a compass.
Following this, five soil profiles in a 10-m × 10-m plot were
excavated, and the bulk density samples of 5.00 cm in diam-
eter and 5.05 cm in height were collected by using the core
ringmethod (100 cm3 core volume) at a depth of 5, 15, 30, and
50 cm. Soil samples with three replicates were collected for an
analysis of the soil chemical properties next to each soil profile
using a soil auger (3.5 cm in diameter) at 0–10, 10–20, 20–40,
and 40–60 cm. Finally, the soil samples from each plot were
pooled to generate a composite sample from each of the four
depth intervals.

In this study, the soil samples collected in the field were
first sealed in aluminum specimen boxes and then transported
to the research laboratory. Soil samples were then air-dried
and then passed through a 2-mm sieve before any chemical
analysis. The SOC content was determined by means of the
wet oxidation with dichromate according to the Walkley-
Black method (Nelson and Sommers 1982). Soil texture
(i.e., sand, silt, and clay content) was determined by a laser
diffraction approach using a Mastersizer 2000 (Malvern
Instruments, Malvern, England). Soil bulk density was calcu-
lated as the ratio of the oven-dry soil mass (after 24 h desic-
cation at 105 °C) to the core volume (100 cm3). Soil pH was
measured in a 1:2.5 soil-to-deionized water mixture by a pH
electrode (PB-10, Sartorius, Germany). SOC density (SOC
amount per unit area) for a given depth at each site was cal-
culated using Eq. (1) as (Yang et al. 2008):

SOCD ¼ ∑
n

i¼1
CiDiBi 1−Gið Þ=100 ð1Þ

where SOCD is the SOC density (kg C m−2), n is the number
of layers divided in each soil profile, and Ci, Di, Bi, and Gi

represent the SOC content (g kg−1), thickness (cm), bulk den-
sity (g cm−3), and fractional percentage (%) of gravel larger
than 2 mm in diameter of layer i, respectively.

2.3 Environmental variables

The elevation, aspect, slope, longitude, and latitude data
in their raster formats at a 90-m resolution were derived
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from the SRTM 90-m digital elevation model (DEM)
(USGS 2006) using ArcGIS 10.2 (ESRI Inc., USA). The
monthly compositing normalized difference vegetation in-
dex (NDVI) products at a 30-m resolution (2011 to 2014)
were derived from the HJ/CCD (Li et al. 2017). The veg-
etation type data at the 1:100000 scale was also obtained
from the Cold and Arid Regions Science Data Center at
Lanzhou (http://westdc.westgis.ac.cn). The monthly
NDVI products to a 90-m resolution were resampled,
and subsequently, they were averaged over the growing
season (from May to September) to generate their relative
seasonal values (Ding et al. 2016).

In the present study area, the mean values of annual
temperature and precipitation mainly depended on the to-
pographic factors. These were obtained for each sampling
site according to the following empirical equations (Zhao
et al. 2005, 2006):

MAT ¼ 20:957−0:00549H−0:166Y þ 0:0089X ;R2 ¼ 0:98 ð2Þ

MAP ¼ 1680:6235þ 0:119H−75:264Y þ 12:405X ;R2 ¼ 0:92 ð3Þ

where MAT, MAP,H, Y, and X is the mean annual temperature
(°C), mean annual precipitation (mm), elevation (m), latitude
(°), and longitude (°) at the sampling sites, respectively. Note
that the latitude, longitude, and elevation for each sampling
site were derived by using a hand-held GPS.

The potential solar insolation for each sampling site was
calculated based on the following equation (McCune and
Keon 2002):

Rad ¼ 0:339þ 0:808cos Yð Þcos Sð Þ–0:196sin Lð Þsin Sð Þ

–0:482cos Að Þsin Sð Þ;R2 ¼ 0:98

ð4Þ

where Rad represents the potential solar insolation
(MJ cm−2 year−1), and Y, S, and A is the latitude (°), slope
(°), and aspect (°) at each of the sampling site, respectively.

2.4 Model inputs

In accordance with previous studies, the vegetation index and
topographic factors are reasonably good indicators of the SOC
under complex topographic systems, especially in an alpine

Fig. 1 Distribution of sampling sites across the Yingluoxia basin in the
QilianMountains, northwestern China (a). Distribution of vegetation type
in the basin (b). Photographs of the eight vegetation types with elevation,

aspect, and slope added in the brackets (c). The S, NW, N, E, and SW in
the brackets in c represent the south-, northwest-, north-, east-, and
southwest-facing slopes, respectively
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region (Yang et al. 2008; Song et al. 2016; Yang et al. 2016).
In addition, it is important to note that an ideal model must
have a series of covariates that are reasonably well correlated
with the dependent variable (e.g., SOC), while the covariates
themselves must have negligible correlation with each other.
In this study, a pre-analysis showed that the climatic factors
were highly depended on topographic factors as per Eqs.
(2)–(4). Consequently, to minimize the uncertainties encoun-
tered in the estimation of SOC, and also to ensure computa-
tional efficiency of the models is not compromised due to a
redundancy of the model’s potential inputs, this study has only
used satellite-derived vegetation index (i.e., the NDVI), ele-
vation, aspect, slope, and latitude as model inputs to predict
the spatial patterns of SOC density at 0–10, 10–20, 20–40, and
40–60 cm.

2.5 Model development process

In this research study, both a multiple linear regression (MLR)
and a random forest (RF) regression model were developed
using site-level measurements to predict the spatial patterns of
SOC density at a depth of 0–10, 10–20, 20–40, and 40–60 cm
across the study basin. The study has utilized the MLRmodel,
as a classical regression method belonging to the general lin-
ear model, in which the SOC density can be modeled as a
linear combination of the respective environmental covariates.
By contrast, the RF regression model is a relatively newly
developed machine learning technique especially in soil sci-
ence area (Breiman 2001). Despite this, it has been increas-
ingly used, for example, in digital soil mapping (Vågen et al.
2013; Heung et al. 2016), forecasting soil moisture (Prasad
et al. 2018a, 2018b), modeling coffee yield in respect to soil
fertility parameters (Kouadio et al. 2018), and the prediction
of soil electrical conductivity (Ghorbani et al. 2019).
According to these studies, RF regression model was seen to
exhibit a relatively good performance in predicting SOC,
mainly because it is able to well accommodate the non-
linear relationships between SOC and environmental covari-
ates (Grimm et al. 2008; Yang et al. 2016; Akpa et al. 2016). In
addition, the RF model is characterized by two randomization
procedures of bootstrapping and random input selection and
carries out a bagging of the predictions, which can subse-
quently improve its prediction ability (Suuster et al. 2012;
Heung et al. 2016).

The best-fit equation of the MLR model used in this study
can be stated as follows:

ln SOCDð Þ ¼ a0 þ a1NDVI þ a2Y þ a3H þ a4Aþ a5ASð5Þ
where SOCD is the SOC density (kg C m−2), a0, a1, a2, a3, a4,
and a5 are the intercept, regression coefficient for the NDVI,
latitude (Y), elevation (H), aspect (A), and the interaction be-
tween aspect and slope (AS), respectively.

The regression coefficients, which are normally used to
explain the response variable against a set of exploratory var-
iables, were estimated by using the ordinary least squares
method. In addition, we log-transformed the SOC density to
meet the normal distribution requirements of the MLR ap-
proach, which helped avoid any negative (i.e., false) predic-
tions of the tested SOC dataset.

It should be noted that the elevation term in Eq. (3) had to
be first transformed, mainly to ensure a linear relationship is
established between elevation and the ln(SOCD), so as to
further improve the performance of the prescribedMLR mod-
el. The transformation was also conducted according to Eqs.
(3)–(6) for a depth of 0–10, 10–20, 20–40, and 40–60 cm,
respectively, detailed as follows:

For 0−10 cm;H

¼ 2:0248exp −0:5 h−3385:9358ð Þ=797:3748j j2:1113
� �

ð6Þ

For 10−20 cm;H

¼ 1:8412exp −0:5 h−3402:6992ð Þ=775:0846j j1:7827
� �

ð7Þ

For 20−40 cm;H

¼ 2:4320exp −0:5 h−3426:2270ð Þ=910:6737j j1:0000
� �

ð8Þ

For 40−60 cm;H

¼ 2:2589exp −0:5 h−3472:1136ð Þ=830:1236j j1:0000
� �

ð9Þ

In Eqs. (6)–(9), the term H and h refers to the transformed and
real (or raw) elevation (m), respectively. These equations above
were obtained by regressing the relationships between
ln(SOCD) at the four selected depths with the real (or raw)
elevation dataset (Fig. 2a–d). In addition, as the raw values of
aspect can be relatively less useful variable in building models
(Zhu et al. 2017), transformed transformation of the aspect with
the cosine function was implemented, as a data pre-processing
technique before conducting the MLR modeling procedure.

To fit the RF regression model in this study, researchers
employed the same model inputs used in the MLR model.
As for the key parameters incorporated into the regression
model, one third of the total number of covariates were used
to grow each of the random forest’s tree, with the minimum
number of terminal nodes set to 5, and the number of trees in
the forest set at 1000. The Blm^ function and BrandomForest^
package in the R software was used for modeling (R version
3.5.1, R Development Core Team 2018).

2.6 Model evaluation criteria

For any predictive model, the evaluation of its performance
with both the visual display measures (e.g., plots of modeled
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and real values) and overall statistical metrics is important. To
validate the accuracy of the prescribed MLR and the RF re-
gression models used in predicting SOC at the four different
depths, this study has applied a 10-fold cross-validation pro-
cedure (Ali et al. 2018; Yin et al. 2018). In the 10-fold cross-
validation approach, the original dataset was randomly divid-
ed into ten equal-sized subsets. Out of these ten subsets, a
single subset was retained as the validation data for testing
the developed model, and the remaining nine subsets were
used as the model training dataset. This cross-validation pro-
cedure was then repeated ten times, with each of the ten sub-
sets used exactly once as the validation data. The ten sets of
results were then averaged to generate a single estimation
model truly representative of a well-optimized model for
SOC. The advantage of this procedure, which follows from
a 50-fold model developed earlier (Yin et al. 2018) entailed
from its repeated random sub-sampling approach where all of
the observations were used in both the training and the vali-
dation process, and each of these observations were also used
for the validation process exactly once.

After each round of a 10-fold cross-validation proce-
dure, the root mean square error (RMSE), coefficient of
determination (R2), and Lin’s concordance correlation co-
efficient (LCCC) (Lin 1989) were calculated for the two
prescribed models, according to the following equations
(Yang et al. 2016):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
Pi−Oið Þ2

s
ð10Þ

R2 ¼
∑
n

i¼1
Pi−O

� �2

∑
n

i¼1
Oi−O

� �2 ð11Þ

LCCC ¼ 2rσOσP

σO
2 þ σP

2 þ O−P
� �2 ð12Þ

where Pi andOi are the prediction and observation at sampling
site i, respectively; n, σO, σP, and r are the sample size,

variance of the observations, variance of predictions, and
Pearson correlation coefficient between predictions and obser-
vations, respectively; O and P are the means of observations
and predictions, respectively. To ensure the precision of the
above statistics for the two models, we totally conducted 100
times of the 10-fold cross-validation procedure and then cal-
culated the means. The predictions of SOC became increas-
ingly optimal as the RMSE and R2 getting closer to 0 and 1,
respectively. LCCC represented the degree to which the pre-
dicted and observed values follow the 45° line.

To further quantify the relative uncertainties in the
bootstrapped predictions generated by trees or rules from dif-
ferent models in RF regression, we calculated the interquartile
value (i.e., the difference between the 75th and 25th percen-
tile) of the predicted SOC by performing 100 simulations of
the RF regression for each pixel (Ding et al. 2016). As for the
uncertainties in the MLR model, the 50% confidence interval
of the regression results was first calculated, and then the
upper limits with the lower limits was subtracted to obtain
the interquartile for each pixel. The summed up quartiles were
then used to assess the uncertainty of the SOC for each veg-
etation type. In addition, the relative uncertainty was obtained
by dividing the interquartile by mean value for each pixel.

2.7 Statistical analyses

Analysis of variance (ANOVA) was used to examine the var-
iation in SOC density in respect to the topographic factors. For
this, the Duncan’s new multiple range tests were performed
for multiple comparisons when significant differences were
detected by the ANOVA approach. In addition, the general
linear models (GLMs) were used to quantify the contribution
of aspect, elevation, and slope to the overall variation in SOC
density. Furthermore, to explore the relationships between
SOC and the topography-induced climatic factors, as well as
the vegetative and edaphic factors, the Pearson correlation
analysis was first conducted. Then, the relative importance
of each control on SOC density based on the structural equa-
tion modeling (SEM) was quantified according to the known
relationships between SOC and its key controls. The SEM

Fig. 2 Relationships between SOC density (SOCD) and elevation at 0–
10 (a), 10–20 (b), 20–40 (c), and 40–60 cm (d). Note that the SOC
density is log-transformed to meet the normal distribution premise of

the fit models, and also to avoid negative predictions in SOC density at
very lower or higher elevations
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was a multivariate statistical method that can test the plausi-
bility of a hypothetical model, which was based on a priori
information regarding the relationships among particular var-
iables. Additionally, the SEM method was also able to parti-
tion the direct and indirect effects that one environmental fac-
tor may have on another, and also to estimate the size of the
multiple effects (Chen et al. 2016b).

Considering the non-linear relationships between SOC
density and mean annual temperature and precipitation in this
study, the two climatic factors with functions derived from the
fit equations between SOC density and them were trans-
formed, before conducting the Pearson correlation and SEM
analyses. Also, the real (raw) elevation and aspect with Eqs.
(6)–(9) and cosine function, respectively, were transformed
and then standardized, before performing the GLM analyses.
Both the ANOVA and the GLM analyses were performed
employing the GLM procedure in SAS 9.2 (SAS Institute,
Inc., Cary, NC, USA). The results of the Pearson correlation
analysis were also obtained and visualized by the Bcor^ func-
tion and Bcorrplot^ package, respectively, in R software. The
SEMwas performed using AMOS 20.0 software (IBMCorp.,
Armonk, New York, USA).

3 Results

3.1 Spatial distribution of SOC density

In general, the spatial distribution of SOC density was signif-
icantly shaped by the topographic factors (Table 1 and Fig. 2).

Specifically, the SOC density of 3000–3500 m was close to
3500–4000 m, and it was also significantly larger than that at
higher or lower elevation zones (P < 0.01). The fit lines in Fig.
2 further indicated that SOC density had reached its peak at an
elevation zone of ~ 3400 m. Along the aspect gradient, the
SOC density actually decreased by 28%, 36%, 42%, and
46% as the aspect was transformed from north (0–45°) to
south (135–180°) at a depth of 0–10, 10–20, 20–40, and 40–
60 cm, respectively. SOC density was less varied with slope
while still presented a slightly decreasing trend with increas-
ing slope (Table 1).

3.2 SOC stock estimation

The R2 values of the RF regression were higher than that
of the MLR except at a depth of 0–10 cm, where the R2

value of the MLR was higher than that of RF regression
by about 0.01 (Fig. 3a–h). The average uncertainties in
the MLR model reached about 23.91%, 28.52%,
18.99%, and 21.47% for the 0–10, 10–20, 20–40, and
40–60 cm, respectively, with large uncertainties mainly
existent in regions with lower SOC values (Fig. 4a–d).
By contrast, the RF regression provided a more robust
prediction at most parts of the basin, with average uncer-
tainties of about 6.48%, 6.40%, 7.94%, and 8.07% at the
four depths, respectively (Fig. 4e–h).

According to SOC density map estimated by the RF regres-
sion (Fig. 5a–h), the total SOC stock at 0–60 cm was estimat-
ed to be about 219.33 Tg C (1 Tg = 1012 g) with an average
density of 21.25 kg Cm−2 (Table 2). The SOC stock at a depth

Table 1 Spatial distribution of SOC density

Type Subgroup Sample size SOC density (kg C m−2)

0–10 cm 10–20 cm 20–40 cm 40–60 cm

Elevation (m) < 2500 16 2.64 ± 0.26 d 2.34 ± 0.22 c 4.33 ± 0.39 c 4.00 ± 0.38 b

2500–3000 36 5.61 ± 0.37 b 4.52 ± 0.28 b 6.88 ± 0.53 b 5.36 ± 0.54 b

3000–3500 53 7.38 ± 0.26 a 6.01 ± 0.28 a 9.37 ± 0.50 a 7.74 ± 0.63 a

3500–4000 26 6.93 ± 0.32 a 6.01 ± 0.32 a 9.09 ± 0.76 a 7.69 ± 0.68 a

> 4000 7 4.08 ± 0.41 c 2.98 ± 0.25 c – –

Aspect (°) 0–45 55 7.03 ± 0.26 a 5.86 ± 0.24 a 8.89 ± 0.48 a 7.25 ± 0.54 a

45–90 24 6.68 ± 0.53 a 5.38 ± 0.48 ab 8.07 ± 0.90 a 6.40 ± 0.81 a

90–135 22 5.06 ± 0.51 b 4.43 ± 0.47 bc 5.50 ± 0.82 b 4.10 ± 0.82 b

135–180 37 5.04 ± 0.37 b 3.76 ± 0.30 c 5.14 ± 0.60 b 3.91 ± 0.60 b

Slope (°) 0–10 40 6.64 ± 0.33 a 5.37 ± 0.28 a 7.57 ± 0.78 a 5.93 ± 0.83 a

10–20 31 6.72 ± 0.43 a 5.68 ± 0.38 a 7.39 ± 0.69 a 5.70 ± 0.82 a

20–30 33 5.85 ± 0.37 ab 4.81 ± 0.37 ab 7.27 ± 0.75 a 5.60 ± 0.73 a

>30 34 5.22 ± 0.46 b 4.18 ± 0.38 b 7.16 ± 0.66 a 5.79 ± 0.63 a

The soil layer above 4000m is less than 20 cm in depth; thus, there are no values for SOC density below 20 cm.All data are presented as mean ± standard
error, and statistically different mean values within each type are indicated by different lowercase letters (P < 0.05)
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of 0–60 cm in the alpine meadow, subalpine shrub, and sub-
alpine meadow was estimated to be about 77.78, 39.59, and

38.94 Tg C, respectively, which together accounted for about
71.27% of the total stock over the basin (Table 2).

Fig. 3 Model evaluation for both theMLR (a–d) and the RF regression (e–h) in predicting SOC density (SOCD) at 0–10, 10–20, 20–40, and 40–60 cm.
Note that the predicted SOC density in the scatter plots are averages of the predictions from 100 runs of the 10-fold cross-validation

Fig. 4 Relative uncertainties of
SOC density at a resolution of
90 m × 90 m across the basin for
different depths, estimated by the
MLR (a–d) and the RF regression
(e–h). The relative uncertainties
are calculated as the ratio between
the interquartile range (difference
between the 75th and 25th
percentiles) and the mean
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3.3 Environmental controls of SOC density

The general linear model (GLM) indicated that the topogra-
phy could explain about 58.11%, 54.66%, 56.98%, and
55.32% of the total variation in SOC density at the 0–10,
10–20, 20–40, and 40–60 cm, respectively (Table 3). Out of
the topographic factors examined in this study, the elevation
and aspect factors were able to explain the largest two propor-
tions (i.e., 44.39% and 11.25%, respectively) of the variation
in SOC density at 0–10 cm, while the slope and the interac-
tions between aspect and slope was able to only explain about
1.07% and 1.40%, respectively. Similar proportions

contributed by each topographic factor were also obtained at
a depth of 10–20, 20–40, and 40–60 cm (Table 3).

The SOC density showed somewhat different correlations
with the climatic, vegetative, and edaphic factors at the four
depths (Fig. 6a–d). Specifically, the SOC density at 0–10 cm
was significantly positively correlated with mean annual pre-
cipitation (correlation coefficient = 0.59), clay (0.42) and silt
(0.21) content, and vegetation type (0.65), while negatively
correlated with mean annual temperature (− 0.66), solar inso-
lation (− 0.29), soil pH (− 0.39), and sand content (− 0.41)
(Fig. 6a). Similar correlations were also found for deeper
layers (Fig. 6b–d).

Fig. 5 SOC density (SOCD) at
different depths estimated by the
MLR (a–d) and the RF regression
(e–h) at a resolution of 90 m ×
90 m across the basin

Table 2 Summary of estimated
density and stock of SOC (with
interquartile range) to a depth of
60 cm by the RF regression for
different vegetation types across
the basin

Vegetation type Area (km2) SOC density (kg C m−2) SOC stock (Tg C)

Montane steppe 658.8 17.95 (17.47–18.26) 11.83 (11.51–12.03)

Montane meadow steppe 726.2 24.93 (24.19–25.50) 18.10 (17.57–18.52)

Montane forest 691.2 26.77 (26.11–27.36) 18.50 (18.05–18.91)

Subalpine meadow 1367.3 28.48 (27.76–29.11) 38.94 (37.96–39.80)

Subalpine shrub 1303.7 30.37 (29.67–31.02) 39.59 (38.68–40.44)

Alpine meadow 3558.3 21.86 (21.29–22.36) 77.78 (75.76–79.56)

Alpine desert 1870.8 6.64 (6.25–6.76) 12.42 (11.69–12.65)

Total 10,321.6 21.25 (20.66–21.71) 219.33 (213.24–224.08)
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The structural equation modeling (SEM) further showed
that the climatic, vegetative, and edaphic factors were able to
explain about 54%, 50%, 56%, and 62% of the total variation
in SOC density at a depth of 0–10, 10–20, 20–40, and 40–
60 cm. Specifically, the solar insolation appeared to have a
direct effect on SOC density for a depth of 20–40 cm, and it
also had an indirect effect on SOC density by negatively
influencing vegetation type for all considered depths. Mean

annual precipitation indirectly affected SOC density through
its positive correlation with vegetation type (Fig. 7a–d). Mean
annual temperature exerted the strongest direct effect on SOC
density, with a standardized coefficient (β) of about − 0.43, −
0.33, and − 0.35 at a depth of 0–10, 10–20, and 20–40 cm,
respectively (Fig. 7a–c). As for the vegetation type, which was
strongly affected by mean annual temperature (β= − 0.65),
the results showed the strongest direct effect on SOC density

Fig. 6 Pearson correlation
coefficients (r) for SOC density
(SOCD) at 0–10 (a), 10–20 (b),
20–40 (c), and 40–60 cm (d) and
other environmental controls.
Correlation coefficients larger
than r(0.05) are statistically signif-
icant at the 0.05 level. The Veg,
MAP, MAT, and Rad represent
vegetation type, mean annual
precipitation, mean annual tem-
perature, and solar insolation, re-
spectively. As the vegetation type
is not a numerical variable, we
first rank it from 1 to 8 before
correlation analysis, which se-
quentially represent the montane
desert steppe, alpine desert, mon-
tane steppe, alpine meadow, sub-
alpine meadow, montane forest,
subalpine shrub, and montane
meadow steppe. The rank is con-
ducted according to the average
NDVI value under each vegeta-
tion type, and higher code value
corresponds to higher vegetation
cover and potentially higher plant
production

Table 3 Contribution of topographic factors to the total variation of SOC density at different depths

Source 0–10 cm 10–20 cm 20–40 cm 40–60 cm

Df MS SS (%) df MS SS (%) df MS SS (%) df MS SS (%)

Elevation 1 60.81 44.39** 1 23.80 37.09** 1 67.72 37.97** 1 41.11 37.79**

Aspect 1 15.41 11.25** 1 10.02 15.61** 1 31.30 17.55** 1 17.96 16.51**

Slope 1 1.47 1.07 1 0.83 1.29 1 1.31 0.73 1 0.61 0.56

Aspect×slope 1 1.92 1.40* 1 0.43 0.67 1 1.30 0.73 1 0.50 0.46

Error 133 0.43 41.89 128 0.23 45.34 112 0.68 43.02 86 0.57 44.68

df, MS, and SS are degrees of freedom, mean squares, and proportion of the variance explained by variable, respectively. The results are obtained from
the general linear model

*P < 0.05; **P < 0.01
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at a depth of 40–60 cm (Fig. 7d). In addition, the clay content
also had a significant direct effect on SOC density at 10–20
and 40–60 cm.

4 Discussion

4.1 Spatial distribution of SOC density

In any mountainous region, SOC tends to exhibit an increas-
ing trend with an increase in its elevation mainly due to the
lower decomposition rate at higher elevations (Parras-
Alcantára et al. 2015; Zhao et al. 2017). Evidence can be
drawn from the study of Prietzel and Christophel (2014)
which suggested that the soils at generally high-elevation sites
are likely to have a particularly large SOC density, for exam-
ple, the forest soils of German Alps. However, in this study,
the researchers have found that the SOC density increased
with an increase in elevation below ~ 3400 m, and then it
showed a decreasing trend with elevation above that height
(Fig. 2). A similar result was obtained by Chen et al. (2016a),
who had found that the SOC density increased significantly
with elevation from 2650 to 3400 m on the north-facing
slopes. However, it showed a significantly decreasing trend

from 3400 to 3700 m. Hence, as a good indicator of SOC in
alpine regions, the elevation should first be calibrated to assure
its linear relationship with SOC, as suggested by Eqs. (6)–(9)
in this study, so as to improve the accuracy of the linear
models used to predict SOC.

The SOC density on the north-facing slopes decreased by
44% in comparison with the south-facing slopes across the
basin (Table 1). Similar results were obtained by several recent
studies, which showed that SOCwas higher on the north-facing
slopes (Lozano-García et al. 2016; Qin et al. 2016). In addition,
in regions where the natural pattern of vegetation type is strong-
ly shaped by aspect, the spatial variability of SOC may be
further enhanced. Zhu et al. (2017) has highlighted the impor-
tance of aspect in markedly shaping the spatial patterns of SOC
at a hillslope scale in the forest steppe zone of the Xishui Forest
Reserve, northwestern China, where SOC on the north-facing
slopes was larger than the south-facing slopes by a factor of 3.2.

Generally, the slope is likely to affect the variability of SOC
at the hillslope scale (Zhu et al. 2018). Slopes may thus alter
the distribution of SOC along the hillslope through soil ero-
sion and decomposition processes (Zhang et al. 2013; Ma
et al. 2016). In this study, we found that SOC showed a slight-
ly decreasing trend with increasing slope. This trend was con-
sistent with that of many previous studies (Karchegani et al.
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Fig. 7 Structure equation
modeling (SEM) examining the
climatic, vegetative, and edaphic
effects on SOC density (SOCD)
at 0–10 (a), 10–20 (b), 20–40 (c),
and 40–60 cm (d). Single-headed
arrows represent the hypothesized
direction of causation. Numbers
next to single-headed arrows are
standardized path coefficients,
which indicate the effect size of
the relationship. Double-headed
arrows indicate covariance be-
tween related variables. Red and
purple arrows indicate negative
and positive relationships, re-
spectively, and arrow width is
proportional to the strength of the
relationship. The proportion of
variance (r2) explained appears
below each response variables in
the model. Only statistically sig-
nificant (P < 0.05) relationships
were shown. The Veg, MAP,
MAT, and Rad represent vegeta-
tion type, mean annual precipita-
tion, mean annual temperature,
and solar insolation, respectively.
*P < 0.05; **P < 0.01;
***P < 0.001
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2012; Ajami et al. 2016), whereas the variation of SOC by
slope in this study was more trivial (Table 1). This was prob-
ably associated with the limited soil erosion processes along
hillslopes in the study area, mainly due to higher vegetation
cover, fewer extreme precipitation events, and less distur-
bances to soils as a result of limited human activities. In addi-
tion, the effect of vegetation typemaymask the slope effect on
SOC, as a previous study conducted only in grasslands sug-
gested that, among the examined topographic factors, slope
positions could contribute to almost 10% of the total variation
in SOC (Zhu et al. 2018).

4.2 SOC stock estimation

The 10-fold cross-validation and the uncertainty analysis sug-
gested that the RF regression exhibited better performance
(higher R2 values and lower uncertainties) in predicting SOC
density than the MLR (Figs. 3 and 4), although we have pre-
processed the raw elevation and aspect data for theMLR. This
could be ascribed to the two advantages of the RF regression.
First, compared with linear regression models, the RF could
better deal with the non-linear relationships between SOC and
environmental covariates (Grimm et al. 2008; Akpa et al.
2016). Second, as a machine learning technique, the RF is
not constrained by any statistical premise such as normality
and independence, and also overcomes the limitations of para-
metric and nonparametric statistical methods, such as spatial
autocorrelation (Breiman 2001; Were et al. 2015). In this
study, although we used topographic factors and NDVI as
predictors in the RF regression, the R2 value obtained by the
10-fold cross-validation still reached to 0.55–0.60, which was
close to that of previous studies conducted at a similar spatial
scale (Wiesmeier et al. 2011; Yang et al. 2016). Taken togeth-
er, our results highlighted that the RF regression combined
with topographic and vegetative factors as model inputs is
an effective approach for spatially explicit SOC prediction in
semiarid alpine regions.

Based on the spatially gridded SOC predicted by the RF
regression, we calculated the SOC stock across the basin.
Results showed that the total SOC stock was estimated at
219.33 Tg C for the upper 60 cm, with an average density of
21.25 kg C m−2 (Table 2). Compared with regions under sim-
ilar semiarid climates, we found that SOC density in the mid-
dle Qilian Mountains was much higher. For example, the
mean SOC density in the semiarid Loess Plateau regions of
China was estimated at 7.70 kg C m−2 at 0–100 cm (Liu et al.
2011). As for the semiarid Horqin grasslands, the SOC density
at 0–100 cm was about 6.84 kg C m−2 (Li et al. 2018).
Albaladejo et al. (2013) found that SOC density reached to
7.18 kg C m−2 in the semiarid region in Spain. Fernández-
Romero et al. (2014) suggested that the maximum SOC den-
sity in the forest soils of Mediterranean natural areas reached
to 15.87 kg C m−2. In the mountainous regions of northern

Iran, the SOC density was estimated at about 18.58 kg C m−2

(Ajami et al. 2016).
The higher SOC density in this study area was largely

associated with the cold climate under alpine environments
and also with the poorly drained conditions in valleys, which
together enhanced the accumulation of organic matter in soils.
Our result confirmed the importance of alpine soils in regional
carbon cycle due to the much higher carbon density in com-
parison with the surrounding zonal regions. In addition, we
found that the amount of organic carbon stored in soils of the
alpine meadow, subalpine shrub, and subalpine meadow to-
tally accounted for 71.27% of the total stock across the basin.
The large contribution of these alpine vegetation types to re-
gional carbon pool further suggested that protection to vege-
tation at high-elevation zones should be given priority in terms
of carbon management, due to the potentially large amount of
carbon losses under global environmental change.

4.3 The topography-climate-vegetation-carbon
relationships in semiarid alpine regions

In this study, the researchers have found that the climatic,
vegetative, and edaphic factors were significantly correlated
with SOC density at different depths (Fig. 6). These results
were similar with many previous studies (Feng et al. 2002;
Wynn et al. 2006; Prietzel and Christophel 2014; Song et al.
2016; Zhu et al. 2019). However, in semiarid alpine regions
where human activities are limited, topography is supposed to
be a fundamental factor in affecting the spatial patterns of
SOC density (Chen et al. 2016a; Zhu et al. 2019). In this study,
the GLM analyses showed that topography could explain
about 58.11% of the total variation in SOC density for the
upper 10 cm (Table 3). Additionally, this proportion was close
to that obtained from the SEM analyses, which showed that
the variation in climatic, vegetative, and edaphic factors could
totally explain 54% of the total variation in SOC density at 0–
10 cm (Fig. 7a). Generally, the elevation, aspect, and slope do
not directly affect the SOC density, whereas they could direct-
ly shape the patterns of mean annual precipitation and temper-
ature as well as solar insolation in semiarid alpine regions
(Zhao et al. 2005, 2006; McCune and Keon 2002), which
further alter the plant production and decomposition rate of
soil organic matter, and thus contribute to the variability in
SOC density (Qin et al. 2016; Zhu et al. 2018). In this study
area, zonal climatic factors like mean annual precipitation and
temperature largely depend on elevation (Eqs. (2) and (3)),
while solar insolation on the hillslope mainly depend on as-
pect and slope (Eq. (4)). That is to say, topography substan-
tially affects both the zonal climatic conditions and local mi-
croclimate in the study area.

The SEM analyses in this study suggested that the
topography-induced variation in mean annual temperature
exerted the largest control on SOC density, mainly by its direct
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effect, and also indirect effect as delivered by the vegetation
type (Fig. 7). This was mainly because that the temperature
not only directly affected the decomposition rate of organic
matter in soils but also lowered the plant production at very
high elevations because of reduced length of the growing sea-
son and accumulative temperature. The SEM analyses also
showed that although the topography-induced variation in
precipitation did not directly affect SOC density, it could exert
indirect effect by its positive correlation with vegetation type.
This could be ascribed to the semiarid climates in our sam-
pling basin, where water availability was supposed to be a
dominant environmental control of plant production (Yang
et al. 2008; Qin et al. 2016). Higher precipitation may stimu-
late the growth of forest and shrub species characterized by
much higher plant production than the steppe and desert
steppe, and subsequently enhance the litter input into soils.

Actually, soil temperature and soil moisture as affected by
microclimates along the hillslope may contribute to the spatial
variability of SOC density at a smaller scale (Qin et al. 2016;
Zhu et al. 2019). Importantly, this variability may not be ex-
plained by the zonal climatic factors, i.e., the SOC density
could still vary significantly under the same mean annual tem-
perature and precipitation. In this study, we used the solar
insolation, as calculated by aspect and slope, to reflect this
variability at the local scale. The SEM analyses suggested that
solar insolation exerted direct negative effect as well as indi-
rect effect through its negative correlation with vegetation
type, on SOC density at 20–40 cm. The direct effect of solar
radiation was mainly associated with its control on the heat
patterns characterized by higher soil temperature on the south-
facing slopes in comparison with the north-facing slopes (Qin
et al. 2016), which shaped the decomposition rate of organic
matter in soils. The indirect effect was mainly associated with
the response of vegetation type to aspect. In the middle Qilian
Mountains, the aspect-induced variability in solar insolation
under such semiarid climates significantly affected soil water
conditions at the hillslope scale, which further sharply shape
the vegetation type along the aspect gradient (Zhu et al. 2017,
2019). As a result, steppe and desert steppe mainly occupied
the south-facing slopes, while shrublands and forests were
mainly distributed on the north-facing slopes. These unique
patterns of vegetation type, primarily resulting from the
aspect-induced variability in solar insolation, further enhance
the variability of SOC density within the same elevation/
climatic zone.

5 Conclusions

In this study, the higher SOC density appears to highlight the
importance of soils in alpine regions in terms of the balance
of regional carbon cycle. The better performance of the RF
regression confirmed its effectiveness in estimating SOC

stock in semiarid alpine regions. The GLM and the SEM
analyses suggested the fundamental roles of elevation and
aspect in shaping the spatial patterns of SOC density. In ad-
dition, the elevation-induced variation in mean annual tem-
perature was supposed to be the most important control of
SOC, highlighting the potentially large amount of carbon
losses as affected by the elevation-dependent warming under
future climate change.
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