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Abstract
Purpose Knowledge of suspended sediment provenance in mesoscale catchments is important for applying erosion control
measures and best management practices as well as for understanding the processes controlling sediment transport in the critical
zone. As suspended sediment fluxes are highly variable in time, particularly given the variability of soil and rainfall properties in
mesoscale catchments, knowledge of sediment provenance at high temporal resolution is crucial.
Materials and methods Suspended sediment fluxes were analyzed at the outlet of a 42-km2 Mediterranean catchment belonging
to the French critical zone observatory network (OZCAR). Spatial origins of the suspended sediments were analyzed at high
temporal resolution using low-cost analytical approaches (color tracers, X-ray fluorescence, and magnetic susceptibility). As the
measurements of magnetic susceptibility provide only one variable, they were used for cross-validation of the results obtained
with the two alternative tracing methods. The comparison of the tracer sets and three mixing models (non-negative least squares,
Bayesian mixing model SIMMR, and partial least squares regression) allowed us to estimate different sources of errors inherent
in sediment fingerprinting studies and to assess the challenges and opportunities of using these fingerprinting methods.
Results and discussion All tracer sets and mixing models could identify marly badlands as the main source of suspended
sediments. However, the percentage of source contributions varied between the 11 flood events in the catchment. The mean
contribution of the badlands varied between 74 and 84%; the topsoils on sedimentary geology ranged from 12 to 29% and the
basaltic topsoils from 1 to 8%. While for some events the contribution remained constant, others showed a high within-event
variability of the sediment provenance. Considerable differences in the predicted contributions were observed when different
tracer sets (mean RMSE 19.9%) or mixing models (mean RMSE 10.1%) were used. Our result shows that the choice of the tracer
set was more important than the choice of the mixing model.
Conclusions These results highlighted the importance of using multi-tracer multi-model approaches for sediment fingerprinting
in order to obtain reliable estimates of source contributions. As a given fingerprinting approach might be more sensitive to one
type of error, i.e., source variability, particle size selectivity, multi-tracer ensemble predictions allow to detect and quantify these
potential biases. High sampling resolution realized with low-cost methods is important to reveal within- and between-event
dynamics of sediment fluxes and to obtain reliable information of main contributing sources.
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1 Introduction

Understanding suspended sediment fluxes in the critical zone
is crucial for soil and water resource management (Brils
2008). As the critical zone, i.e., Bthe thin layer of the Earth’s
terrestrial surface and near-surface environment that ranges
from the top of the vegetation canopy to the bottom of the
weathering zone^ (Guo and Lin 2016) is increasingly per-
ceived as a highly dynamic entity, better understanding of
the prevailing processes can only be achieved with an inter-
disciplinary approach and by considering spatial and temporal
variability (Brantley et al. 2017). Knowledge of sediment
provenance in catchments that are prone to erosion is therefore
important for two reasons. Firstly, proposing best manage-
ment practices require applying the right erosion control mea-
sures to the right target areas in order to reduce soil loss within
catchments or to ensure good ecological status of water bodies
as demanded by the European Water Framework Directive
(Brils 2008; de Deckere et al. 2011; Perks et al. 2017).
Secondly, improving our understanding of processes respon-
sible for sediment transport within the critical zone requires
the capacity to analyze the suspended sediment yields with
other descriptors than only the hydrograph and suspended
sediment concentrations at a single point. Indeed, comparing
modeled and observed sediment concentrations at a given
outlet does not ensure that the sedimentary dynamics within
a catchment are well captured by the model, as various com-
binations or spatiotemporal patterns of processes can lead to
the same downstream results. Thus, alternative strategies for
model evaluation are needed (Cooper et al. 2012). In that
sense, gaining knowledge on the sediment spatial origin is
of crucial interest. This is all the more true in mesoscale catch-
ments (10–1000 km2) for which the level of complexity in-
creases since the high spatiotemporal variability of the mete-
orological forcing comes to be superimposed with the hetero-
geneity of soils and the morphology of watersheds. Some
studies suggest high temporal variability of source contribu-
tions from the event scale (Poulenard et al. 2012; Legout et al.
2013; Cooper et al. 2015) to the decadal scale (Vercruysse
et al. 2017) highlighting the need to know the sediment prov-
enance with the best temporal resolution possible.

Several physicochemical properties of suspended sediment
samples and their potential sources have been used as tracers or
fingerprints, including radionuclides (e.g., Motha et al. 2003;
Evrard et al. 2011, 2013; Ben Slimane et al. 2013; Palazón
et al. 2016; Huon et al. 2017; Palazón and Navas 2017;
Pulley et al. 2017), organic or inorganic geochemistry (e.g.,
Collins et al. 1997, 2010; Douglas et al. 2009; Evrard et al.
2011, 2013; Koiter et al. 2013; Cooper et al. 2014; Haddadchi
et al. 2014; Laceby and Olley 2015; Du and Walling 2017;
Huon et al. 2017), magnetic properties (e.g., Walling et al.
1979; Dearing et al. 1981, 1986, 2001; Maher 1986; Yu and

Oldfield 1993), particle color (e.g., Martínez-Carreras et al.
2010a, 2010b; Legout et al. 2013; Brosinsky et al. 2014a,
2014b), or composite fingerprints that comprise several of
these tracers. Quantitative values for these properties can be
derived in different ways; for example, geochemistry can be
measured with inductively coupled plasma mass spectrometry
(ICP-MS) or derived fromX-ray fluorescence (XRF) measure-
ments. Measurement duration and costs can vary substantially
between the different methods and can be a considerable lim-
itation, especially when a high-frequencymonitoring approach
is needed. Besides being inexpensive and rapid, low-cost alter-
native fingerprinting methods also have the advantage to be
non-destructive which is important especially for the
suspended sediment samples where often only small sample
quantities are available. Mineral magnetic properties were
among the first low-cost tracers that were used for the charac-
terization and discrimination of soils and for tracing sediments
on slopes and in watersheds from the sources to the deposits.
Recently, they have been applied as tracers to track the disper-
sion of dredge dumped sediment in the bay of the Seine (Nizou
et al. 2016), wildfire-affected soils (Blake et al. 2006), and
sediment sources of different geology (Pulley and Rowntree
2016). Color tracers obtained from diffuse reflectance spec-
troscopy have been successfully applied in alternative sedi-
ment fingerprinting studies and were shown to be able to dis-
criminate between sources from different land use, geology, or
depth (Martínez-Carreras et al. 2010a, 2010b; Legout et al.
2013; Brosinsky et al. 2014a, 2014b; Barthod et al. 2015;
Pulley and Rowntree 2016). In such studies, XRF tracers have
also been applied successfully (Motha et al. 2003; Cooper et al.
2014; Laceby and Olley 2015). Another advantage of low-cost
methods is that they can be used as multi-tracer approaches
allowing either an increase of the dimensionality of the data
(Lees 1997; Small et al. 2004) or the cross-validation of inno-
vative methods (Pulley and Rowntree 2016).

Several mixing models are available to quantify the contri-
butions of different sources to suspended sediment samples.
Chemical mass balance mixing models were the first mixing
models applied in quantitative sediment fingerprinting studies
(e.g., Peart and Walling 1986; Yu and Oldfield 1989; Walling
et al. 1993) and are still widely used (e.g., Motha et al. 2003;
Martínez-Carreras et al. 2010a, 2010b; Brosinsky et al. 2014a,
2014b). Bayesian mixing models are increasingly used in sed-
iment fingerprinting studies (Koiter et al. 2013; Cooper et al.
2014; Nosrati et al. 2014, 2018; Barthod et al. 2015). A third
approach is offered by partial least square regression (PLSR)
where the model is trained with artificial mixtures of known
proportions (Poulenard et al. 2012; Legout et al. 2013).

While sediment fingerprinting approaches are becoming
widely used, there remain important challenges and uncer-
tainties that have to be considered, due to both the tracer set
selections and mixing model approximations (Small et al.
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2004; Smith et al. 2015). Source heterogeneity has been iden-
tified as a principal cause of error in mixing models (Pulley
et al. 2017). Another important source of error is related to the
particle size selectivity during erosion and transport processes
which results in a violation of the assumption of conservative
behavior of the tracers (Laceby et al. 2017). This is a known
issue for spectrocolorimetry as grain size is a physical chro-
mophore (Ben-Dor et al. 1998) and was highlighted by Legout
et al. (2013) and Pulley and Rowntree (2016) for color tracers
and by Laceby et al. (2017) for more conventional sets of
tracers. The assumption of conservative behavior of the tracers
can also be challenged by biogeochemical alterations during
temporary storage of the sediments in the riverbed or while
they are suspended in the water (Legout et al. 2013; Vale
2016). As outlined by Martinez-Carreras et al. (2010a, b),
Evrard et al. (2013), Pulley et al. (2015), Palazón and Navas
(2017), and Nosrati et al. (2018), different results in the sedi-
ment source proportions can also be obtained when different
tracer (sub)sets or different composite fingerprints are used.
Similar contradictory results can also be obtained when dif-
ferent mixing models are used (Haddadchi et al. 2013; Cooper
et al. 2014; Laceby and Olley 2015; Nosrati et al. 2018). These
latter elements suggest a high sensitivity of the fingerprinting
approaches to the tracers and mixing models used. While
studies already performed comparisons between mixing
models and tracer sets, these latter were only done for the
same types of mixing models. Indeed, most of the mixing
models are based on a mass balance approach, seeking to
solve the same overdetermined system of linear equations.
The PLSR models have however a fundamentally different
approach, predicting the source contributions with a regres-
sion model trained on artificial mixtures. Such models are
often associated with alternative tracer sets such as spectral
reflectance in the visible and infrared ranges (Poulenard
et al. 2012; Legout et al. 2013). To the best of our knowledge,
no study reported any comparison of the performance of such
contrasted mixing model approach applied with a set of low-
cost tracers, neither in terms of the various sources of error nor
of the similarity of predicted source proportions.

The overall objective of this study was to quantify the
source contributions to suspended sediments in a mesoscale
Mediterranean catchment. As the area is prone to intense rain
events that can lead to flash floods (Braud et al. 2014; Nord
et al. 2017), the hydrosedimentary processes can change sig-
nificantly between and within events. This motivated the inter-
est to develop alternative low-cost fingerprinting methods,
using tracers derived from two portable spectrometers (i.e.,
X-ray fluorescence and spectrocolorimeter) to ensure a high
temporal resolution of the sediments spatial origin within the
catchment. The specific questions addressed in this study were
as follows: (i) whether low-cost tracers could discriminate be-
tween major source of suspended sediments; (ii) to which ex-
tent the predicted proportions of source materials differ from

mixing models and tracer sets, including associated errors; and
(iii) what were the variations of the source contributions be-
tween and within runoff events that occurred during the 2011–
2017 period in a Mediterranean mesoscale watershed?

2 Methods

2.1 Study site

The 42.3-km2 Claduègne catchment and the nested 3.4-km2

Gazel catchment are research catchments within the
Cévennes-Vivarais Mediterranean Hydrometeorological
Observatory (OHMCV, Boudevillain et al. 2011, http://ohmcv.
osug.fr) which is part of the French network of critical zone
observatories (Gaillardet et al. 2018). These study sites aimed
at investigating the meteorological and hydrosedimentary pro-
cesses during heavy rain events and flash floods (Nord et al.
2017). The northern part of both catchments (ca. 51% of the
Claduègne and 23% of the Gazel catchment) are located on the
volcanic Coiron plateau, a vast basaltic table formed during
volcanic activity in the early Pliocene (Fig. 1). The pedology
of the catchment is dominated by eutric and andic cambisols on
basaltic rocks in the north and more or less developed calcare-
ous soils in the south. The latter range from well-structured
cultivated soils to rendzic leptosols, regosols, and fluvisols. A
prominent feature of the Claduègne catchment is the presence of
sedimentary badlands that are characterized by the lack of veg-
etation cover, the steep slopes and obvious signs of gully ero-
sion. Even though they cover < 1% of the total catchment area
(delineation on orthophotos of IGN France (2009)), they are
usually adjacent to the hydrographic network and thus very well
connected. Themain land use types in the Claduègne catchment
are forests (44%), agricultural zones (cultivated fields and
vineyards, 24%), heaths (13%), and grasslands (10%). The cul-
tivated fields and vineyards are temporarily bare and are as-
sumed to be a distributed source of suspended sediment.
Thus, three sources are assumed to contribute to the suspended
sediment samples in the rivers: sedimentary badlands, bare soils
on basaltic geology, and bare soils on sedimentary geology. The
climate is affected both by oceanic and Mediterranean influ-
ences. While the highest average daily precipitations are found
at altitude, the highest hourly rainfall intensities are recorded in
the plains (Molinié et al. 2012). At the outlets of the two catch-
ments, two hydrosedimentary stations continuouslymonitor liq-
uid and solid fluxes since 2011 (Nord et al. 2017).Water level is
measured with an H-radar at the Claduègne station and a hy-
drostatic pressure probe at the Gazel station at frequencies of 10
and 2 min, respectively. Water level is converted to discharge
based on a stage discharge relation using ca. 20 discharge mea-
surements for each station. At both stations, suspended sedi-
ment concentrations are additionally monitored with turbidim-
eters (Nord et al. 2017).
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2.2 Sampling

Source samples were collected at 56 locations in the
Claduègne catchment (of which 21 are located in the nested
Gazel catchment). The sampling locations were chosen for
accessibility and to represent the main variability of land use
and soil types within each of the three groups assumed to
contribute to the suspended sediment samples in the rivers,
i.e., sedimentary badlands, bare soils on basaltic geology, and
bare soils on sedimentary geology. At each site, one to six
subsamples were taken within a radius of ca. 5 m. They were
not combined in order to assess small-scale heterogeneity. In
total, 178 subsamples were taken as surface scrapes of the top
3–5 cm with non-metallic shovels; 132 of them are taken in
areas of the three potential sediment sources (Table 1).

At the outlets of the Gazel and Claduègne catchments,
suspended sediment samples are automatically taken every
10 and 40 min, respectively, once a threshold of turbidity and
water level is exceeded. For this study, 145 and 179 samples
collected during 13 events between 2011 and 2017 in the
Claduègne and Gazel catchments, respectively, are considered.
For 27 suspended sediment samples taken during five events in

the Claduègne catchment, grain size distributions were mea-
sured with a laser diffraction sizer (Malvern Mastersizer 2000)
after 10 min of sonication and stirring at maximum level in
order to destroy aggregates (Grangeon et al. 2012).

Source samples and suspended sediment samples were
dried for 24 h at 105 °C, gently crushed and sieved to the
particle size fraction < 63 μm.

2.3 Measurements of tracer properties

2.3.1 Spectrocolorimetry

Color measurements were conducted using a portable diffuse
reflectance spectrophotometer (Konica Minolta 2600d) that
returns the reflectance spectra in the visible range between
360 and 740 nm in increments of 10 nm following Legout
et al. (2013). For every sample, the measurement was repeated
three times after turning or shaking the tube in order to account
for heterogeneity within the sample. The influence of sample
quantity on the color tracers was assessed by repeating the
measurement after increasing the sample quantity in the box,
and it was found that even sample quantities as low as 0.1 g
barely influence the measurement.

From the raw spectral data, 15 color coefficients were cal-
culated using the equations given in Commission
Internationale de l’Eclairage (CIE) (1978). These include the
xyz chromaticity coordinates, three parameters each of the
L*a*b* color space and the Hunter Lab color space and 2
parameters each from the CIE 1976 UCS color diagram, the
L*C*h* color space, and the L*u*v* color space. Thus, in
total, 15 color coefficients were considered as color tracers.

2.3.2 XRF

The measurements were conducted with a portable Bruker
Titan XRF analyzer. Using an internal calibration, the device
automatically calculates the concentrations of Al2O3, SiO2,
P2O5, K2O, CaO, TiO2, V, MnO, Fe2O3, Co, Ni, Cu, Zn,
Rb, Sr, and Zr. To account for sample heterogeneity, the mea-
surement was repeated three times for each sample turning the
sample support 90° after each measurement.

For practical reasons (availability of the measuring device
and the higher sample quantity of about 1 g needed for XRF),
only a subset of samples could be measured with XRF
(Table 1).

2.3.3 Magnetic susceptibility

Mineral magnetic properties were measured on a subset of 93
source samples and 126 suspended sediment samples at the
CEREGE laboratory (Aix Marseille University). For all sam-
ples, specific low-fieldmagnetic susceptibilityΧlf was obtained
from measurements with an AGICO MFK1-FA Kappabridge
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Fig. 1 Study site. a Location of the 56 sampling sites of the source soil
samples in the Claduègne catchment (42.3 km2) and the nested Gazel
catchment (3.4 km2). The red polygons show the outline of the
badlands that were digitized from satellite and aerial images. The
geology can be roughly subdivided into the basaltic Coiron plateau in
the north and Mesozoic sedimentary rocks (mainly marly-limestones) in
the south. The land use data are based on QuickBird satellite images
(Andrieu 2015). The class permanently covered comprises forests, per-
manent grasslands and heaths. b Location of the Cevennes-Vivarais
Mediterranean Hydrometeorological Observatory (OHM) in France.
The small dot represents the location of the Claduègne catchment
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susceptibilimeter under a frequency of 976 Hz. The measured
susceptibility was normalized using sample weight. Χlf values
describe the ratio of the induced magnetization of a sample to
the intensity of the magnetizing field. It is an indicator for the
amount of ferromagnetic minerals (e.g., magnetite or hematite)
present in a sample (Maher 1986; Nizou et al. 2016). Mineral
magnetic susceptibility was only used in this study to carry out
a qualitative cross-validation of the results obtained with the
other two tracer sets.

2.4 Tests of assumptions

The ability of the different tracers to discriminate between the
three source groupswas testedwith a Kruskal–Wallis test and by
conducting linear discriminant analysis (LDA) using all tracers
derived from each measuring technique (spectrocolorimetry or
XRF).

In order to test the linear additivity of the tracers, 81 artifi-
cial mixtures with known proportions of the three source
groups were prepared. First, for all the three sources, a com-
posite sample was made from roughly equal contributions of
many individual source samples from the respective group.
This was well mixed and the artificial mixtures were prepared
by mixing these three poles in known proportions as proposed
in Legout et al. (2013).

Spectrocolorimetric measurements were conducted on all
the mixtures prepared as well as on the composite samples that
represent the poles of 100% of any of the source classes. XRF
measurements were only conducted on the three poles and
four mixtures. The linear additivity of the tracer properties
(15 color parameters for spectrocolorimetry tracers and 16
element concentrations for the XRF tracers) was quantified

using the RMSE normalized with the mean of the measured
tracer value.

A range test was conducted for every tracer property to
check whether the suspended sediment samples were com-
prised within the range of the values measured for the source
samples in order to detect problems concerning incomplete
source sampling, conservative behavior of the tracers or linear
additivity (Walden et al. 1997; Collins et al. 2017). A small
tolerance of less than 5% of the mean of each tracer was
applied and tracers for which the range test was not passed
were excluded from the mixing models.

As outlined by Phillips et al. (2014), this univariate range
test is a necessary but not a sufficient condition for mixing
models to work. In order to ensure that the sediment samples
can be represented as a combination of the sources, they also
have to fall within the multi-dimensional convex hull spanned
by the tracer values of the sources. Thus, a convex hull range
test was additionally conducted by combining the tracer prop-
erties one-by-one, determining the 2d convex hull spanned by
the sources and by checking whether the sediment samples lie
within the hull.

In order to assess the influence of particle size on the color
tracers, we sieved some source samples from the Claduègne
catchment (n = 14, 4 badlands, 5 basaltic soils, 5 sedimentary
soils) to the size fractions > 500 μm, 200–500 μm, 100–
200 μm, 63–100 μm, 40–63 μm, 20–40 μm, and < 20 μm.
The spectrocolorimetry tracers were determined and com-
pared for all these samples.

To evaluate the potential effect of biogeochemical alter-
ations during transport and temporary storage, an in situ bio-
geochemical experiment was conducted as described by
Legout et al. (2013). Four composite samples of the <

Table 1 Numbers of samples
measured and tests conducted for
each analytic technique. Tracers
in brackets are the ones that were
discarded after the respective test

Spectrocolorimetry XRF Mineral magnetism

Number of samples

Source 1: badlands 33 10 21

Source 2: sedimentary soils 52 15 19

Source 3: basaltic soils 27 11 10

Suspended sediments Claduègne 145 35 80

Suspended sediments Gazel 179 20 37

Artificial mixtures Claduègne 81 4 0

Artificial mixtures Gazel 81 0 0

Tests conducted

Kruskal–Wallis test ✓ (−) ✓ (Co) –

Linear discriminant analysis ✓ ✓ –

Linear additivity ✓ (−) ✓ (P2O5, Cu, Y, Zr) –

Range test ✓ (−) ✓ (P2O5, K2O) –

Convex hull range test ✓ (−) ✓ (Co, Zr) –

Influence of particle size ✓ – –

Influence of biogeochemical alterations ✓ – –
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63 μm fraction of 4 to 11 individual samples from the same
geology and land use (badland, cultivated fields on basalt,
vineyard on sedimentary geology) were produced. Each one
was divided into subsamples which were put into small bags
of two layers of porous mesh with a mesh size of 20 μm. Each
subsample contained about 1 g of material. All bags were
immersed in the river in April 2017 and after immersion times
of 1, 3, 7, and 22 days, two replicates of each composite
sample were collected. No significant rainfall–runoff events
occurred during the experiment. All subsamples were dried at
105 °C for 24 h, gently crushed and weighed to check for
weight loss. Spectrocolorimetric measurements were conduct-
ed, and the influence of immersion time in the river on the
color tracers was assessed by comparing the tracer values for
the different immersion times.

2.5 Source quantification with mixing models

2.5.1 NNLS model

For every sediment sample, a system of linear equations based
on a chemical mass balance can be set up as: A × c = s where
A(nxm) is the source matrix, m is the number of sources, and n
is the number of tracers; ai,j being the matrix element giving
the value of tracer j for source i. c is the unknown contribution
vector that gives the contribution of each one of the m sources
to the respective suspended sediment sample. s is the sediment
sample vector that gives the measured values of the n tracers
for the respective sediment sample. As this system of linear
equations is usually overdetermined and there is no unique
solution for c, it is approximated with the least squares meth-
od. In order to prevent the prediction of negative contribu-
tions, the model is constrained to non-negativity. The non-
negative least squares (NNLS) algorithm implemented in the
R function nnls{nnls} (Mullen and van Stokkum 2015) fol-
lowing Lawson and Hanson (1974) was used. Besides the
constraint for non-negativity, the model can also be
constrained in a way that the sum of the predicted contribu-
tions adds up to 100%. In this study, this constrained was not
applied so that the test whether the contributions sum up to
approximately 100% was used to detect problems in the fin-
gerprinting approach.

2.5.2 Bayesian mixing model (SIMMR)

The Bayesian mixing model implemented in the R package
simmr (stable isotopes mixing models in R; Parnell 2016) was
used. It calculates a high number (default: n = 10,000) of plau-
sible solutions of source contributions to each sediment sam-
ple using Bayes theorem:

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ð1Þ

where the posterior P(A|B) is the contribution of a source to
the sediment sample. The prior P(A) is an initial guess of the
contribution, which is randomly drawn from the Dirichlet dis-
tribution. Thus, the source contributions are independent from
each other but sum up to 100%. B is the support knowledge
that is provided to A and that is given by the measurements of
the tracer properties for the sediment sample and the sources.
The model is fitted with a Monte Carlo Markov Chain algo-
rithm that produces plausible solutions for each source’s con-
tribution to each sediment sample (Parnell et al. 2010, 2013;
Cooper et al. 2014). From these n realizations, the best esti-
mate (mean or median) and an estimate for the uncertainty
(standard deviation) can be derived.

2.5.3 PLSR mixing model

PLSR is a multiple linear regression method that is commonly
used in chemometrics for predicting a depended variable
(response) from a set of predictor variables. Unlike other lin-
ear regression models, PLSR can deal with highly correlated,
noisy and numerous predictor variables that are consequently
not independent from each other and potentially redundant
(Wold et al. 2001).

Unlike the other two mixing models, the model is
trained with artificial mixtures of known proportions of
the possible sediment sources that were prepared as de-
scribed in Sect. 2.4. As in Poulenard et al. (2012) and
Legout et al. (2013), individual models were set up for
each of three sources. In this way, the source contributions
were not forced to sum up to 100% for each sediment
sample and the test whether or not that sum is close to
100% allows to detect problems in the fingerprinting ap-
proach. The models were fitted in R with the function
plsr{pls} (Mevik et al. 2016) using six components.

When applying the model to the color tracer set, the dataset
was split into a training and a testing dataset (two thirds and
one third of the data, respectively) in order to check for
overfitting and whether the model was able to predict the
proportion of mixtures that were not used to set up the model.
As the XRF measurements were only conducted on four arti-
ficial mixtures and the three poles, this validation step was not
undertaken.

2.6 Error assessment

2.6.1 Source heterogeneity

Source soil heterogeneity is treated differently in the three
mixing models. Whereas it is smoothed out in the NNLS
and PLSR mixing models, it is explicitly taken into ac-
count in the Bayesian SIMMR mixing model. The latter
uses the mean and the standard deviation (SD) of each
tracer property for each source as model input. Thus, for
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SIMMR, the variability of model output is calculated and
the mean of the SD obtained for all the sediment samples is
given as an estimate of uncertainty due to source heteroge-
neity in every source category. In the NNLS mixing model,
the source matrix A is initially parameterized with the
mean of all samples in the respective source group for each
tracer property. The potential error due to within-source
group heterogeneity was assessed with a Monte Carlo re-
sampling algorithm (e.g., Franks and Rowan 2000; Krause
et al. 2003) using the SD of the predicted source contribu-
tion averaged over all suspended sediment samples as a
measure of uncertainty due to source heterogeneity. In the
PLSR mixing model, source heterogeneity is also eliminat-
ed by creating a composite sample of the source soils in the
respective source category and using this composite for the
creation of the artificial mixtures. Here, the potential error
due to source heterogeneity is assessed by running the
model on the source samples that belong unequivocally
to one of the three source groups. Due to source heteroge-
neity, the signature of the individual samples will differ
from the composite sample of the group. Hence, the pre-
dicted contributions will vary from 100% or 0% and the
deviation of the predicted contribution from the real con-
tribution (either 100% or 0%) was used to quantify this
kind of error for each source:

Δsh ¼ 1

n
∑n

i¼1jCreal;i−Cpred;ij ð2Þ

where n is the number of source samples in the respective
source category, creal,i is the real source contribution, and
cpred,i is the predicted contribution of source category to the
source sample i.

In order to obtain a measure that is comparable between the
three mixing models, this specific procedure is also applied
with the NNLS and the SIMMR mixing models.

2.6.2 Tracer non-conservativeness: particle size

None of the three mixing models takes this source of error
into account. It was assessed for the three mixing models
run with color tracers for the Claduègne catchment on the
14 source samples sieved to different particle size classes.
The true contribution of the source categories was again
either 100% or 0%. The deviation of the prediction of the
fraction < 63 μm from 100% or 0% was assumed to be
due to source heterogeneity whereas particle size was as-
sumed to be responsible of the deviation of the other size
fractions from the fraction < 63 μm. In order to quantify
this source of error in a way that allows for comparing
between the mixing models, the difference between the <
63 μm and the < 20 μm fractions was calculated for every
source category:

Δps ¼ 1

n
∑n

i¼1jC<63;i−C<20;ij ð3Þ

where n is the number of sources samples sieved to <
20 μm in the respective source category, c<63 is the pre-
dicted contribution of the source category to the fraction
< 63 μm, and c<20 the contribution to the fraction <
20 μm. The < 20 μm fraction was chosen for this analysis,
as this fraction was found to be the dominant size class of
the suspended sediment samples. The ratio of the fraction
< 20 μm to the fraction < 63 μm ranged from 0.69 to 0.91
with a median of 0.78 for the 27 suspended sediment
samples from the Claduègne where grain size distribu-
tions were measured.

2.6.3 Tracer non-conservativeness: biogeochemical
alterations

In order to quantify this source of error, the three mixing
models run with the color tracers were applied to all the sam-
ples that were immerged in the river for different durations.
The difference in predicted contributions before and after im-
mersion in the river Δbgc was calculated for each source and
each mixing model:

Δbgc ¼ 1

n
∑n

i¼1jC0d;i−C1d;ij ð4Þ

where n is the number of samples for each source category,
C0d is the predicted contribution of the respective source to the
composite sample before immersion in the river and C1d is the
predicted contribution after immersion in the river for 1 day.
The immersion time of 1 day was chosen because it was found
that the greatest change in tracer properties occurred already
after 1 day whereas they remained stable afterwards. This is
also the most likely maximum time of immersion in the river
given the size of the catchment and the hydrological concen-
tration time of a few hours.

2.6.4 Testing the mixing models with the artificial mixtures

Besides their necessity for training the PLSR mixing model,
the artificial mixtures were also used to test the predictive
power of the three mixing models. The NNLS and the
SIMMR mixing model were set up independently of the mix-
tures, so the models were tested on all mixtures (81 mixtures
for color tracers, four mixtures and three poles for XRF
tracers). For the PLSRmixing model, the third of the mixtures
that was not used for model training was used for testing it.
The root mean squared error of the prediction (RMSEP) was
calculated for each mixing model and each source from the
known and the predicted proportions of the source classes.
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3 Results

3.1 Verification of fingerprinting assumptions

Both tracer sets were able to discriminate between the three
source groups. The main discriminating tracers were L*, a*,
and b* for the spectrocolorimetry and Al2O3, SiO2, CaO, and
Fe2O3 for XRF (Electronic Supplementary Material S1).
When linear discriminant analysis was conducted with either
all color tracers or all XRF tracers, all sources were correctly
classified in the cross-validation.

With some exceptions, the linear additivity of the tracers
was confirmed with the artificial mixtures. The normalized
RMSE of the color tracers ranged between 0.2 and 6.3%,
and the one of the XRF tracers ranged between 1.1 and
16.8%. In the XRF tracer set, the concentrations of P2O5,
Cu, Y, and Zr had values for nRMSE > 10%. Because of this
result, these four tracers were removed from the tracer set
before the application of the mixing models.

When the univariate range test was conducted for the color
tracers using only the source samples sieved to < 63 μm, the
two color parameters L and L* failed this range test. Thus, the
univariate range test was repeated including the sources that
were sieved to < 20 μm which resulted in all color tracers
passing the range test. Because of the results of the univariate
range test, the samples < 20 μm were included in the pairwise
convex hull range test. When a small tolerance of < 5% of the
range of each tracer was included in the test, all pairwise
combinations passed the test.

When the 16 XRF tracers were considered, the concentra-
tions of P2O5 and K2O did not pass the univariate range test
with a tolerance of < 5% of the range. K2O was removed from
the tracer set in addition to P2O5 that was already excluded
after the test for linear additivity. With the remaining 14 XRF
tracers, the pairwise convex hull range test was conducted.
The combinations that did not pass the test were the following:
Zr combined with six other concentrations and Co combined
with SiO2. Thus, Zr and Co were discarded (Table 1).

Concerning the potential effect of particle size, the values
of the L* parameter decreased with increasing particle size in a
relatively constant manner for the different samples (see
Electronic Supplementary Material S2). This effect could ex-
plain the fact that L* failed the range test when considering
source soil particles < 63 μm while it passed when source
particles < 20 μm were considered. This would suggest that
the suspended sediment particles were enriched in particles <
20 μm in comparison with the source soils, which was also
consistent with the particle size measurements done on some
suspended sediments (Sect. 2.2). For the a* parameter, the
particle size effect was not systematic, notably for the bad-
lands where the values were relatively independent of particle
size. For only three tracers, h*, u’, and x, there was hardly any
effect of particle size on the tracer values.

While particle size affects some tracer values (e.g., L*, L, b,
v*), others are less dependent on particle size which means that
this effect might be smoothed as well as exacerbated in the final
predictions performed on suspended sediment samples. Thus,
the error that is introduced by this effect has to be assessed in
the whole fingerprinting approach. This was quantified in Sect.
2.6.2 and taken into account in the interpretation of the results.

The in situ biogeochemical experiment allowed analyzing
the influence of immersion in the river on the color tracers.
This effect was less important than the one of particle size. The
changes were most important during the first day while all
tracer values remained constant for longer immersion times.
Even if the maximum immersion duration did not last more
than 22 days, this is reassuring that the longest storage dura-
tions in the river did not affect the color parameters. The
changes on the first day might also be due to the loss of fine
particles through the bags with mesh size of 20 μm. However,
weight loss of the bags remained very small with values rang-
ing from 0.5 to 3%. Weight loss did not increase with immer-
sion time, so it occurred already during the first day. The
impact of immersion on the tracers varied for the samples
and the parameters. The basaltic samples changed most while
the impact was least for the badlands. The most sensitive
parameters were b, u* and v* but none of the parameters
changed more than 10% for any sample and the median
changes were < 4% for all parameters.

3.2 Comparison of the mixing models

As a first step, the three mixing models were run with the two
tracer sets on the artificial mixtures in order to calculate the
contributions of the three sources basaltic bare soils, sedimen-
tary bare soils, and marly badlands. The models performed
relatively well and could reproduce the known source contri-
butions with RMSE below 7% source contribution with the
exception of the SIMMR model run with XRF tracers
(Electronic Supplementary Material S3). This model failed to
correctly reproduce the source contributions of mixtures with a
high contribution of the sedimentary source, which were false-
ly predicted as a mixture of badlands and sedimentary sources.

When the models were applied to the 145 suspended sedi-
ment samples this error increased (Fig. 2). Using color tracers,
the SIMMR and the NNLS mixing model gave very similar
results (Fig. 2b, RMSE of 4.8%). They agree on the mean
source contributions and the correlations were high for all three
sources. Also, the results obtained with PLSR agreed well with
the other two models with the exception of the flood event that
occurred on August 19th, 2014 (Fig. 2a, c, RMSE of 8.2% and
9.5% when these samples were not included). Using XRF
tracers, all three mixing models agreed that the contribution
of the basaltic sources to the suspended sediment samples in
the Claduègne catchment was very low (< 10%). The NNLS
and SIMMR mixing models further agreed that the badlands
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were the dominant source and the two models correlated very
well for the sedimentary and badland sources (Fig. 2e). The
PLSR mixing model predicted approximately the same mean
contribution of the sedimentary and the badland sources. Thus,
there was a systematic difference between the results obtained
with the PLSR mixing model and the other two models in so
far that the two latter models predicted a considerably higher
contribution of the badlands and a lower contribution of the
sedimentary sources. There was, however, a high correlation
between the results obtained with PLSR and with the other two
models for the badland and sedimentary sources (Fig. 2d, f) so
the within- and between-event dynamics of the source contri-
bution were similar for all three mixing models.

3.3 Comparison of the tracer sets

In order to assess the effect of the choice of tracer sets on pre-
dicted source contributions, the results obtained with the two
tracer sets were first compared for the artificial mixtures and then
for the suspended sediment samples of the Claduègne (Fig. 3).

As the models performed well on the artificial mixtures, the
tracer sets agreed on the predicted source contributions of the
artificial mixtures when the NNLS and the PLSR mixing
model were used (Fig. 3a, c). With the SIMMRmixingmodel,
there were considerable differences between the two tracer
sets (Fig. 3b) due to the bad performance of the SIMMR
model driven with XRF tracers.

The differences in the predicted source contributions were
muchmore pronounced when the suspended sediment samples
were considered instead of the artificial mixtures. The correla-
tions of the predicted contributions of the badlands were poor
for all models and the mean RMSE was high (Fig. 3d–f). For
the sedimentary sources, the correlations were also poor and
there was also a high mean RMSE of 22%. Using the PLSR
model, the predictions obtained with the XRF tracers were
systematically higher than the ones obtained with the with
the color tracers. The mean RMSE for the basaltic samples
was 9%, but considering the low predicted contributions of
the basaltic sources this value was large. There was some cor-
relation between the two tracer sets when the PLSRmodel was
used, but also a systematic difference in so far that the
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Fig. 2 Comparison of the source contributions (in percent) to suspended
sediment samples (n = 145 for spectrocolorimetry, n = 35 for XRF) from
the Claduègne catchment predicted with color tracers (a–c) or XRF
tracers (d, e) and different mixing models (NNLS non-negative least

squares, SIMMR Bayesian stable isotope mixing model in R, PLSR par-
tial least squares regression). The encircled samples represent suspended
sediment samples taken during the event of August 19, 2014
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contributions predicted with the XRF tracers were always low-
er than the ones obtained with the color tracers. The poor
correlations of the results obtained with the two tracer sets
led to the within and between event dynamics being represent-
ed differently depending on which tracer set was used (Fig. 4).

Despite the poor accordance of the color tracers and the
XRF tracers for single suspended sediment samples and the
different prediction of within- and between-event dynamics,

the two tracer sets agreed that the badlands were the main
source of suspended sediment and that the contributions of
the basaltic and sedimentary sources were rather small for that
specific rainfall runoff event.

Owing to the large differences of the results obtained with
the two tracer sets, particularly for the basaltic contributions
(from 5 to 10% on average for color tracers, from 0 to 2% for
XRF), the measurements of magnetic susceptibility were used
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in order to assess in which tracer set to trust more. If the
sediments really originated almost exclusively from the bad-
lands, the values for Xlf measured for these suspended sedi-
ment samples should be close to the values measured in the
badlands (mean ± SD 5.39 ± 4.03*10−8 m3 kg−1, supplemen-
tary material S1). The measured values of the sediment sam-
ples of this event ranged from 19 to 88 × 10−8 m3 kg−1, with a
mean and standard deviation of 57 and 19 × 10−8 m3 kg−1,
respectively. Thus, they were considerably higher than the
values of the badland source, slightly smaller than the values
of the sedimentary sources (75.92 ± 79.40 × 10−8 m3 kg−1)
and orders of magnitude smaller than the basaltic sources
(1323 ± 551 × 10−8 m3 kg−1).

In order to assess more quantitatively the relation between
predicted source contributions obtained with the two tracer
sets and the Xlf values, Xlf was calculated as X lf ;calc ¼
∑s

i¼1 X lf ;source meani*ci
� �

, where s is the number of sources
(s = 3), Xlf, source meani is the mean of the measured Xlf values
of source i (Table S1, Electronic Supplementary Material),
and ci is the contribution of source i predicted with the respec-
tive model. This was done with the three mixing models for
the 35 sediment samples for which Xlf, XRF tracers and color
tracers were available. The calculated values were compared
to the measured values (Fig. 5). When the XRF tracers were
used, the measured and the calculated Xlf values were either
not correlated at all (SIMMR and PLSR mixing models) or
even negatively correlated (NNLS model) which is not plau-
sible at all (Fig. 5b). The correlations were better when the
color tracers were used (Fig. 5a), especially with the PLSR
model, indicating that the relation between the measured Xlf

values of the sediment samples and the source contributions
predicted with the mixing models were more plausible.
However, the systematic overestimation of calculated Xlf

values in Fig. 5a might be due to non-conservativeness (e.g.,
oxidation of magnetite present in the basaltic source leading to
lower measured magnetic susceptibility) or non-additivity of
the tracer or to a wrong estimation of the mean value for each
source. The latter is certainly possible given the high within
source variability. This is especially pronounced for the basal-
tic source where the natural variability of this parameter is the
same order of magnitude as the one resulting from the varia-
tions of concentration. A further factor is the large difference
(two orders of magnitude) between the measured values for
basalts and the other sources.

3.4 Errors of the fingerprinting approaches

Errors due to source heterogeneity, tracer conservativeness
and model structure were quantified as described in Sect. 2.6
and summed up in Table 2. For all three groups, the errors
varied strongly between tracer sets, mixing models, and
sources.

Source heterogeneity Comparing the error due to source
heterogeneity between the two tracer sets showed that the
one of the XRF tracers was higher than the one of the color
tracers with the exception of the basaltic sources. When the
sources were compared, it can be seen that source hetero-
geneity was generally most pronounced in the sedimentary
bare soils and smallest in the badland samples. The source
heterogeneity of the basaltic sources varied between the
mixing models. They could be unambiguously differenti-
ated from the other sources, but they were also a highly
variable source (Electronic Supplementary Material S1).
The PLSR mixing model seemed to be more sensitive to
this within-source variability than the other two models as
Δsh was high for both catchments and both tracer sets
(Table 2).

Tracer conservativeness The impact of immersion in the water
on the predicted source contributions was small (Δbgc < 5%)
with the exception of the contribution of basalt predicted with
the PLSR model (Table 2). Here, the difference in the predict-
ed source contribution between the sample immersed for
1 day and the original one was > 10%. A particular suscepti-
bility of the basaltic samples to changes in the source predic-
tion on immersion in the river was not confirmed by the other
models, however.

The effect of particle size selectivity on the predicted
source contributions was much more important than the
one of biogeochemical alterations upon immersion in the
river as Δps was much higher than Δbgc for all sources and
all mixing models (Table 2). The mixing models did not
agree whether one source was particularly susceptible to
the effect of particle size, but almost all values for Δps

were > 10% and could be up to > 35% for the basaltic
sources predicted with the PLSR mixing model. This was
also coherent with the need to including fine source mate-
rial (< 20 μm) in the range test. Thus, knowing that the
sediments are enriched in fine material, source contribu-
tions predicted for the sediment samples can be systemat-
ically over- or underestimated.

Model structure The error of the mixing models was quanti-
fied with the RMSE of the prediction of the artificial mixtures.
When the color tracers were used, all models perform well on
predicting the contributions of the three sources with RMSEP
< 10% for all sources and models (Table 2). The PLSR model
that was trained on two thirds of the artificial mixtures per-
formed especially well on the remaining third of the data
(RMSEP < 5% for all sources). Using the XRF tracers, the
SIMMRmodel failed to correctly predict the source contribu-
tions of the mixtures, notably the one of the sedimentary
sources.

Errors of the NNLS and PLSR model were also evalu-
ated by summing up the predicted source contributions
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and checking whether the sum was close to 100%. Using
the color tracers and the NNLS model, the sum of the
predicted contributions of none of the suspended sediment
samples and none of the artificial mixtures exceeded
110% or was below 90%. The PLSR model performed
slightly worse with 9 out of 145 suspended sediment sam-
ples summing up to 110–120%, but still, the majority of
the samples summed up to values very close to 100%.
Using the XRF tracers, both models performed equally
well in the Claduègne catchment and on the artificial
mixtures.

4 Discussion

4.1 Performance and errors of the various
fingerprinting approaches

Significant differences in predicting source contributions
were put forward in this study due to the choice of tracers
(Fig. 3) and models (Fig. 2). Such findings were already
reported in a few studies. Concerning the choice of a tracer
set, Martínez-Carreras et al. (2010a, 2010b) and Evrard
et al. (2013) found that alternative tracers (e.g., color

Table 2 Estimates of error (in % source contribution) of the three mixing models applied with the color and XRF tracers

NNLS SIMMR PLSR

Badland Sediment Basalt Badland Sediment Basalt Badland Sediment Basalt

Color tracers

Source heterogeneity Mean SDa 4.5 6.3 5.3 2.2 3.0 2.1 NA NA NA

Δsh
b 3.3 13.2 6.3 3.3 18.4 13.7 4.2 13.2 17.5

Particle size Δps
c 17.6 19.5 9.0 15.9 14.0 12.1 11.8 13.1 35.4

Biogeochemical alterations Δbgc
d 3.3 2.7 2.5 0.2 3.4 2.9 1.3 4.9 10.4

Verif. artificial mixtures RMSEP 8.1 7.8 3.9 5.7 6.0 4.7 3.7 4.7 1.8

XRF tracers

Source heterogeneity Mean SD 18.4 16.9 3.9 8.8 9.0 1.6 NA NA NA

Δsh 6.8 18.7 5.3 4.4 40.3 6.7 11.7 21.2 20.3

Verif. artificial mixtures RMSEP 7.6 4.8 5.5 25.7 29.3 5.1 1.0e) 1.3e) 0.3e)

aCalculated as described in Sect. 2.6.1
b See Sect. 2.6.1, Eq. (2)
c See Sect. 2.6.2, Eq. (3)
d See Sect. 2.6.3, Eq. (4)
e Because the PLSR model driven with XRF tracers was calibrated only on seven artificial mixtures, the dataset was not split into training and testing
data; the RMSE of leave-one-out cross-validation is given instead of the RMSE of the prediction
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tracers and diffuse reflectance infrared Fourier transform
spectroscopy) and conventional tracers did not agree on
the main sediment source in all cases. Pulley et al. (2015)
compared fingerprinting results obtained with magnetic
tracers, geochemical tracers, radionuclides, and combina-
tions of these groups and found very important variations in
mean contributions of three sources.

Concerning the choice of mixing model, the result that
the NNLS and the SIMMRmodel generally resembled each
other while the PLSR differed from the other two models is
not surprising as it has a fundamentally different model
setup. The NNLS and the SIMMR mixing models are
both based on a mass balance approach, seeking to solve
the same overdetermined system of linear equations while
the PLSR model is based on artificial mixtures. While some
studies already performed some comparisons between
mixing models , these la t ter were only done for
approaches similar to NNLS and SIMMR. Cooper et al.
(2014) and Nosrati et al. (2014) obtained considerable dif-
ferences in mean source contributions and in the widths of
confidence intervals using different mixing models.
Haddadchi et al. (2013) compared several variants of the
NNLS mixing model and observed high differences in the
source contributions predicted in two catchments. Thus, the
comparison done in this study, adding a third mixing model
with a different approach (i.e., artificial mixtures combined
to PLSR), suggests that the differences in the prediction of
source contributions due to the choice of a mixing model
might be more important than the differences reported in
the recent literature.

Among the various sources of errors considered in this
study, the ones due to source heterogeneity and particle size
were the most important ones. The high source heterogeneity
of the sedimentary sources was an expected result as they are
very heterogeneous both in terms of land use and soil type.
Moreover, some soils are poorly developed and might resem-
ble the badlands. Soils close to the basaltic plateau or the soils
on pebble deposit of basaltic component might contain basal-
tic elements. The lower source heterogeneity in the badland
samples was not surprising either, as the badlands could be
clearly distinguished from the other sources and resemble
each other. Δsh, i.e., the measure of error due to source het-
erogeneity introduced here, is an effective measure to quantify
this effect regardless of the mixing model and was found to be
significant.

The observation that particle size effects were more im-
portant than the ones of biogeochemical alterations is con-
sistent with the results obtained by Legout et al. (2013) who
also quantified both effects. Both effects were found to be
in the same order as the results obtained by these authors.
The error due to biogeochemical alteration during immer-
sion in the river was considered negligible when compared
to the other sources of error. The sufficiently conservative

behavior of color tracers and tracers from the infrared
spectrum upon immersion in another Mediterranean river
was also demonstrated by Legout et al. (2013) and
Poulenard et al. (2012). This is promising and justifies the
application of the sediment fingerprinting approach in our
study site. In larger catchments, however, where longer
storage durations in the river bed have to be assumed, this
source of error can be important (Vale 2016). The error of
the model structure that was quantified as the RMSE of the
prediction varied strongly between the models and the
sources.

It should be stressed that the different errors estimated in
this study were not completely independent from each other,
e.g., the failure of the SIMMR model driven with the XRF
tracers to reproduce the sedimentary sources was reflected in
Δsh and in the RMSEP that were both high for this model.
Thus, the different sources of error could not be summed up to
obtain a cumulative error. For the majority of the models and
sources the maximum estimated error was below 20%. For
some models and concerning cumulative errors, however, this
value could be exceeded.

Many sediment fingerprinting studies only give the mean
SD or other measures for dispersion in the obtained solutions
as estimations of the error. The results obtained here indicated
that this value was often rather small when compared to other
sources of error, so the overall error of the fingerprinting ap-
proach is likely to be underestimated. Moreover, it did not
include other sources of error than model structure and source
heterogeneity. Here, the most notable was the one due to par-
ticle size selectivity during erosion and sediment transport that
creates systematic errors (over- or underestimation of source
contributions).

These results also emphasized the importance to validate
mixing models with artificial mixtures, to further address par-
ticle size issues and to carefully assess different sources of
error. Another simple control procedure proposed by
Poulenard et al. (2012) and successfully applied by Legout
et al. (2013) and in this study is to not constrain the mixing
model to sum up to 100%. This allows detecting problems
associated to missing sources or uncertainty introduced during
erosion processes and sediment transport. In our study, this
test was reassuring as it suggested that all relevant sources
were sampled and that the errors discussed above did not lead
to the prediction of completely unrealistic source
contributions.

As the sensitivity of the mixing models and tracer sets to
the different types of error was very heterogeneous, using
only one tracer set and one mixing model could give faulty
results that are biased by a certain source of error. Thus, this
study highlights that there is a strong interest to compare
different tracer sets and models and to use multi-tracer/
multi-model ensemble predictions to obtain more robust
results.
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4.2 Interests of using multi-tracer model ensemble
predictions to detect main sources, within-
and between-event variability in a mesoscale
catchment

4.2.1 Main sources

In the Claduègne catchment all mixing models and tracer sets
agreed that the badlands were the main source of suspended
sediment sampled at the outlet (Fig. 6a). The contributions of
this source averaged over 11 events from 2011 to 2017 ranged
between 74 and 84% depending on the mixing model and the
tracer set used. They also agreed that the mean contributions
of the basaltic sources were small (1–8%), and the ones of the
sedimentary sources ranged between 12 and 29%.

In order to assess to which extent the fingerprinting ap-
proach designed at the mesoscale of the 42-km2 Claduègne
catchment would be able to work correctly in a smaller
subcatchment, we applied the six model/tracers combina-
tions to the suspended sediment collected at the outlet of
the Gazel (3 km2). As the Gazel subcatchment comprised
no sedimentary badland areas (Fig. 1), it was expected that
the sediment samples were constituted of a mixture of the
basaltic and the sedimentary samples. As can be seen in
Fig. 6b, this was not the case at first sight. Even though
the predicted mean source contributions of the sedimentary
badland source were smaller than in the Claduègne catch-
ment, the badlands remained the main predicted source for
five of the six ensemble predictions. This perturbing find-
ing was a good example of fingerprinting approaches giv-
ing results that apparently contradict to physical reasoning
without necessarily hinting at problems in the model set up.
Indeed, the sum of contributions was close to 100% for
these five ensemble predictions. Only one of them, the
XRF-PLSR, predicted mainly sedimentary sources with
sum of mean predicted source contributions exceeding
100% considerably. Out of the 20 tested suspended sedi-
ment samples the sum exceeded 110% for ten samples and
was higher than 140% for eight samples with a maximum
of 189%. The fact that one prediction differs significantly
from the others emphasized the need of multi-model and
multi-trace approaches as it can help to detect problems in
the overall fingerprinting approach.

In order to understand the perturbing finding of sedimen-
tary badlands being predicted in the suspended sediments of
the Gazel despite their absence in the catchment, the catch-
ment had to be regarded in detail. In some reaches, the river-
bed is deeply incised into the marly-calcareous rocks. The thin
erodible strata of marls could represent a highly connected
source of fine material. Even though this source is very small
in area, it might be an important sediment source. Thus, for the
Gazel catchment, new mixing models were set up with the
three sources (basaltic bare topsoils, sedimentary bare topsoils

and eroded riverbanks in marly-calcareous rocks). The meth-
odology used was identical to the one of the Claduègne and
the estimates of the error were in the same order as the ones
reported for the Claduègne catchment. Also, the comparison
of mixing models and tracer sets gave similar results.

The results of the mean source contributions predicted by
these new models are shown in Fig. 7. A first striking result is
that the new predicted proportions were not so different from
those predicted initially in Fig. 6b, considering that badland
contributions were replaced in similar proportions by marly
calcareous eroded riverbanks. This result is consistent with the
fact that the mean colorimetric signatures for eroded river-
banks (e.g., L* = 61.44, a* = 2.88, b* = 14.91) were almost
identical as those for sedimentary badlands shown in supple-
mentary material S1. This was also the case, albeit to a lesser
extent for XRF tracers (e.g., CaO = 23.08, Fe2O3 = 1.51). A
second aspect is that there were some discrepancies in the
prediction of source proportions (< 20%) between the tracer
sets. With the color tracers, the eroded riverbanks were pre-
dicted to be the main source of suspended sediments ranging
from 48 to 65%. With the XRF tracers, the mean contribution
of this source was predicted to be lower and similar to the
mean contribution of the sedimentary sources (49–51%).
The mean contribution of the basaltic sources also varied be-
tween the two tracer sets. With the color tracers, it ranged
between 21 and 30%, i.e., higher than the contribution of the
sedimentary samples, while it was much lower with the XRF
tracers (6–9%). These absolute differences of less than 20%
on average have to be considered in the interpretation of the
fingerprinting results, suggesting again the need to perform
ensemble predictions obtained from various tracer sets and
mixing model approaches.

Of course, the source class eroded riverbank on marly-
calcareous rock is also present in the Claduègne catchment.
As the fingerprinting properties of this class were very sim-
ilar to the ones of the sedimentary badlands, the two classes
could not be discriminated and the contributionof riverbanks
were included in the badland source but were assumed to be
of minor importance given their small extend compared to
the badland areas. The finding that the badlands were the
main contributing source for the Claduègne catchment
despite their small area was consistent with the results of
Brosinsky et al. (2014a) and Palazón et al. (2016). These
latter found that the badlands, which cover less than 1% of
the surface of the Barasona reservoir catchment in the
Spanish Pyrenees, were the main contributing source of
suspended sediments in the reservoir. Given the high erod-
ibility and good connectivity of this source, this result was
not surprising.The lowcontributionof the basaltic sources to
the suspended sediments of theCladuègne catchment despite
the large surface of this source, suggested either a low erod-
ibility of these soils or a lower connectivity of the erosion
zones to the river network.
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4.2.2 Within- and between-event variability

Figure 8 shows the mean predicted source contributions for 11
floods in the Claduègne catchment obtained with the different
mixing models. The contributions of all three sources varied
between events, but there was no apparent seasonal variability.
The between event variability seemed to bemuch higher when
the XRF tracers were used than with the color tracers. This
might, however, be an effect of sample size as much less
samples were analyzed with XRF, so within event variability
could not be evened out as much as with the color tracers.
Indeed, looking only at events for which the sample size
was more than five, led to results that were more consistent
between color and XRF tracers.

The event occurring on August 19, 2014, stood out for the
high predicted contribution of the sedimentary sources espe-
cially when the PLSR model or the XRF tracers were used.
This might have been an indicator of distinct rainfall charac-
teristics. It was indeed the only summer storm considered here
while the other events were occurring in autumn or spring.
However, this event was also the one that performed worst
in the test whether the sum of contributions was close to

100%, and it was already identified as an outlier in the accor-
dance of the mixing models (Fig. 2). This might point to
problems with the PLSR mixing model driven with color
tracers during this event.

The within-event variability was very different between
events. While for some events the source contributions were
very similar for all samples (May 11, 2017, in Fig. 9b or
October 23, 2013, in Fig. 4), they varied a lot between samples
for other events. Out of the 11 events in the Claduègne catch-
ment considered here, 5 had a very low within event variabil-
ity, while the remaining 6 had a higher within event variability
such as in Fig. 9a.

Differences in within-event variability of source contribu-
tions were also observed in other studies that conducted sedi-
ment fingerprinting at a high resolution. Brosinsky et al.
(2014a) found a high within-event variability for one out of
four events in a catchment in the Spanish Pyrenees
(445 km2). Legout et al. (2013) classified 23 rain events in a
mesoscale Mediterranean mountainous catchment (22 km2) ac-
cording to source contribution variability and found that more
than half of the events could be considered as highly variable.
Possible factors that influence the time of concentration of the
eroded sediments to arrive at the outlet and thus thewithin event
variability are the spatial distribution of the sources within the
catchment and characteristics of the rain event. The latter in-
clude the intensity and duration of the rain event as well as
rainfall variability (highly located vs. homogeneous rain), the
displacement of the rain cells or fronts over the catchment.
Variability in source contribution within an event may therefore
act as a tracer for rainfall–runoff processes in the catchment. In
this way, sediment fingerprinting at a high resolution could help
to understand hydrosedimentary processes in the critical zone.

Within- and between-event variability also emphasized the
importance to consider sediment samples taken at a high res-
olution or integrate samples when mean source contributions
from a catchment are to be determined. When few instanta-
neous samples are considered the results might be very sensi-
tive to the time of sampling and Btrue^ sources contributions
might be considerably over- or underestimated.

5 Conclusions

The alternative sediment fingerprinting techniques tested in
this study, i.e., based on spectrocolorimetry and XRF mea-
surements, could discriminate between three sources of
suspended sediment (sedimentary badlands, bare topsoils on
basaltic geology, and bare topsoils on sedimentary geology).
We investigated the different sources of error in sediment fin-
gerprinting studies and examined the differences in predicted
source contributions when different tracer sets or different
mixing models were applied. We showed that the main source
in the Mediterranean headwater catchment of the Claduègne
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(42 km2) was sedimentary badlands. Despite their low propor-
tion of the catchments surface (< 1%), whatever the mixing
model and the tracer set used, marly badlands contributed on
average more than 70% to the suspended sediments sampled
at the outlet.

In this study site which has a contrasted geology both low
cost fingerprinting methods, i.e., spectrocolorimetry and XRF,
were valid tools to conduct sediment fingerprinting at a high
temporal resolution. Nonetheless, considerable uncertainties

remained. These were mainly due to particle size selectivity,
source heterogeneity, and choice of fingerprinting properties.
During erosion and sediment transport, the sediments were
enriched in smaller particle size fractions which were shown
to have a different fingerprinting signature than coarser parti-
cles. This challenges the assumption of conservative behavior
of the tracers and led to errors that ranged between 9 and 35%
depending on the source and the mixing model. Source het-
erogeneity was another major source of error which might
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lead to a wrong characterization of the source’s fingerprints
and thus to false source predictions. It was quantified here as
the error of predicted source contributions of the soil samples,
ranging from < 5 to 18%.

Our results show that the choice of the tracer set was more
important than the choice of the mixing model as different
results were obtained using color or XRF tracers. This is a
drawback of the two low-cost methods tested in this study as
the two tracer sets do not give unambiguous results. Notably,
the mean source contribution of the basaltic soils was predict-
ed differently with the two methods and the correlation be-
tween predictions obtained with the two tracer sets was poor.
The use of a third low-cost tracer set (i.e., magnetic suscepti-
bility) suggests that the color tracer sets led to the more plau-
sible results. Because of the small contribution of the basaltic
source (1 to 8%) and its magnetic variability, the magnetic
susceptibility measurements were not able to quantitatively
predict the sources. These results question not at all the sig-
nificance of the magnetic susceptibility in terms of sediments
sources. In the present case of study, this tracer should there-
fore be considered using another approach and further exper-
iments such as the study of laboratory magnetizations are
needed. Thus, a major result of this study was that there is a
strong need to use multiple tracer sets to justify the results of
suspended sediment fingerprinting studies and to obtain reli-
able estimates of source contributions with multi-tracer en-
semble predictions. Another reason for the need of multi-trac-
er/multi-model ensemble predictions is that the sensitivity of
the three mixing models and the two tracer sets to several
sources of error varied a lot. Thus, the results obtained when
only one tracer set and one mixing model are used might be
biased considerably by one kind of error. On the other hand,
this can be detected and mitigated by applying various mixing
models run with different tracer sets.

Another main finding of the study in the mesoscale catch-
ment was the considerable within- and between-event vari-
ability. This highlighted the importance of high-resolution
sampling and fingerprinting of suspended sediments to obtain
reliable estimates of the main source contributions. It is also
important for process understanding as high-resolution data
on sediment sources has a high potential for a more distributed
picture of rainfall–runoff–erosion–sediment transport process-
es in the catchment because the sediments act as tracers of the
governing hydrosedimentary processes in the catchment.
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