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Abstract
Purpose Biological nitrogen fixation (BNF) plays an important role in nitrogen cycling by transferring atmospheric dinitrogen to
the soil. BNF is performed by symbiotic and asymbiotic nitrogen-fixing microorganisms. However, the abundance, activity, and
community structure of diazotrophs under different nitrogen fertilizer application rates and how root exudates influence
diazotrophs remain unclear.
Materials and methods 15N-N2 and 13C-CO2 labeling, DNA-based stable isotope probing (SIP), and molecular biological
techniques were used in this study. The abundance, activity, and structure of symbiotic and asymbiotic diazotrophs under
different nitrogen fertilizer applications in paddy soil were investigated.
Results and discussion We found that the nitrogen fixation capacity in milk vetch (Astragalus sinicus L.) and nifH gene
abundance in the root nodules were significantly higher in the low-nitrogen treatment than in the control (zero) and high-
nitrogen treatments. Nitrogen-fixing bacteria were abundant in the soils with a high biodiversity. Soil nifH gene sequences
were dominated by α-, β-, and δ-proteobacteria, as well as by Cyanobacteria. The relative abundance of α-proteobacteria
was lower, and the relative abundance of Cyanobacteria was higher under high nitrogen. Incubation of soil with 13CO2 and
subsequent DNA-SIP analysis demonstrated that OTU65 from α-proteobacteria was relatively more abundant in heavy
fractions of the 13C-labeled soils than that in the unlabeled soils, indicating that α-proteobacteria may prefer
rhizodeposition carbon to other organic carbon. However, OTU24 and OTU73 from δ-proteobacteria had relatively high
abundances in light fractions both in the 13C-labeled and unlabeled samples, indicating that δ-proteobacteria may prefer
other soil organic carbon to rhizodeposition carbon.
Conclusions The results suggested that soil N availability and rhizodeposition strongly modified the microbial communities of
nitrogen-fixing bacteria. Moderate nitrogen application increased the symbiotic biological N fixing activity in the Astragalus
sinicus L. rhizosphere. The BNF activity in the legume-rhizobia system is regulated by the exchange of organic C and N nutrient
between the host plant and N-fixing bacteria.
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1 Introduction

Biological nitrogen fixation (BNF) is the enzymatic reduc-
tion of atmospheric dinitrogen to ammonium, which is an
important part of the nitrogen cycle that contributes to the
soil nitrogen pool. BNF-derived N plays an important role
in substituting for chemical N fertilizer use in agricultural
systems (Galloway et al. 2004). The amount of N fixed by
BNF is estimated to be 2 × 1011 kg N year−1, which ac-
counts for 75% of the N demand for plant growth in the
world (FAO 1995).

Growing green manure legumes and recycling their bio-
mass or harvesting residues and adding them to soil gen-
erally improve soil fertility, increase the yield of the sub-
sequent rice crop, and reduce the requirement for chemical
N fertilizer (Ladha and Reddy 2003; Choudhury and
Kennedy 2004). The percentage of N derived from the air
(% Ndfa) for green manure legumes is generally more than
80%, and the amount of N fixed by these legumes is as
high as 450 kg N ha−1 (Ladha and Reddy 2003). Zhu et al.
(2014) observed that approximately 82–88% of Astragalus
sinicus L. N was released within the first 28 days after
incorporation, and the released N could meet the N demand
for rice plant growth. Many studies have shown that the
amount of N provided by green manure alone is equivalent
to 30–108% of that provided by inorganic fertilizer (Asagi
and Ueno 2009). In addition to symbiotic nitrogen-fixing
microorganisms, free-living soil diazotrophs can also con-
tribute N nutrient, especially in paddy fields, which pro-
vide an optimal environment for biological nitrogen fixa-
tion (Roger and Ladha 1992).

The rate of biological nitrogen fixation is mainly depen-
dent on soil nitrogen availability. Soil nitrogen deficiency
can inhibit the synthesis of N-fixing enzymes, and high N
fertilizer input decreases biological N fixation (Salvagiotti
et al. 2008). Compared to no fertilizer, nodule number and
soybean weight were higher when N was applied at low
levels but lower in high N treatments (Wahab and AbdAlla
1996). Barbulova et al. (2007) observed inhibition of the
symbiotic performance of rhizobia and nitrogen fixation
under high N supply. Aeroponic culture experiments sug-
gested that a high ammonium concentration (> 5 mM)
inhibited nodulation, whereas a low concentration (0.4 mM)
stimulated nodulation in an Acacia species (Weber et al.
2007). The abundance of nitrogen-fixing bacteria and N2-fix-
ation activity is suppressed when nitrogen is abundant in the
environment (Fuentes-Ramirez et al. 1999; Wang et al. 2018).
Studies have shown that N fertilizer application significantly
decreases the number of culturable diazotrophic bacteria in
Indian and Brazilian sugarcanes (Muthukumarasamy et al.
1999; Junior et al. 2000).

Energy and substrate availability are also important fac-
tors for biological N fixation. Except for some asymbiotic

nitrogen-fixing microorganisms that can derive their ener-
gy from photosynthesis and chemoautotrophy, all hetero-
trophic diazotrophs use organic material as an energy
source (Halm et al. 2012). Previous studies have found that
nitrogen-fixing efficiency is positively correlated to the
available carbon content in the forest soil (Rosch and
Bothe 2009). Plant straw application stimulates soil bio-
logical nitrogen fixation, and the application of organic
material combined with inorganic fertilizer significantly
improves soil N fixation efficiency compared to inorganic
fertilizer alone (Liao et al. 2018).

Mutualistic cooperation between plants and microorganisms
is ubiquitous, especially in symbiotic systems. Generally,
leguminous plants provide C substrates to rhizobia and
rhizobia supply some N nutrient to the plants. Mutual
constraints can also occur in some symbiotic systems.
Kiers et al. (2003) found that a decreased O2 supply from
soybean is a possible mechanism to punish Bcheating^
rhizobia. In soil-plant systems, root exudates are regarded
as the main driver of soil microbial communities.
However, the effect of root exudates on symbiotic nitrogen
fixation is still unclear. Recently, 13C-CO2 labeling com-
bined with DNA stable isotope probing has been shown to
be an effective technique to monitor C flux and plant-soil
interactions.

Milk vetch (Astragalus sinicus L.) is the most common
green manure for paddy soil and is grown prior to rice
transplantation. In this study, 13C-CO2 and 15N-N2 label-
ings were conducted to study the response of symbiotic
and asymbiotic nitrogen-fixing microorganisms to nitro-
gen fertilizer application. The main objectives were as
follows: (1) determine whether nitrogen application af-
fects biological N fixation and the diazotrophic bacterial
community and (2) determine how rhizodeposition affects
diazotrophic bacteria.

2 Materials and methods

2.1 Soil and plant material

Paddy soil was collected from the rice field in Taihu region
(30°33′N, 116°20′E), Anhui Province, China, in August
2015. The cropping system was rice-green manure rota-
tion. Twenty soil cores (10 cm diameter × 15 cm length)
were taken from the plow layer. The soil samples were
placed on ice and transported to the lab. Visible roots and
stones in the soil were removed, and the soil was thorough-
ly mixed and sieved through a 2.0-mm mesh. The soil
samples were separated into two portions. The first portion
was air-dried for chemical analysis except that mineral-N
was immediately analyzed. The second portion was stored
at 4 °C for the pot experiment. The soil texture was sandy
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loam, soil pH was 6.2 (1:5 w/v, soil/water), and total C and
total N contents were 10.9 g kg−1 and 0.81 g kg−1,
respectively.

The cultivar of milk vetch (Astragalus sinicus L.) used
in this study was Yijiangzi. The seeds were sterilized in
10% H2O2 for 10 min and then washed exhaustively with
sterile water. A. sinicus seeds were set at 37 °C for
pregermination in the dark.

2.2 13C-CO2 labeling experiment

Three treatments were conducted with three levels of ni-
trogen fertilizer: CK (without nitrogen), NL (nitrogen at
40 mg kg−1), and NH (nitrogen at 100 mg kg−1). Each
pot (height 12 cm, diameter 6 cm) with 400 g soil (dry
weight) was prepared to plant A. sinicus. All treatments
were done in triplicate. The nitrogen fertilizer used in this
experiment was urea. Monopotassium phosphate was used
as P2O5 (120 mg kg−1 dry soil) and potassium as K2O
(80 mg kg−1 dry soil). Similar gemmiparous seeds were
chosen to plant in the pots, and 10 seeds were cultivated
in each pot. A. sinicus was grown in a plant growth cham-
ber, with an average light intensity of 295 UML, a 12.5-h
photoperiod, a relative humidity of 60%, and a temperature
of 24 °C in the day and 18 °C at night. The incubation
conditions were kept consistent during the entire incuba-
tion period.

The 13C-CO2 continuous labeling experiment was car-
ried out after 30 days of A. sinicus growth. The pots were
incubated in two chambers with normal CO2 or 13C-CO2

(99.9 atom %). The total CO2 content was 350 mL m−3, the
flow velocity of air without CO2 was 10 L min−1, and the
flow velocity of CO2 was 3.8 mL min−1. Destructive sam-
pling was conducted before labeling (30 days) and after
30-day labeling (60 days) from the 13C chamber and unla-
beled chamber. The root samples were washed with deion-
ized water, and the nodules were picked using tweezers and
quickly frozen in liquid nitrogen and stored at − 80 °C. The
shoots and roots were dried to measure the dry weight and
nitrogen content. The soil used for DNA extraction was
freeze-dried immediately after sampling, and soil samples
for other chemical analyses were stored at 4 °C until
analysis.

2.3 15N-N2 labeling experiment

A 15N-N2 labeling experiment was conducted after 53-day
growth using the pulse labeling method, and the treatments
were the same as described above in Section 2.2. The
plants were grown in a sealed container (0.086 m3), and
10%-labeled 15N-N2 was injected to the container. Another
set of plants were grown with ambient air as controls. The

plants were labeled for 10 h each day. When 7-day labeling
was complete, the nodules were freeze-dried, the abun-
dance of 15N was measured, and the shoots and roots were
dried to measure the 15N abundance. Soil with three nitro-
gen levels without plants was also labeled with 15N-N2 as a
control, and the soil 15N abundance was measured after
7 days of labeling. 15N abundance was determined by a
Delta V Advantage isotope ratio mass spectrometer
(Thermo Finnigan, Germany).

2.4 Soil and nodule DNA extraction

Soil DNA was extracted using the FastDNA spin kit for
soil (MP Biomedicals, USA) following the manufacturer’s
instructions. Nodule DNA was extracted using CTAB ac-
cording to the method of Kim et al. (1999). A NanoDrop
spectrophotometer (ND-1000, Thermo Fisher Scientific,
USA) was applied to assess DNA concentration and qual-
ity. All DNA samples were stored at − 80 °C for subse-
quent use.

2.5 Soil and nodule nifH gene abundance
determination

The abundance of nifH was assessed in triplicate using a
real-time quantitative PCR (qPCR) detection system
(LightCycler 480, Roche, USA), with the primer sets
PloF (5′-TGCGAYCCSAARGCBGACTC-3′) and PloR
(5′-ATSGCCATCATYTCRCCGGA-3′) (Poly et al. 2001).
Each reaction mixture contained 10 μL SYBR 2 Premix Ex
Taq (Takara Shuzo, Shiga, Japan), 0.25 μM of each primer,
and 2 μL of 10-fold diluted template DNA and made up to
20 μL with ddH2O. All standard curves were generated
from 10-fold stepwise dilutions of plasmid DNA with the
correct target genes. Negative controls were included,
using water to replace the template DNA, in each plate.
The quantitative amplification conditions were 95 °C for
4 min, 40 cycles of 95 °C for 45 s, 55 °C for 30 s, and
72 °C for 40 s. Quantitative PCR efficiencies between 90%
and 110% were employed in this study.

2.6 DNA SIP fractionation

Both 13C-labeled and unlabeled soil DNA were used for
gradient fractionation. The method was the same as de-
scribed by Neufeld et al. (2007). Approximately 2-μg
DNA was mixed with the CsCl solution to achieve the
initial buoyant density gradient of 1.691 g mL−1 according
to the refractive index (1.3999) measured by an AR200
hand-held refractometer (Reichert, Inc., Buffalo, NY).
The speed of the ultracentrifugation was 45,000 rpm at
20 °C for 40 h (Beckman Coulter, German). LSP01-1A
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single-channel syringe pumps (Longer Precision Pump
Co., Ltd., China) were used to fractionate the DNA sam-
ples; each sample was evenly separated to 16 layers. The
collected DNA was purified and dissolved in 30 μL of
sterile water. The copy number of the nifH gene in the
fractionated DNA was measured by qPCR as described in
Section 2.5.

2.7 Cloning and sequencing analyses

The whole soil sample DNA and the fractionated DNA
(including 13C-labeled and unlabeled fractions) were am-
plified for cloning and sequencing. The obtained PCR
products were gel-purified using the universal DNA puri-
fication kit (Tiangen Biotech, Beijing, China), and the pu-
rified products were ligated into pMD19-T vectors. For
each of the three replicates, 80 positive clones were ran-
domly selected and sequenced (240 clones for each treat-
ment) (Shanghai Majorbio Bio-Pharm Technology Co.,
Shanghai, China). Chromas LITE software (version 2.01,
Technelysium Pty Ltd., Australia) was used to check the se-
quence quality. All sequences were analyzed by the BLAST
program in the NCBI GenBank database. Reference se-
quences from the GenBank database and the respective
OTUs (98% similarity) sequences were selected to construct
the phylogenetic tree (Long et al. 2018).

The gene sequences retrieved in this study were uploaded
to the National Center for Biotechnology Information. The
access numbers of the whole soil samples are KY011303-
KY011835. The accession numbers of the unlabeled soils
are KY046404-KY046914 and KY046916-KY047104, and
the accession numbers of the 13C-labeled soils are
KY121112-KY121811.

2.8 Statistical analysis

Quantitative PCR data were log-transformed before further
analysis. To compare the abundances of nifH genes among
all treatments, data were analyzed using ANOVA with
SPSS 19.0 software (IBM, USA). The nucleic acid se-
quences were translated to protein sequences with MEGA
software (version 6.0), and the operational taxonomic units
(OTUs) of the protein sequences were classified with 95%
similarity by DNAMAN (version 6.0). The representatives
of each OTU and the reference sequences were aligned
using the Clustal W program with MEGA software, and
the phylogenetic tree was constructed using the neighbor-
joining method. The confidence values of the tree nodes
were estimated by a bootstrap analysis with 1000 repli-
cates. Heat map plotting was performed in R 3.5.0 with
the pheatmap package.

3 Results

3.1 Symbiotic nitrogen-fixing activity
and microorganisms

Nitrogen fertilizer had a significant influence on plant biomass
as well as the amount of total and labeled N. The shoot and
root dry weights with the NH treatment were 2.18 and 0.86 g,
respectively, which were much higher than those with the CK
and NL treatments. The total N amounts in the shoots and
roots with the NH treatment were 40.4% and 61.1% higher
than CK, respectively, and 28.3% and 14.0% higher than the
NL treatment, respectively (Table 1). However, the dry weight
and total N of nodules with the NL treatment were the highest
among the three treatments, and there was no significant dif-
ference between CK and NH treatments with respect to nodule
dry weight and N content. The labeled N content of the shoots,
roots, and nodules was significantly higher in the NL-treated
plants, and there was no significant difference between the CK
and NH treatments. Although the dry weight and total N con-
tent of nodules were much lower than the root, the labeled N
content in these two parts was similar. The amount of labeled
15N in the soil was 0.14 ± 0.06, 0.11 ± 0.04, and 0.09 ±
0.04 mg in the CK, NL, and NH treatments, respectively,
but there was no significant difference among the three
treatments.

The abundance of the nifH gene in the nodule was 3.7 ×
1010 copies g−1 (nodule dry weight) in plants under the CK
treatment after 30 days of growth, and there was no significant
difference between the two N fertilizer treatments. However,
the nifH gene abundance in the NL treatment was 6.0 ×
1010 copies g−1 dry nodule after 60 days of growth, which
was significantly higher than that in the CK and NH treat-
ments (Fig. 1).

A phylogenetic tree of the nifH gene of the nodule samples
showed that the symbiotic nitrogen-fixing bacteria only in-
cluded two gene types. More than 99% of the nifH genes
belonged to Mesorhizobium, and less than 1% nifH genes
belonged to Bradyrhizobium. All the Bradyrhizobium species
were from the NH treatment.

3.2 Asymbiotic nitrogen-fixing activity
and microorganisms

Compared to symbiotic nitrogen-fixing bacteria, the amount
of nitrogen fixation by asymbiotic microorganisms was much
lower. In the 15N-N2-labeled soil without plants, the labeled N
content was only 0.05 ± 0.01 mg, which accounted for 5.1%
of the labeled N fixed by symbiotic nitrogen-fixing organisms.
The abundances of the nifH gene in these soils were 1.3 × 107

and 1.2 × 107 copies g−1 dry soil in the CK and NL treatments
after 30 days of growth, whereas the nifH gene abundance in
the NH treatment was much lower, at only 0.9 ×
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107 copies g−1 dry soil. The nifH gene abundance in soils
significantly decreased to 6.9 to 8.8 × 106 copies g−1 dry soil
after 60 days of growth among the three treatments (Fig. 2).
These results suggested that the abundance of the nifH gene in
the soil decreased with the application of N fertilizer.

Nitrogen-fixing bacteria were abundant in the soils with a
high species biodiversity. In total, 107 OTUs were identified
at 95% similarity using DNAMAN software. The nitrogen-
fixing bacteria were mainly distributed among α-, β-, and δ-
proteobacteria, as well as Cyanobacteria, which occupied
more than 98% of the total sequences (Fig. 3). Compared to
the CK treatment, N fertilizer application increased the rela-
tive abundance of δ-proteobacteria, which accounted for
25.0%, 27.2%, and 29.0% of CK, NL, and NH treatments,
respectively. However, high-level N application significantly
decreased the relative abundance of α-proteobacteria. The
relative abundances of Cyanobacteria were 16.5%, 16.1%,
and 21.3% in the CK, NL, and NH treatments, respectively,
indicating that high nitrogen conditions favor Cyanobacteria
growth. More specifically, the relative abundance of

Burkholderiales was much higher with the CK treatment than
that with the N application treatments, whereas the relative
abundance of Desulfovibrionales was higher with N addition.

Both labeled and unlabeled soil DNA samples were distrib-
uted in 16 layers, and the buoyant density ranged from 1.578
to 1.745 g mL−1. A slight shift in the buoyant density was
observed for the heavy layers, which indicated that 13C was
incorporated into diazotrophic organism genomes. The abun-
dances of the nifH gene in the 16 fractions were determined by
qPCR, and the peak value was in layer 6 (Fig. 4). The nifH
gene diversity was analyzed, comparing the lighter fractions
(7–9 layers) and the heavy fractions (4–6 layers). All nifH
sequences were translated to protein sequences and clustered
at 95% similarity. As with the whole soil samples, α-, β-, δ-
proteobacteria, and Cyanobacteria were the four most abun-
dant phyla in both the light and heavy fractions. γ-
proteobacteria, Actinobacteria, and Verrucomicrobia had
low relative abundances, and each occupied less than 1.0%
of the total sequences. The relative abundances of some
genotypes/OTUs in the light and heavy fractions were shifted

Table 1 Plant dry weight, total,
and labeled N amount of
Astragalus sinicus L. after the
15N-N2 labeling

Item Treatments Shoot Root Nodule

Dry weight (g) CK 1.71 ± 0.10b 0.55 ± 0.18c 0.094 ± 0.001ab

NL 2.05 ± 0.34a 0.64 ± 0.09b 0.097 ± 0.002a

NH 2.18 ± 0.13a 0.86 ± 0.11a 0.092 ± 0.001b

CK 69.0 ± 6.0b 16.2 ± 2.1b 4.99 ± 0.2a

Total N amount (mg) NL 75.5 ± 5.1b 22.9 ± 2.4a 5.34 ± 0.2a

NH 96.9 ± 2.2a 26.1 ± 1.0a 4.97 ± 0.1a

CK 0.59 ± 0.03b 0.13 ± 0.01b 0.14 ± 0.01b

Labeled N amount (mg) NL 0.67 ± 0.05a 0.18 ± 0.01a 0.20 ± 0.01a

NH 0.57 ± 0.02b 0.15 ± 0.02b 0.14 ± 0.01b

Different letters indicate a significant difference at P < 0.05
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Fig. 1 Abundance of nifH gene in nodules under three different N
fertilizer application rates. Error bars denote standard error of the mean.
Different letters indicate a significant difference at P < 0.05
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Fig. 2 Abundance of the nifH gene in soil under three different N
fertilizer application rates. Error bars denote standard error of the mean.
Different letters indicate a significant difference at P < 0.05
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after 13C labeling. The heat map showed that OTU65, which
belongs to α-proteobacteria, had a higher relative abundance
in heavy fractions of the 13C-labeled soils than the unlabeled
soils, which indicated that α-proteobacteria may prefer
rhizodeposition carbon to other organic carbon. However,
OTU24 and OTU73, which belong to the δ-proteobacteria,
had relatively high abundances in the light fractions both in
the 13C-labeled and unlabeled samples, which indicated that δ-
proteobacteria may prefer other soil organic carbon to
rhizodeposition carbon (Fig. 5).

4 Discussion

Nitrogen fertilizer application significantly altered symbiotic
nitrogen fixation activity and N-fixing bacterial abundance in
nodules. The 15N-N2 labeling experiment showed that the
BNF activity in the moderate N application treatment was
higher than that in the CK and the high N input treatment
(NH). In the legume-rhizobia system, there is a symbiotic
relationship of mutual cooperation and restraint between the
host plant and N-fixing bacteria. The host legume can impose
stimulation or sanction on rhizobia by increasing or decreas-
ing the supply of a required resource for growth (Denison
2000; Kiers et al. 2003). Soil N content is one of the key
constraints for this symbiotic system (Thrall et al. 2011).
The moderate N application stimulated plant growth and in-
creased the carbon and energy supply for nitrogen-fixing bac-
teria, which contributed to the BNF activity, because the N-
fixing process is very energy-consuming (West et al. 2002;
Kiers et al. 2003). When soil nitrogen availability is abundant,
the host plant is more likely to use soil N directly rather than
investing in symbiotic nitrogen fixation (Simms and Taylor
2002; Perez-Fernandez and Lamont 2016). Consequently, the
BNF declines with increasing soil N availability, and high

levels of N fertilizer can result in a decrease in nodulation rate
and N-fixing efficiency (Caetanoanolles and Gresshoff 1991;
Arias et al. 1999; Thomas et al. 2000). The symbiotic BNF
activity in the legume-rhizobia system is regulated by the ex-
change of organic C and N nutrient between the host plant and
N-fixing bacteria.

Like the BNF activity, the nifH gene abundance in nodules
of the NL-treated plants was significantly higher than with the
CK and NH treatments. However, no significant effect was
found for the nifH gene types. The correlation between the N-
fixing activities and nifH gene abundance suggests that the N-
fixing efficiency of rhizobia is regulated by microbial abun-
dance rather than microbial diversity. The increased substrate
and energy supply from the legume to the rhizobia promoted
the growth and reproduction of N-fixing bacteria. Not only
microbial community abundance but also community diversi-
ty can be affected by substrate availability (Yao et al. 2011).
The similar microbial genotype across the three treatments
was consistent with the narrow host specificity of rhizobia
(Yang et al. 2010). Some signaling molecules, including sur-
face polysaccharides and secreted proteins, are regarded as the
possible mechanisms for host specificity (Fauvart and
Michiels 2008). In our study, the growth period of milk vetch
was only 60 days, so this cannot be ruled out as a reason for
the similar rhizobia genotypes.

The qPCR results suggested that nitrogen fertilization
resulted in a decrease in soil nifH gene abundance, as pre-
viously reported for several agricultural soils (Coelho et al.
2009; Lindsay et al. 2010). Field experiments have also
shown this suppressive effect of N fertilization and a sig-
nificant negative relationship between inorganic N and
nifH gene abundance (Lindsay et al. 2010; Silva et al.
2013). The nifH gene abundance in the N-related treat-
ments was 3 to 4 times lower than that in the control treat-
ment in long-term field experiments (Wang et al. 2017;

CK NL NH
)

%(
ecnadnuba

evitale
R

Bacteroidetes
Actinobacteria
Verrucomicrobia
γ-proteobacteria
Firmicutes
Cyanobacteria
β-proteobacteria
δ-proteobacteria
α-proteobacteria

Fig. 3 Soil diazotrophic
community compositions at the
phylum level under three different
N fertilizer application rates
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Wang et al. 2018). Soil acidification and high inorganic N
content were considered as two major impact factors (Feng
et al. 2018). Asymbiotic N-fixing bacteria usually prefer-
entially use soil available N instead of fixing it (Barron
et al. 2009), due to the high energy demand of the latter

process. However, some studies have reported the converse
results of higher nifH gene abundance with N fertilization
(Mergel et al. 2001; Liao et al. 2018). This may be due to
the indirect effects of the N fertilizer on N-fixing bacteria
because soil N availability can regulate the soil microbial
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community, plant growth, and root exudation patterns
(Reis et al. 2000; Meng et al. 2012; Liao et al. 2018).

According to the soil nifH clone library, nifH genes are
mainly distributed into α-, β-, and δ-proteobacteria, and
Cyanobacteria. The results were consistent with previous
studies (Ogilvie et al. 2008; Liao et al. 2018), which found
a similar microbial distribution. Because different
diazotrophic bacteria species have different sensitivities
to N levels available in the soil (Harke et al. 2016), N
fertilizer input altered the relative abundances of various
diazotrophic bacteria. Wang et al. (2018) found that N in-
put significantly increased the relative abundances of α-
proteobacteria and Cyanobacteria, but decreased the rela-
tive abundance of δ-proteobacteria. The higher nifH gene

abundance in the Cyanobacteria phylum in this study may
suggest that photoautotrophic species require more nitro-
gen than other diazotrophic bacteria.

Desulfovibrio is an anaerobic sulfate-reducing bacterium.
The high relative abundance of Desulfovibrionales indicated
that the long-term flooding of the paddy field provides a suit-
able habitat for it. Soil N cycling is generally coupled with
sulfur and iron cycling, and high N availability can increase
the iron- or sulfur-related genes (Bao et al. 2014; Minamisawa
et al. 2016). Here, we found that the relative abundance of
Desulfovibrionales increased with N fertilizer input. This re-
sult was consistent with those of Sim et al. (2012), who re-
ported that N limitation inhibited the growth of sulfate-
reducing bacteria.

Fig. 5 Phylogenetic tree of soil
nifH gene sequences retrieved
from selected density fractions of
the 13C-labeled and 12C-
unlabeled treatments (protein
sequences, 95% similarity). Their
relative abundances are shown as
a heat map distribution. The heat
map colors represent the relative
percentages of the OTU in
different samples
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The genus Burkholderia represents a versatile group of
organisms (Yabuuchi et al. 1992; Salles et al. 2006) and
has been exploited for various purposes including N-fixa-
tion, plant growth promotion, and biological control
(Coenye and Vandamme 2003). In this study, the relative
abundance of Burkholderiales decreased with N fertilizer
application based on the nifH gene analysis. The results
suggest that the N-fixing function of Burkholderiales can
be inhibited by high soil N (Kumar et al. 2018). The de-
crease in the relative abundance of Burkholderiales may be
due to the direct inhibition by inorganic N of nitrogenase
activity or through indirect effects on other microbial
groups (Yoch and Whiting 1986).

The rhizosphere is the major soil ecological environment
for plant-microorganism interactions (Meena et al. 2017; Li
et al. 2018). Root exudates provide nutrients and energy
sources to soil microorganisms (Bertin et al. 2003; Landi
et al. 2006; Wang et al. 2016). The rhizospheric microbial
communities are deeply affected by root exudates. On the
other hand, rhizospheric microorganisms are the drivers of
nutrient turnover and are beneficial for plant growth (Landi
et al. 2006;Meena et al. 2017). Because root exudates are only
a minor component of the total organic carbon sources in the
soil (Nguyen 2003; Yao et al. 2012), understanding the effect
of rhizodeposition on the rhizosphere microbial community
should include consideration of other soil carbon pools
(Dennis et al. 2010). 13C steady-state labeling is an efficient
approach to understand the relative importance of
rhizodeposition in determining microbial community diversi-
ty (Paterson et al. 2007; Li et al. 2016). Several studies (Wang
et al. 2016; Liao et al. 2018) have confirmed that fungi and
gram-negative bacteria are the main consumers of root exu-
dates based on phospholipid fatty acid analysis. In this study,
the soil microbial community was not only affected by N
fertilizer but also root exudates. Continuous labeling results
showed that α-proteobacteria were the main microbes incor-
porating native soil organic carbon. The findings suggested
that asymbiotic nitrogen-fixing bacterial community diversity
is strongly modified by rhizodeposition.

5 Conclusions

The results of this study demonstrated that low-nitrogen ap-
plication increases the dry weight, nitrogen-fixation, and the
abundance of the nifH gene in the root nodules of milk vetch
(Astragalus sinicus L.). Additionally, the asymbiotic nitrogen-
fixing bacterial community diversity is strongly influenced by
root exudates and N fertilizer input. Further work is required
to confirm the findings using field experiments and to under-
stand the subtle changes in N-fixing bacterial species in the
legume-rhizobia system.
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