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Abstract
Purpose It is currently very difficult to accurately evaluate the soil contamination by heavy metals (HMs) attributed to the
unavailability of local geochemical background values (LGBVs). This studywas performed to establish the geochemical baseline
concentrations (GBCs), as an alternative for LGBVs to use for HM pollution assessment of agricultural soil.
Materials and methods GBCs of the HMs selected were determined using the cumulative frequency distribution curves
(CFDCs). GBCs were then used to pursue the HM soil pollution and associated ecological risks, via calculation of geo-
accumulation indices (Igeo), pollution load indices (PLI), as well as potential ecological risk indices (RI).
Results and discussion As to the soil investigated, the GBCs of Ni, Zn, Pb, and Cr were 29.34 mg/kg, 45.54 mg/kg, 21.81 mg/kg,
and 33.65 mg/kg, respectively. Igeo values ranged from − 4.58 to 0.33 (Ni), from − 2.46 to 2.14 (Zn), from − 5.32 to 0.77 (Pb), and
from − 3.83 to 0.96 (Cr), suggesting that the region was not polluted by these HMs. PLI values ranged from 0.08 to 2.45 with an
average of 1.02. 49.6% of soil samples had the PLI values > 1.0, indicating that some of the soil may bemoderately contaminated
by HMs. The RI values of selected HMs were < 150, indicating a low potential ecological risk. Principal component analysis
(PCA) implied Zn, Pb, and Cr were mainly sourced from parent (geological) materials, as well as agricultural activities,
atmospheric deposition, etc., depending on the element.
Conclusions The present study illustrates the necessity of the characterization of GBCs at a regional scale, allowing for more
accurate assessment of soil contamination by HMs. We hope that this will eventually lead to further development of better
environmental management practices for agricultural soil polluted by HMs.

Keywords Agricultural soil . Ecological risk . Geochemical baseline concentrations . Heavymetals

1 Introduction

Due to our reliance on agricultural production, human
health and ecological security are closely linked to soil
contamination (Burges et al. 2015; He et al. 2017). The
increasing demand for food coupled with growing popula-
tion pressures has led to increasingly intensive develop-
ment of farmland (de Vries et al. 2013; Garnett 2014;
Tilman and Clark 2015). As a result, there have been ele-
vated levels of heavy metals (HMs) in soils, mainly attrib-
uted to the significant utilization of fertilizers, pesticides,
etc. (Tian et al. 2017; Zhou et al. 2017, 2019). HM accu-
mulation in agricultural soils can have detrimental effects
on soil ecosystems and can potentially threaten human
health via food chain accumulation (Liu et al. 2013;
Wongsasuluk et al. 2014; Singh and Prasad 2015; Yu
et al. 2016; Li et al. 2018). Thus, agricultural soil
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contamination by HMs has become an increasingly preva-
lent environmental problem (Shao et al. 2016; Fan et al.
2017; Lawal et al. 2017). In fact, thousands of studies have
evaluated the risks of agricultural soil contamination by
HMs to human and environmental health (Marrugo-
Negrete et al. 2017; Yang et al. 2017) by comparing the
data with local geochemical background values (LGBVs).

LGBVs are references used to identify the differences
between the natural and anthropogenically influenced con-
centrations of elements/compounds in potentially contam-
inated soil (Matschullat et al. 2000; Karim et al. 2015).
Due to both the natural variability and anthropic influence,
it has been almost impossible to determine true target
LGBVs (Wei and Wen 2012; Karim et al. 2015). In this
regard, the term Bgeochemical baseline concentrations^
(GBCs) was coined and suggested to be used to represent
the true background concentrations (Wei and Wen 2012).
GBCs are often considered as the boundary dividing the
anomalous values and the LGBVs. And, the data below
the GBCs are thought to be the LGBVs while those above
to be anomalous (Teng et al. 2009; Wei and Wen 2012).
From a regulatory perspective, the GBCs provide an op-
portunity to identify whether the enrichment of elements
has arisen. In general, the GBCs are the important bench-
marks of soil pollution evaluation and soil quality manage-
ment such as protection and legislation (Levitan et al.
2014; Zhang et al. 2014). The methods that have been
used to determine the GBCs of the elements in the soils
(Gałuszka 2007; Teng et al. 2009; Wei and Wen 2012)
consist of statistical procedures generally employed as
the concentration distributions are normal or log-normal,
normalization methods for which reference materials such
as Al and Li are used to normalize the data, substitution
methods using the values of soil samples of deep layers as
the GBCs, and integration methods combining two or
more methods. The specific description for the estimation
of GBCs can be available from Wei and Wen (2012),
Gałuszka (2007), and Zhang et al. (2014). And, cumula-
tive frequency distribution curves (CFDCs), an important
method used by statistical procedures, have been used
widely to build up the GBCs of the elements in soils.
The projects and studies focused on GBCs in Europe, the
USA, and other countries were conducted. This work had
found out the GBCs of HMs in soils and sediments.
However, current research in GBCs for agricultural soils,
especially in terms of HM contamination, is seriously
lacking. Therefore, the characterization of GBCs in local
soils has been a priority to assess the agricultural soil HM
contamination (Tian et al. 2017).

This study is focused to characterize the GBCs of HMs in
agricultural soils, to determine the pollution levels and poten-
tial ecological risks of HMs selected, and to discuss the
sources of the HMs targeted.

2 Materials and methods

The place involved (approximately 60 km2) was located in the
north of Huainan City (116° 21′ 21″N~117° 11′ 59″ E, 32° 32′
45″~33° 00′ 24″ N), Anhui Province, China. China is divided
into North China and South China by the Qinling Mountains
and Huai River. The study area, located at the south of Huai
River, is part of the Jianghuai Hills zone. The GBCs of HMs in
the soil from the Jianghuai Hills zone have not been studied
yet. Geologically, it belongs to the Huainan terrace plain and
the Huai River stratigraphic division zone. Shungeng
Mountain appears in the northern part with the direction from
the east to west. The area is completely covered by the
Quaternary with the development from Archaeozoic to
Mesozoic and Cenozoic. The thickness of loose layer is in-
creased from the east and south to the west and north with the
range of 0 m to 700 m, controlled by the paleotopography.
Sedimentary facies change from the upper fluvial facies to the
lacustrine facies. The vertical zoning of the aquifer is obvious
with the transition from the upper HCO3-type fresh water to
the deep Cl-Na-type water. The groundwater flows from the
north and west to the south and east, which is basically con-
sistent with the surface water flow. The climate is character-
ized by monsoon humid weather in temperate zone. On aver-
age, the annual temperature, rainfall, and humidity were
15.7 °C, 970 mm, and 76.9%, respectively. The study area is
predominantly covered by paddy soil but also contains zones
with brown-red and yellow-brown soils. In addition to the
stone mining activity for Shungeng Mountain, over several
decades during twentieth, this area was mainly subjected to
intense agricultural activities, predominantly producing rice,
wheat, and rapeseed. During the sampling process, 112 sam-
ples (20 cm depth) were obtained (Fig. 1). The sampling,
sample preparation, and element determination were operated
based on the method from Niu et al. (2015).

In this study, CFDCs were used to determine the GBCs of
HMs. Specifically, a curve with decimal coordinates was plot-
ted by arranging all the element concentrations on the X-axis
and their corresponding cumulative frequency on the Y-axis.
Generally, the curve had two inflections: the lower inflection
point (the upper limit of natural origin concentrations) and the
higher inflection point (the lower limit of abnormal concen-
trations). This indicated HM concentration was above back-
ground level, which may or may not be related to the anthro-
pogenic activities (Matschullat et al. 2000; Karim et al. 2015).
However, occasionally, an approximately linear curve was
obtained, which means that the concentration data is within
the baseline range. To determine the baseline value, a linear
regression method described by Wei and Wen (2012) was
employed, with modifications (i.e., p < 0.05 and R2 > 0.95
were used in this study instead of p < 0.05 and R2 > 0.90).

To evaluate soil pollution by the HMs selected, geo-
accumulation indices (Igeo), single-factor pollution indices
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(PI), and the pollution load indices (PLI) are obtained using
Eqs. (1) to (3), respectively:

Igeo ¼ log2
Ci

1:5Bi

� �
ð1Þ

PIi ¼ Ci=Bi ð2Þ
PLI ¼ PI1 � PIi2 � PI3 �⋯� PInð Þ1n ð3Þ
where Ci is the soil content of element i, Bi is the geochemical
background value (GBV) of i in local soil, and n is the number
of HMs investigated. The levels of HM pollution classified
based on Igeo and PLI are summarized in Table 1.

Potential ecological risk index (RI) was calculated by sum-
ming individual potential risk factor (Ei) using Eq. (4) (Ke
et al. 2017; Liao et al. 2017; Tian et al. 2017)

RI ¼ ∑n
i¼1Ei ð4Þ

Ei ¼ Ti � PIi ð5Þ
where Ti is the biological toxicity factor of metal i (defined as
Zn = 1, Ni = Pb = 5, Cr = 2, and Cd = 30) (Suresh et al. 2012).
The ecological risk of HMs with respect to RI is listed in
Table 1 (Ekere et al. 2017).

3 Results and discussion

3.1 Soil HMs

The following levels of HMs were detected in the soils:
Ni = 0.45–61.10 mg/kg, Zn = 5.82–579.03 mg/kg,
Pb = 0.16–70.95 mg/kg, and Cr = 1.10–132.17 mg/kg.
Statistical analysis indicates that the datasets were normally
distributed for Ni and Cr and log-normally distributed for Zn.
Based on the average values, Zn (60.20 mg/kg) had the
highest concentration followed by Cr (44.21 mg/kg), Ni
(29.34 mg/kg), and Pb (24.02 mg/kg). The coefficient of var-
iation value (CVV) is employed to show the variability degree
of the soil concentrations of HMs: CVV < 20% with low
variability, 20% ≤ CVV ≤ 50% with moderate variability,
CVV > 50% with high variability, and CVV > 100% with
exceptionally high variability (Xiao et al. 2015). In general,
for HMs, the CVV governed by the anthropogenic sources is
higher than that derived from the natural sources (Han et al.
2006; Guo et al. 2012; Karim et al. 2015).

Table 1 Contamination level or ecological risk of soil by HMs
classified based on Igeo, PLI, and RI

Item Critical range Contamination level/ecological risk

Igeo Igeo ≤ 0 Practically unpolluted

0 < Igeo ≤ 1 Unpolluted to moderately polluted

1 < Igeo ≤ 2 Moderately polluted

2 < Igeo ≤ 3 Moderately to heavily polluted

3 < Igeo ≤ 4 Heavily polluted

4 < Igeo ≤ 5 Heavily to extremely polluted

Igeo > 5 Extremely polluted

PLI PLI ≤ 1 Unpolluted

1 < PLI ≤ 2 Moderately polluted

2 < PLI ≤ 5 Heavily polluted

PLI > 5 Extremely heavily polluted

RI RI ≤ 150 Low ecological risk

150 < RI ≤ 300 Moderate ecological risk

300 < RI ≤ 600 Considerable ecological risk

RI > 600 Very high ecological risk

Fig. 1 Locations of the sampling
sites
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The CVVs of HMs investigated were as follows: Zn
(73%) > Cr (32%) > Pb (16%) > Ni (14%). As shown in
Fig. 2, the highest contents of HMs selected, except for
Cr, were found at a site near Shungeng Mountain. This is
likely due to the previous stone mining activity. The
highest Cr concentration appeared in the southeast, poten-
tially from the discharge of vehicles from the He-Huai-Fu
highway.

To comprehensively understand the HM pollution status
of the agricultural soils investigated, we compare our result
to the data from other regions of China (Table 2). In China,
the HM concentrations in agricultural soils changed re-
markably depending on sample site, ranging from 15.5 to
40.9 for Ni, from 42.2 to 414.0 for Zn, from 6.74 to 159.25
for Pb, and from 7.17 to 285.8 for Cr, respectively. The
highest levels of Zn and Pb occurred in Zhuzhou, likely
due to Pb-Zn mining activity that occurred in that area.
Interregional comparisons show that Zn, Pb, and Cr in
the soils had lower levels than those reported by the liter-
ature (p < 0.05, independent-samples t test), while across
all the soils, Ni was similar (p > 0.05). However, HM
concentrations varied remarkably within this region, indi-
cating that due to the spatial variation of soil heterogeneity,
HM concentrations in selected soils may not represent the
actual pollution level. Therefore, it is almost impossible to
evaluate HM soil pollution solely based on their concen-
trations, so geological background concentrations should

be considered in risk assessment practices (Tian et al.
2017).

Pearson’s correlation analysis was conducted among the
HMs selected (Table 3). In summary, there was no significant
relationship between Zn, Pb, and Cr (p < 0.001). Therefore,
the main sources of Zn, Pb, and Cr were different. However,
Ni had a significantly positive correlation with the other three
HMs (p < 0.001), indicating that Ni in the sampled soil came
from at least three sources.

Principal component analysis (PCA) has also been
employed by many studies to pursue the sources of trace
element in the soils (Chabukdhara and Nema 2012; Cai
et al. 2015). To supplement our analysis, the result of
PCA is used to determine the sources of the HMs. The
results of the PCA for the selected HMs are shown in
Tables 4 and 5. The agricultural production was the only
predominant activity, and there were almost no factories
discharging the solid waste or wastewater containing
HMs in this region. Moreover, the previous small-scale
stone mining activity for Shungeng Mountain could only
affect the accumulation of HMs in the soils near the moun-
tain. However, there were several factories and coal-fired
power plants with gas emissions not far away. In this re-
gard, based on the result of PCA and the literatures, the
sources of HMs in the region can be easily identified.

It is found that the first three principal components
(PCs) could explain the 85.92% variance, according to

Fig. 2 Spatial distribution of HMs
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their eigenvalues, which are over 1.0 after varimax.
Moreover, the first two extracted factors had the eigen-
values of > 1, while the third gradually became > 1. The
component matrix rotated indicates that Ni and Cr fell in
F1, Pb in F2, and Zn in F3.

F1 (30.3% of the total variance) could be regarded as a
lithogenic component, because the variabilities of Ni and
Cr were likely to be governed by the parent materials (Sun
et al. 2013). This result arose in consistency with the
geostatistical analyses presented in Fig. 2, showing that
in the study area, there was no significant anthropic con-
tribution to Ni and Cr, based on their spatial distribution.
The result is in accordance with the previous studies that
parent materials, together with pedogenic processes,

predominantly affect the distribution of Ni and Cr
(Rodríguez et al. 2008), while anthropic contribution in-
cluding fertilizers, manure, and limestone is typically lim-
ited (Facchinelli et al. 2001).

Table 2 HMs in agricultural soils
from this study and other areas in
China (mg/kg)

Area Ni Zn Pb Cr Source

This study 29.34 60.2 24.02 44.21
Bazhong – – 24.36 – Li and Chen (2014)
Beijing – 81.1 18.48 75.74 Liu et al. (2005)
Chengdu – 227 77.27 59.5 Liu et al. (2006a)
Cixi – 88.91 28.06 – Liu et al. (2006b)
Daye 25.8 159 43.7 60.7 Du et al. (2015)
Dongguan 21.8 76.63 65.83 38.86 Dou et al. (2008)
Fuyang 21.85 42.20 16.80 – Chen et al. (2013)
Fuxin 22.05 45.76 – – Xu et al. (2007)
Gansu – – 21.44 38.82 Li et al. (2008)
Ganzhou 33.31 15.01 Song (2008)
Guangzhou – 162.6 58 64.65 Li et al. (2009)
Hailun 25.7 61.7 58.50 Chen et al. (2015)
Hainan 15.51 52.17 48.01 22.67 Zhao et al. (2007a)
Huangshi – 74.4 82.6 – Wei (2009)
Jiamusi 25.2 22.7 Li and Li (2012)
Jiangmeng – – 6.74 7.17 Qiu et al. (2017)
Jinghe – – 22.44 44.21 Zheng (2008)
Kashgar – 100.1 34.3 109.6 Zha et al. (2016)
Kunshan 31.08 105.93 30.48 87.73 Chen and Pu (2007)
Laiwu 36.10 74.54 28.81 74.21 Yu et al. (2016)
Nantong – – 19.47 51.41 Gong et al. (2014)
Ningbo – – 48.05 42.11 Zhou et al. (2016)
Pingdingshan 25.9 71.6 32.8 56.4 Chen et al. (2014)
Qianan 21.98 50.33 20.54 52.05 Wang et al. (2006)
Shanghai 106.2 90.7 285.8 Meng et al. (2008)
Shenyang – – 22.00 37.81 Li (2010)
Suzhou – – 28.16 53.38 Shen et al. (2010)
Taian 37.89 65.56 15.37 60.04 Li et al. (2011)
Taihang 25.04 69.96 18.8 57.77 Yang et al. (2009)
Taiyaun 29.74 90.76 27.87 74.10 Liu et al. (2015)
Wuxi – 112.9 46.7 58.6 Zhao et al. (2007b)
Xiangyang 30.2 81.6 23.8 60.1 Zhao (2014)
Xuzhou – 149.68 56.2 – Liu et al. (2006c)
Yangzhou 38.5 98.1 35.7 77.2 Huang et al. (2007)
Zhangye 40.9 86.79 27.98 77.42 Zhu and Yang (2014)
Zhengzhou – – 17.11 60.67 Liu et al. (2007)
Zhuzhou – 414 159.25 87.55 Li and Chen (2016)
China soil 26.9 74.2 26.0 61 Tian et al. (2017)
World soil 70.0 29 27.0 59.5 Tian et al. (2017)
Crustal average 70 20 15 100 Tian et al. (2017)

Table 3 Pearson’s correlation analysis between select HMs

Element Ni Zn Pb Cr

Ni 1.000

Zn 0.254** 1.000

Pb 0.308** 0.045 1.000

Cr 0.395** 0.188 0.077 1.000

**p < 0.01, significant (two-tailed)
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And, F2 explained the 29.3% variance. Pb is generally
sourced from industrial fumes, vehicle exhaust, pesticides,
and sewage sludge (Francouría et al. 2009; Lu et al.
2012). Usually, Pb, which is from car exhaust, cannot
extend appreciably to the place 30 m away from the road-
side (Smith 1976); therefore, vehicle discharge could not
be considered a significant input in this area. However,
the exhaust fumes can move over longer distance via wind
action (Facchinelli et al. 2001), so atmospheric deposition
could be one of the significant contributors to soil Pb
enrichment (Davis et al. 2001). Considering the location
of the study area, industrial fumes, coal-burning exhaust,
and domestic waste are likely to be the most important
contributors of soil Pb.

F3 (26.3% of the total variance) included Zn. Zn in the
soils can be from lithogenic sources, with the forms of
various soluble (e.g., nitrates and chlorides) and insoluble
(e.g., sulfides, phosphates, carbonates, silicates) salts. In
addition to the pedogenic processes, Zn enrichment is also
close to the utilization of fertilizers containing Zn (Sun
et al. 2013; Moreno-Jiménez et al. 2016). Hence, the con-
centrations of Zn found in the soils could be changed
depending on the specific human activities. Forty-six per-
cent of the samples had the Zn concentrations higher than
the corresponding GBV (Niu et al. 2015), indicating that
Zn was sourced from both the parent materials and ap-
plied fertilizers.

3.2 GBCs of selected HMs in soil

Due to anthropogenic influence, in recent practice, it has been
impossible to obtain a natural background for elemental com-
position based on the pristine geochemical characteristics of
soil. As a result, the geochemical baseline has been suggested
as an alternative to use as a natural comparison (Karim et al.
2015). The GBCs of HMs selected were characterized and
demonstrated in Fig. 3.

CDFCs of Zn, Pb, and Cr had only one inflection, re-
spectively. Ni had no inflection, implying that concentra-
tions of Ni in soil were not human induced. GBCs of HMs
are presented in Tables 4 and 5. For the soil sampled, Ni,
Zn, Pb, and Cr had baseline concentrations of 29.34 mg/kg,
45.54 mg/kg, 21.81 mg/kg, and 33.65 mg/kg, respectively.
A comparison of GBCs of selected HMs with respect to
regional land use type is carried out and shown in Table 6.
According to the literatures, the GBCs of Ni, Zn, Pb, and
Cr arose with the range of 18.7395.5 mg/kg, from 32.8 to
218.2 mg/kg, from 14.96 to 58.2 mg/kg, and from 12.9 to
340.7 mg/kg, respectively, depending on the regional land
use type. Even in the same land type like agricultural soil,
the GBCs in soils also varied greatly. Overall, the baseline
value of Ni established for the present study is within the
general range of 20–30 mg/kg reported by the literatures,
suggesting that this value is comparable to the other values,
whereas the GBCs of Zn, Pb, and Cr are generally smaller

Table 4 Total variance
explanation Component Total variance explained

Component initial
eigenvalues

Extraction sums of squared
loadingsa

Rotation sums of squared
loadingsb

1 1.601 40.026 40.026 1.601 40.026 40.026 1.212 30.312 30.312

2 1.009 25.217 65.243 1.009 25.217 65.243 1.173 29.328 59.639

3 0.827 20.680 85.923 0.827 20.680 85.923 1.051 26.284 85.923

4 0.563 14.077 100.000

a Extraction method: principal component analysis
b Rotation method: varimax with the Kaiser normalization

Table 5 Component matrices of
the first three principal
components for selected HMs in
soil

Element Component matrix Rotated component matrix

First component
(F1)

Second component
(F2)

Third component
(F3)

F1 F2 F3

Ni 0.812 0.130 − 0.081 0.563 0.531 0.290

Zn 0.562 − 0.425 0.690 0.091 0.018 0.982

Pb 0.465 0.815 0.102 − 0.030 0.943 − 0.030
Cr 0.640 − 0.383 − 0.578 0.941 −0.047 0.040
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than those from the other regions. And, the variation of
GBCs of Ni, Zn, Pb, and Cr is in accordance with the
change of their contents discussed above. This work sug-
gests that regional GBCs for HMs towards specific land
use type should be proposed in order to easily facilitate
the identification of soil contamination and risk assess-
ment. However, the LGBVs for these HMs were reported
as 25.74 mg/kg for Ni, 80.81 mg/kg for Zn, 30.47 mg/kg
for Pb, and 64.93 mg/kg for Cr (Niu et al. 2015). Thus, the
GBCs derived are significantly lower than the LGBVs
from the literature, indicating that ecological risk assess-
ments based on the previously reported background values
may underestimate risk. However, due to regional differ-
ences, these results of HM GBCs may not apply the dif-
ferent environments (Tables 4 and 5). Therefore, a more
concerted effort needs to be made to determine if the
GBCs for HMs can be applied across the different geo-
graphic regions so that we can accurately evaluate the risks
from HMs to human and environmental health.

3.3 Igeo of soil HMs

Igeo values of HMs were calculated and are given in Fig. 4.
The Igeo of Ni, Zn, Pb, and Cr ranged from − 4.58 to 0.33,
from − 2.46 to 2.14, from − 5.32 to 0.77, and from − 3.83

to 0.96, respectively. All the mean Igeo values were lower
than 0. Hence, most of the studied area had not been con-
taminated by Ni, Zn, Pb, and Cr. However, some sampled
areas were subjected to moderate HM contamination. It

Fig. 3 CDFCs of HMs. a Ni. b Zn. c Pb. d Cr

Table 6 Comparison of estimated GBCs with the data from the
literature (mg/kg)

Soil type Ni Zn Pb Cr Data source

Agricultural soils 29.34 45.54 21.81 33.65 Present study

28 83 28 36 Micó et al. (2007)

35.18 94.54 31.27 82.06 Lu et al. (2018)

62.7 218.2 70.6 340.7 Wu (2016)

95.5 90.2 37.3 – Ding (2018)

18.70 52.62 48.39 146.21 Fan et al. (2014)

24.5 62 28.19 66.41 Li et al. (2012)

29.9 78.44 26.18 66.78 Wu et al. (2018)

Urban soils 31.2 161 58.2 63.1 Jarva et al. (2014)

– 123.03 56.23 12.9 Karim et al. (2015)

Greenhouse soils 21.95 47.83 14.96 47.76 Tian et al. (2017)

Coal mining area – 32.80 20.47 42.67 Zakir et al. (2017)

Metal mining area 45.67 76.92 28.53 281.58 Teng et al. (2002)
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should be highlighted that Igeo just can show the accumu-
lation degree of the HMs selected by comparing the con-
tents obtained with GBCs whereas it cannot give the im-
plication of ecological risk. As a result, the condition with
small Igeo but high ecological risk is likely to arise as
GBCs are high.

3.4 PLI and ecological risk of soil HMs

The PI values of Ni, Zn, Pb, and Cr ranged from 0.02 to
2.08, from 0.13 to 12.71, from 0.01 to 3.25, and from 0.03
to 3.93, respectively (Table 7). Overall, Zn had the highest
PI value followed by Cr and Pb and then Ni. The average
PI values were mainly in the range of 1 and 2, suggesting
that the study soil had been moderately polluted by indi-
vidual elements. However, some areas in the region were
subjected to high HM contamination (PI > 2) by Zn (11.7%
of samples), Pb (9.3% of samples), and Cr (22.5% of sam-
ples). Ni PI values mainly remained < 1.0, meaning that Ni
pollution had not taken place in the study area. The PLI of
the site ranged from 0.08 to 2.45, with an average of 1.02.
However, 49.6% of samples had the PLI values > 1.0, sug-
gesting that the soil may have been moderately contami-
nated by HMs. Soil with higher PLI values was mostly
sampled around the mountain, and most contamination
was attributed to significant accumulation of Zn in soil.

However, the PLI of this region was 0.87 with the elemen-
tal PLI of 0.84 for Ni, 0.98 for Zn, 0.80 for Pb, and 0.92
for Cr, which means that overall there was no pollution by
HMs.

RI is employed commonly to find out the ecological risks
of trace element. As shown in Fig. 4, all the samples had the RI
values less than 150, indicating a low potential ecological risk
from the HMs, and the HMs, despite the huge amount of
fertilizers and pesticides, had been used in agricultural
practices.

4 Conclusions

In the region investigated, the concentrations of Zn, Pb, and Cr
were generally lower than those reported by the literature. The
GBCs of Ni, Zn, Pb, and Cr were 29.34 mg/kg, 45.54 mg/kg,
21.81 mg/kg, and 33.65 mg/kg, respectively. The Igeo values
indicated that most of the study area was not contaminated by
the elements selected, the PLI values suggested a moderate
HM contamination, but the RI values indicated a low potential
ecological risk. Therefore, the variation between these differ-
ent risk evaluation methods should be further investigated.
Moreover, further study towards the depth profile of GBCs
of HMs should also be carried out in pursuing the contamina-
tion levels, sources, and ecological risk of this region well in
the future. Ni and Cr appeared in the soils mainly from the
parent materials. Industrial fume and coal burning exhaust
were likely the significant sources of Pb. Zn was sourced not
only from the parent material (pedagogic processes) but also
from the fertilizer application. For environmental risk assess-
ment, we commonly assume that the reference soil used in
HM characterization has not been influenced by human activ-
ity. Indeed, as it has been impossible to obtain a natural soil
(with quantified GBCs), the commonly used HM background
values are obtained via characterization of sample soil from a
reference site. However, in this study, we have established that
this practice may be resulting in underestimation of HM soil
contamination and thus underestimating the risk HMs are cur-
rently posing to human and environmental health. Therefore,
it is urgent to establish GBCs for agricultural soils at the re-
gional scale, to enhance ecological riskmanagement practices,
and to improve regulatory controls.

Fig. 4 Igeo of HMs

Table 7 PLI values and potential
ecological risk of selected HMs in
soil samples

Metal PI PLI Ei RI

Ni Zn Pb Cr Ni Zn Pb Cr

Min. 0.02 0.13 0.01 0.03 0.08 0.08 0.13 0.04 0.07 1.36

Max. 2.08 12.71 3.25 3.93 2.45 10.41 12.71 16.27 7.86 30.20

Average 1.00 1.32 1.10 1.31 1.02 5.00 1.32 5.51 2.63 14.09
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