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Prediction of profile soil moisture for one land use using measurements
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Abstract
Purpose Information on root-zone soil water content (SWC) is essential for vegetation restoration, irrigation scheduling, and
hydrological modeling. However, measurements of SWCwithin a variety of land usesmay be time-consuming and labor-costing.
This study tested whether SWC at a depth of a land use can be used to predict profile SWC of other land uses in terms of temporal
stability analysis at a karst depression area in southwest China.
Materials and methods A total of 30 datasets of root-zone SWC from 0.1- to 0.5-m depths were collected by time domain
reflectometry probes for three typical land uses from March 12 to November 8, 2015.
Results and discussion Results showed that the profile mean SWC and its associated standard deviation (SDP) and coefficient of
variation (CVP) differed significantly (P < 0.05) among the grassland, farmland, and forestland. The profile SWC was more
temporally stable according to the apparently lower CVT in comparison with CVP. The similarities of the vertical patterns of SWC
were strong for the same land uses, while were relatively weak between the different land uses. The SWC measurements of the
most temporally stable depth can be used to accurately predict profile SWC for both the same land use and other land uses.
Conclusions This study further expands the application of the temporal stability analysis and can aid water resource management
in areas with diverse land uses.
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1 Introduction

Soil water content (SWC) near the surface is an important
control on many hydrological and geomorphic processes
(Brocca et al. 2009; Heathman et al. 2009; Penna et al.
2013; Sur et al. 2013). It regulates forcings and feedbacks

between subsurface and the atmosphere, such as the
partitioning of precipitation into infiltration or runoff (Joshi
et al. 2011) and the surface energy budget (Zreda et al.
2012). Knowledge of soil water conditions, especially in the
root zone, is crucial for directing irrigation scheduling, flood
forecasting, and hydrologic modeling (Heathman et al. 2012a,
b). Accurate estimation of root-zone SWC can contribute to
effective soil water assessment and management.

The SWC is highly variable in space and time across dif-
ferent scales due to a variety of static or dynamic factors
(Manfreda and Rodriguez-Iturbe 2006; Famiglietti et al.
2008; Penna et al. 2009). However, observations of field scale
soil moisture measurements show that certain locations are
temporally stable and representative of an area average
(Vachaud et al. 1985). This phenomenon is called Btemporal
stability.^ The concept of temporal stability was pioneered by
Vachaud et al. (1985), who defined it as Bthe time-invariant
association between spatial location and classical statistical
parameters of a given soil property,^ and it has already been
proven as an effective method to predict spatial mean soil
moisture from point-scale observations. Kachanoski and de

Responsible editor: Lu Zhang

* Xianli Xu
xuxianliww@gmail.com

1 Key Laboratory for Agro-ecological Processes in Subtropical
Region, Institute of Subtropical Agriculture, Chinese Academy of
Sciences, Changsha 410125, China

2 Huanjiang Observation and Research Station for Karst Ecosystem,
Chinese Academy of Sciences, Huanjiang 547100, China

3 College of Resources and Environmental Sciences, Hunan Normal
University, Changsha 410125, China

4 University of Chinese Academy of Sciences, Beijing 100049, China

Journal of Soils and Sediments (2019) 19:1479–1489
https://doi.org/10.1007/s11368-018-2138-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11368-018-2138-5&domain=pdf
mailto:xuxianliww@gmail.com


Jong (1988) then expanded the definition of SWC stability
over time as a description of the temporal persistence of spatial
patterns. The temporal stability of SWC has been related to
many factors such as soil properties, topography, and vegeta-
tion (Vachaud et al. 1985; Comegna and Basile 1994; Hu et al.
2010b; Zhao et al. 2010; Jia et al. 2013a). da Silva et al. (2001)
found that soil organic carbon (SOC) and clay contents serve
as better explanatory variables. Gómez-Plaza et al. (2000)
identified local topography as the main influence on temporal
stability of SWC on a transect scale. Zhao et al. (2010) indi-
cated that vegetation growth controls SWC spatial patterns
due to the effects of root systems and vegetation coverage.
However, no consistent conclusions have been drawn on the
factors contributing to temporal stability. Temporal stability
analysis has been intensively applied in various types of cli-
matic zones throughout the world including arid (Starks et al.
2006; Zhang et al. 2016), semiarid (Cosh et al. 2008;
Schneider et al. 2008; She et al. 2015), semi-humid
(Heathman et al. 2009), and humid zones (Jacobs et al.
2004). The most important application of temporal stability
was to predict areal mean SWC on the basis of the measure-
ments of the most temporally stable location (MTSL). The
MTSL can be identified directly by the mean relative differ-
ence (MRD) technique when both the MRD and associated
standard deviation (SDRD) are lower than 5% (Gao and Shao
2012). Few areas satisfy these conditions in practice.
Consequently, an indirect method was therefore introduced
to predict spatial mean SWC by considering a constant offset
(Grayson and Western 1998).

Temporal stability analysis of SWC has been employed
across various spatial scales, such as slopes (Penna et al.
2009; Hu et al. 2010a; Jia et al. 2013a), watersheds (Cosh
et al. 2004; Hu et al. 2010b), fields (Jacobs et al. 2004;
Heathman et al. 2012a), and landscape scale (Li et al. 2015a,
b, 2016). The identification of the MTSL for these previous
studies was based mainly on horizontal SWC data rather than
vertical SWC data. For example, Hu et al. (2010b) observed
that the temporal stability of SWC at 0.2 m was significantly
weaker than in the deep soil in a 20-ha watershed. Li et al.
(2015a) found that the number of temporally stable locations
and the accuracy for predicting the mean soil water storage
(SWS) increased with increasing soil depth along a 1350-m
long transect. However, only a few studies focused on the esti-
mation of profile mean SWS in terms of measurement at a
certain soil depth. Wang et al. (2015) analyzed the vertical
distribution and temporal stability of soil water in 21-m deep
soil profiles and found that the mean available SWS was accu-
rately predicted in a semiarid region. The focus of the present
study is to determine temporal stability of the root-zone SWC
across soil profiles under different land uses in a karst depres-
sion. The temporal stability analysis of SWC in the root zone is
instrumental in developing methods to infill missing data
(Pachepsky et al. 2005; Dumedah and Coulibaly 2011) and

for hydrological modeling (Brocca et al. 2009). It has been
reported that hard-to-measure soil moisture can be predicted
by easy-to-measure soil moisture data using temporal stability
analysis (Gao et al. 2013; Hu and Si 2014; Gao et al. 2015a).
For instance, soil moisture in gullies can be predicted from
adjacent upland measurements (Gao et al. 2013), and deep
(0.4–0.8-, 0.8–1.2-, and 1.2–1.6-m depths) SWS could be pre-
dicted using a single-location measurement in the 0–0.4-m soil
depth (Gao et al. 2015a). However, no studies have assessed
whether measuring SWC from one soil depth within a single
land use is representative of SWC in other land uses. There are a
variety of land uses in the karst region of southwest China due
to the subtropical mountainous monsoon climate. Soil water
status would differ among the various land uses due to their
differences in characteristics of water utilization. Therefore, we
hypothesize that the profile SWC of one type of land use can be
predicted in accordance with depth measurements of other land
uses using the temporal stability analysis.

This study used SWC data measured by time domain reflec-
tometry (TDR) probes on 30 occasions fromMarch 12, 2015, to
November 8, 2015, across profiles of three land uses. Temporal
stability analyses were performed using Spearman’s rank corre-
lation and mean relative-difference techniques. The specific ob-
jectives of this studywere as follows: (1) to identify the temporal
stability of profile SWC in a karst depression and (2) to verify
the hypothesis that the profile SWC of a land use could be
predicted using a depth measurement from other land uses.

2 Materials and methods

2.1 Study area

Data collection was carried out in Guzhou catchment located in
Huanjiang County (24° 54′–25° 55′ N, 107° 56′–107° 57 E) of
northwest Guangxi Province, China (Fig. 1). This catchment is
a typical karstic peak-cluster depression area with the elevation
ranging from 375 to 816 m above sea level. A relatively flat
depression is located in the center surrounded by a series of
steep hillslopes. A subtropical mountainous monsoon climate
dominates the study area, with a mean annual air temperature of
15.1 °C and a mean annual rainfall of 1638 mm, falling mainly
from late April to the end of September. The calcareous soils
derived from limestone have an average depth of 50–80 cm in
the depression and 10–30 cm on hillslope (Chen et al. 2010).
The hillslopes are mainly covered by secondary forestland and
scrubland; previous farmlands on sloping areas are abandoned
due to the BGrain-for-Green^ program, which aims to prevent
stony desertification and restore the ecosystems. In the depres-
sion, some farmlands were converted to forage grasslands and
commercial forestlands for economic benefits. The predomi-
nant plants in the depression include hybrid Napiergrass
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Guimu-1 (Pennisetum americanum × P. purpureum), maize
(Zea mays Linn.), and Zenia insignis (Z. insignis Chun).

2.2 Measurements of SWC and other soil parameters

To acquire the SWC of typical land uses in this karst depres-
sion, a representative sample plot (5 × 5 m) was established
for grassland, farmland, and forestland in late 2014. At the
center of each sample plot, TDR (Hydra Probe II) probes were
vertically installed at depths of 10, 20, 30, 40, and 50 cm
below the surface, with SWC data recorded every 30 min over
242 days from March 12, 2015 to November 8, 2015. In this
study, daily average SWC data of 5 depths within soil profile
on 30 days during the measuring period were selected except
for the 50-cm depth in the forestland due to instrument failure.

Thus, the SWC datasets included 30 occasion data. The final
SWC datasets were divided into two independent subsets
consisting of training dataset and validating dataset. The first
20 occasions were selected as a training set to evaluate the
temporal stability of the SWC and identify the most temporal-
ly stable depth (MTSD). The remaining 10 occasions were
used to validate the prediction accuracy.

To install the TDR probes, three undisturbed soil cores
from each sample plot were collected by cutting rings (5 cm
in height; 20-cm2 cross section) for measurements of soil sat-
urated hydraulic conductivity (KS) using the constant-head
method and bulk density (BD). A soil corer was used to collect
disturbed soil samples, which were air-dried and then divided
into two subsamples. One subsample was passed through a 1-
mm sieve to analyze soil particle size distribution using a MS-

Guzhou

Farmland Grassland Forestland

Fig. 1 Location of the Guzhou catchment and the sampling points for three land uses (grassland, farmland, and forestland, respectively) in northwest
Guangxi, China
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2000 particle size analyzer (Malvern Instruments Ltd.,
Malvern, UK) calibrated using the Sieve-Pipette Method.
The other subsample was passed through a 0.25-mm sieve to
determine the SOC content in accordance with the K2Cr2O7

method. Aboveground biomass (AGB) were measured by
clipping from three 1 × 1 m quadrats within each land use,
except for the forestland sample plot. The plant samples were
oven-dried at 75 °C for 72 h to obtain dry weights. Detailed
information of the surface soil (0–10 cm) and vegetation char-
acteristics for each sample plot are given in Table 1.

2.3 Assessment of the temporal stability of SWC

Twomethods were used to evaluate the temporal stability of the
SWC including MRD and a non-parametric Spearman’s rank
correlation analyses. The first method, based on relative differ-
ence (RD), was initially introduced by Vachaud et al. (1985). In
this study, the RD between individual measurements at depth i
for sampling time j and the average SWC across soil profile at
the same sampling time was calculated as:

RD△ij ¼ SWCij − SWC j

SWC j

: ð1Þ

The temporal average relative difference (MRDi) and its
standard deviation (SDRDi) for each sampling depth were
expressed as:

MRDi ¼ 1

M
∑
M

j¼1
RDij ð2Þ

and

SDRDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M − 1
∑
M

j¼1
RDij − RDi

� �2

s

ð3Þ

where SWCij is the SWC at depth i for sampling time j, SWC j

is the profile average SWC at time j for all sampling depths,
and M is the number of measurement campaigns in the train-
ing period (M = 20 in this study).

The MRD values determined whether a depth was wetter or
drier than the profile average SWC of a land use and displayed

the bias when a specific depth was used to represent the average
SWC of a soil profile. The SDRD values were used to evaluate
the robustness of the temporal stability of the RD. A lower
SDRD at a sampling depth indicated a higher temporal stability.

The other method was the non-parametric Spearman’s rank
correlation test, which was employed to examine the persis-
tence of the profile pattern during the training period. The
Spearman’s rank correlation coefficient (rs) was computed as:

rs ¼ 1 −
6 ∑

N

i¼1
Rij − R

0
ij

� �2

N N 2 − 1
� � ð4Þ

where Rij is the rank of the SWCij at depth i and sampling time
j, R’ ij is the rank of the same variable at the same depth but at
time j′, andN is the number of measurement depths. Avalue of
rs closer to 1 between measurement campaigns indicates a
stronger tendency of temporal stability.

2.4 Prediction of profile SWCs for different land uses

The MRD technique can directly evaluate the average SWC by
identifying theMTSDswhere bothMRD and SDRD values are
less than 5%. However, it was possible that both MRD and
SDRDwould not satisfy the criteria simultaneously. An indirect
method to confirm the MTSDs was proposed by Grayson and
Western (1998). With this method, the depth with the smallest
SDRD value is identified as the MTSD to evaluate the average
SWC of soil profile. The average value can be expressed by
considering the offset between the SWC at the MTSD and the
average value across the soil profile as follows:

SWC j ¼ SWCMSTDj

1þMRDMTSD
: ð5Þ

In terms of the method proposed by Gao et al. (2015a), the
data used to identify the MTSD for the prediction of the profile
SWC for the same land use (named MTSD 1) is different from
the data used for the other land uses. The depth for SWC mea-
surements from a land use to predict the profile average SWC
of other land uses is defined asMTSD 2. In this study, MTSD 1
was used to predict soil profile average SWC of one land use.
However, SWC data of each depth of one land use should be

Table 1 Summary statistics of surface soil properties and aboveground biomass for grassland, farmland, and forestland, respectively

Variables BD (g cm−3) Ks (mm min−1) Clay (%) Silt (%) Sand (%) SOC (g kg−1) AGB (g m−2)

Grassland 1.45 ± 0.04 0.004 ± 0.002 15.0 ± 1.1 50.5 ± 1.4 34.6 ± 1.7 22.8 ± 1.1 907 ± 142

Farmland 1.43 ± 0.05 0.026 ± 0.024 11.3 ± 0.9 57.4 ± 1.3 31.3 ± 1.0 11.3 ± 5.7 287 ± 19

Forestland 1.44 ± 0.08 0.004 ± 0.002 15.7 ± 3.7 49.8 ± 3.2 34.5 ± 6.2 15.4 ± 11.1 –a

BD, bulk density; Ks, saturated soil hydraulic conductivity; SOC, soil organic carbon; AGB, aboveground biomass
a No value
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introduced to the datasets of other land uses during theMTSD 2
identification process. For example, when identifying MTSD 2
of grassland to predict profile SWC of farmland, every depth of
grassland should be added individually in addition to all the
depths of farmland. Moreover, the MRD and SDRD values of
the additional depths were calculated using Eqs. (2) and (3),
respectively. The profile average SWC of farmland was com-
puted using data from six rather than five depths in Eq. (1).
Therefore, five pairs of MRD and SDRD values were obtained
by conducting the RD analysis five times. The depth with the
lowest SDRD value was the MTSD 2.

The SWC j can also be defined based on the SWC value at
each sampling depth by considering its corresponding offset
because every depth was temporally stable to some extent:

SWC j ¼ SWCij

1þMRDi
ð6Þ

According to Eqs. (5) and (6), the SWCij could be
expressed as follows:

SWCij ¼ SWCMTSDj � 1þMRDi

1þMRDMTSD
: ð7Þ

The profile distribution of SWC for each land use thus can
be obtained by Eq. (7).

Several criteria were selected to evaluate the strength of the
statistical relationships between the observed and predicted
profile averages or distributions of SWC as follows.

Relative error (RE):

RE ¼ SWCP − SWCO

SWCO
ð8Þ

Mean absolute relative error (MARE):

MARE ¼ 1

q
∑
q

j¼1

jSWCP − SWCOj
SWCO

ð9Þ

Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
SWCP − SWCOð Þ2

s

ð10Þ

Coefficient of determination (R2):

R2 ¼
∑
n

i¼1
SWCP − SWCO

� �2

∑
n

i¼1
SWCO − SWCO

� �2 ð11Þ

where q is the number of measurement occasions during the
validation period, and n is the number of predicted SWC
values. The SWCP and SWCO are the predicted and observed
values of SWC, respectively.

2.5 Statistical analysis

Exploratory data analysis was conducted using Microsoft
Excel 2016 (Microsoft Corporation Inc., Redmond, USA).
Duncan’s multiple range test was performed to identify statis-
tically significant differences (P < 0.05) among the mean
values of SWC and its associated standard deviation (SD)
and coefficient of variation (CV) for different land uses.
Linear-fitting analysis was performed between the observed
and predicted SWCs on the basis of the measurements at the
MTSD 2. The statistical analyses of the SWC data were car-
ried out with SPSS 16.0 software (SPSS Inc., Chicago, USA).

3 Results and discussion

3.1 Temporal-spatial dynamics of SWC

The time series of the mean profile SWCs for the three land
uses and precipitation are presented in Fig. 2a. The time-
averaged mean vertical SWCs were 0.37, 0.52, and
0.31 cm3 cm−3 for grassland, farmland, and forestland, respec-
tively. The differences between SWC for the three land uses
were significant at P < 0.05 (Table 2). The precipitation was
seasonal, falling mainly from late April to September. The
time-averaged SWCs of the three land uses followed trends
similar to precipitation (Fig. 2a). The time-averaged mean
profile SWCs decreased gradually for each land use during
the beginning of the measurement period when there was little
rain and increased promptly in late April in response to several
rainfall events.

The time-averaged profile SWC of farmland was signifi-
cantly higher than that of grassland and forestland (Fig. 2a;
Table 2). Although the root-zone SWC responded to precipi-
tation in each land use, transpiration could be the predominant
hydrological process resulting in distinct differences in SWC
from different land uses. Given the similar soil texture among
the three land uses (Table 1), it is likely that the greater AGB
of grassland and forestland consumed more soil water for
vegetation growth (Table 1). The differences in average
SWC of the soil profiles among various land uses demon-
strates that water consumption characteristics of vegetation
are important for vegetation restoration efforts in the karst
region. It was therefore essential for us to optimize plant con-
figuration pattern in terms of the soil water status in karst
depression area. The time-averaged profile SWCs in the cur-
rent study were relatively higher (ranging from 0.31 to
0.52 cm3 cm−3) compared to other regions of China such as
the Loess Plateau (Li et al. 2016). However, total water stored
in soil was relatively lower due to thinner soil depths and
higher rates of soil water penetration in the karst depression
area (Williams 1983; Wilcox et al. 2008; Nie et al. 2011). The
karst region with large amounts of precipitation always
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underwent extreme drought (Liu et al. 2014, 2017), which
would inhibit plant establishment and growth and should
therefore be of concern.

Figure 2b, c illustrates the temporal changes in the standard
deviation (SDP) and coefficient of variation (CVP) across the
profile for the SWC for each land use. The time-averaged
mean SDP were 0.05, 0.09, and 0.07 cm

3 cm−3, and the mean
CVP were 12.41%, 17.56%, and 22.81% for grassland, farm-
land, and forestland, respectively (Table 2). The mean SDP

and CVP for all three land uses were significantly different
from one another (P < 0.05). This result can be attributed to
differences in vegetation types. Similar results were also ob-
served in other studies (Jia et al. 2013a, b). The CVP of the
vertical distribution of SWC throughout the soil profile in the
current study was lower when compared with the horizontal
distribution noted in other research (Gao et al. 2015b; Li et al.
2016). This is likely due to similarities in hydrological pro-
cesses that occur across the vertical distance, and homogene-
ity of soil properties in the vertical dimension. The standard
deviation (SDT) and coefficient of variation (CVT) over time
of the time-averaged mean SWCs were 0.03, 0.03, and

0.03 cm3 cm−3, and 6.84, 5.51, and 9.79% for the grassland,
farmland, and forestland, respectively (Table 2). The SDT and
CVT over time of the mean SWCs were lower than SDP and
CVP throughout the soil profile for each land use, indicating
that the SWC was temporally stable, in agreement with other
findings (Guber et al. 2008; Jia et al. 2013a; Li et al. 2015a).
The CVT of the SDP and CVP of SWC was 27.45, 12.29, and
18.93%, and 4.31, 17.82, and 16.23% for grassland, farmland,
and forestland, respectively (Table 2).

3.2 Temporal persistence of SWC

Spearman’s rank correlation analysis was used to investigate
the overall temporal stability of the profile SWC in this study.
All values of rs were significant (P < 0.05) for each land use.
The mean rs values were 0.92, 0.99, and 0.98 for grassland,
farmland, and forestland, respectively (Table 3). However, the
mean rs were relatively lower when correlating between dif-
ferent land uses. For example, the mean rs was 0.57 between
the grassland and farmland (Table 3). This result reflects the
influence of the vegetation. The differences in root systems

Fig. 2 Evolution of a the profile average soil water content (SWC) values, b the corresponding standard deviations (SDP), and c the coefficients of
variation (CVP) for grassland, farmland, and forestland, respectively
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between land uses would result in differences in hydrological
processes and weaken the temporal persistence of profile
SWC (Zhao et al. 2010). Similar results have been reported
by other studies (Penna et al. 2009; Gao and Shao 2012; Gao
et al. 2015a). Gao et al. (2015a) found that the mean rs value
was 0.83 and 0.92 for the soil depths 0–0.4 and 0.4–0.8 m,
respectively, but was 0.60 between 0- and 0.4- and 0.4–0.8-m
depths. They attributed the weak relationships between the
spatial patterns of SWC of various soil depths to different
hydrological processes, such as lateral surface flow and sub-
surface flow (Zhu et al. 2014). The significant correlation of
profile SWCs between different land uses in the current study
suggests that perhaps the soil water data of a depth for one
land use can be used to predict profile SWC of other land uses.

Table 4 showed the MRD and its corresponding SDRD
across the soil profile for each land use. The MTSD 1s
representing profile mean SWC can be directly identified
when both the MRD and SDRD values were within ± 5%.

However, only 20- and 30-cm depths of farmland fulfilled this
condition. The values of SDRD were relatively small ranging
from 1.1 to 7.4% (Table 4). The MTSD 1s estimating profile
SWC indirectly could be identified by considering a constant
offset (Grayson andWestern 1998), indicating that the indirect
method has potential application in SWC prediction. In this
study, depths of 30, 30, and 10 cm with associated SDRD
values of 1.1, 1.2, and 3.0% were selected as MTSD 1 for
grassland, farmland, and forestland, respectively (Table 4).
The profile mean SDRDs were 4.8, 2.8, and 4.1% for the
grassland, farmland, and forestland, respectively, which were
relatively lower than that of horizontal dimension (Jia et al.
2013a; Li et al. 2015a, 2016). Li et al. (2016) observed that the
mean SDRD decreased from 16.2% at 10-cm depth to 9.9% at
60-cm depth. This may be due to the relatively lower variabil-
ity (SDP and CVP) of mean SWC (Table 2).

The prediction accuracies of the MTSD 1s were tested
during the validation period (Fig. 3). The predicted profile
mean SWCs fluctuated well with the observed mean SWCs
with very small differences. The MARE values were 1.0, 0.5,
and 1.6% for grassland, farmland, and forestland, respectively.
The high prediction accuracy of the MTSD 1 demonstrated
that the temporal stability analysis can be used to evaluate
root-zone soil water, thereby reducing time and labor costs
in karst depression area. The high prediction accuracy may
be attributed to the good depth persistence of soil moisture
across soil profile in either space or time series (Biswas and
Si 2011; Li et al. 2015b, 2017). Biswas and Si (2011) observed
strong similarity in the overall spatial pattern of soil water at
different depths. This was because every depth throughout the
soil profile had similar intrinsic soil properties such as soil
texture and SOC content or similar hydrological processes
such as infiltration, runoff, and evapotranspiration.

3.3 Prediction of profile SWC based onmeasurements
of other land uses

The current research tried to predict the SWC of one land use
using the measurements of other land uses. TheMTSD 2 were

Table 4 Mean relative difference (MRD) and its standard deviation
(SDRD) across soil profile for grassland, farmland, and forestland,
respectively

Land use Variables 10 cm 20 cm 30 cm 40 cm 50 cm

Grassland MRD (%) − 3.2 − 13.9 − 5.6 14.1 8.7

SDRD (%) 7.4 4.3 1.1 5.5 6.0

Farmland MRD (%) − 28.2 1.8 − 3.7 18.3 11.8

SDRD (%) 5.8 1.4 1.2 3.3 2.5

Forestland MRD (%) − 24.2 − 9.4 11.0 22.7 –a

SDRD (%) 3.0 4.9 3.7 4.9 –

a No values

Table 3 Average Spearman’s rank correlation (rs) of soil water content
(SWC) between different land uses during the training period

Land use Grassland Farmland Forestland

Grassland 0.92 0.57 0.48

Farmland 0.99 0.79

Forestland 0.98

All correlations were significant at P < 0.05 level

Table 2 Summary statistics of the profile average soil water content (SWC)
and corresponding standard deviation (SDP) and coefficient of variation
(CVP) of all depths for grassland, farmland, and forestland, respectively

Profile variables Temporal statistics Grassland Farmland Forestland

Mean SWC Mean (cm3 cm−3) 0.37b 0.52a 0.31c

Max. (cm3 cm−3) 0.42 0.56 0.34

Min. (cm3 cm−3) 0.32 0.46 0.22

SDT (cm
3 cm−3) 0.03 0.03 0.03

CVT (%) 6.84 5.51 9.79

SDP of SWC Mean (cm3 cm−3) 0.05c 0.09a 0.07b

Max. (cm3 cm−3) 0.07 0.12 0.10

Min. (cm3 cm−3) 0.03 0.08 0.03

SDT (cm
3 cm−3) 0.01 0.01 0.01

CVT (%) 27.45 12.29 18.93

CVP of SWC Mean (%) 12.41c 17.56b 22.81a

Max. (%) 22.98 25.92 31.96

Min. (%) 7.78 13.73 15.11

SDT (%) 12.41 3.13 3.70

CVT (%) 4.31 17.82 16.23

SDTand CVTare the standard deviation and the coefficient of variation of
the profile average SWC, SDP, and CVP, respectively. Means followed by
different letters indicate significant differences among the various land
uses at a confidence level of 0.05
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identified at the depths of 20 and 10 cm of farmland to predict
the SWC of grassland and forestland, respectively, with cor-
responding SDRD values of 3.9 and 9.5% (Table 5). Similarly,
the MTSD 2 was confirmed at the depths of 50 and 20 cm of
grassland, with corresponding SDRD values of 1.6 and 4.4%.
The MTSD 2 was recognized both at 20-cm depth of forest-
land with corresponding SDRD values of 4.2 and 4.7%
(Table 5). The SDRDs were generally lower than 5% except
at 10-cm depth in the farmland, indicating the good applica-
tion of the indirect method.

Table 6 presents the prediction accuracy of profile mean
SWC for the measurements at MTSD 2 for other land uses
during the validation period. The MARE was lower than 10%
for each land use. The MARE between SWC of the grassland
and farmland and the grassland and forestland were 2.7 and
6.0%, respectively. Similarly, theMARE between SWC of the
farmland and grassland, and the farmland and forestland were
9.1 and 5.8%, respectively. The MARE between SWC of

forestland and farmland and the forestland and grassland were
7.8 and 3.9%, respectively. The prediction accuracy for
MTSD 2 was relatively lower than MTSD 1 (Fig. 3).

Fig. 3 Observed and predicted average soil water content (SWC) based on the most temporally stable depth (MTSD 1) of each land use during the
validation period for a grassland, b farmland, and c forestland, respectively

Table 5 The most temporally stable depth (MTSD 2), the associated
mean relative difference (MRD), and its standard deviation (SDRD) for
grassland, farmland, and forestland, respectively

Land use MTSD 2 MRD (%) SDRD (%)

Grassland (farmland) 20 32.1 3.9

Forestland (farmland) 10 17.1 9.5

Farmland (grassland) 50 − 18.8 1.6

Forestland (grassland) 20 4.5 4.4

Grassland (forestland) 20 − 22.9 4.2

Farmland (forestland) 20 − 42.2 4.7

Land uses in the brackets indicate soil water content (SWC) of other land
uses are predicted by the SWC at MTSD 2 of this land use
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However, the accuracy of MTSD 2 was sufficient for
predicting SWC under other conditions such as < 10%
(Peterson and Wicks 2006). These results showed that the
profile mean SWC of a land use can be predicted using mea-
surements of depth from other land uses based on the temporal
stability analysis. The differences in the RE between observed
and predicted profile mean SWCs were not obvious for each
pair of land uses, indicating that the prediction accuracy was

independent of land use. Thereafter, every land use would be
select randomly during the MTSD 2 identification process. It
has been reported that the soil water status can affect the esti-
mation accuracy (Gao et al. 2015a) using the temporal stabil-
ity analysis. Gao et al. (2015a) observed that the mean SWS
values of 0–0.4-m depth and the RE were significantly and
positively correlated (P < 0.05). However, similar results were
not found in this study, which could be attributed to the small

Table 6 Profile average soil water content (SWC, cm3 cm−3) and the
relative error (RE, %) between the measured and predicted SWC during
the validation period based on the SWC measurements at the most

temporally stable depths (MTSD 2) of other land uses for grassland,
farmland and forestland, respectively

Date SWCgrassland Farmland Forestland SWCfarmland Grassland Forestland SWCforestland Farmland Grassland

Aug.-26th 0.36 − 1.5 − 8.3 0.52 12.1 2.6 0.30 − 12.9 − 5.2
Sept.-01st 0.39 − 4.2 0.8 0.55 10.0 9.6 0.33 − 9.6 − 3.8

Sept.-20th 0.40 − 1.6 − 1.7 0.55 7.2 7.0 0.33 − 6.0 − 2.5
Sept.-27th 0.39 − 3.3 0.2 0.54 6.1 8.5 0.33 − 8.2 − 5.3

Oct.-04th 0.38 − 4.2 − 3.6 0.53 9.4 5.2 0.32 − 9.9 − 4.7
Oct.-11th 0.39 − 3.0 − 0.8 0.54 5.9 7.8 0.33 − 8.0 − 5.0
Oct.-18th 0.36 − 1.8 − 8.4 0.52 9.0 − 0.1 0.32 − 7.2 − 1.7

Oct.-25th 0.33 0.3 − 18.3 0.49 11.0 − 10.2 0.30 − 8.1 1.3

Nov.-01st 0.37 − 3.9 − 9.2 0.54 11.0 5.5 0.33 − 3.9 3.8

Nov.-08th 0.36 − 3.2 − 9.6 0.51 9.3 − 1.2 0.32 − 4.9 0.6

Fig. 4 Predicted profile distributions of soil water content (SWC) of each
land use based on the SWC measurements of other land uses at the most
temporally stable depths (MTSD 2). The red, green, and blue circles

indicate SWCs predicted by MTSD 2 of farmland, grassland, and forest-
land, respectively
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change of mean SWC during the validation period. The range
of mean SWC was only 0.07, 0.06, and 0.03 cm3 cm−3 for
grassland, farmland, and forestland, respectively (Table 6).

The profile distribution of SWC for each land use was
further evaluated using the measurement data of other land
uses using Eq. (7) (Fig. 4). The profile distributed SWC of a
land use also can be predicted using MTSD 2 of other land
uses with a high prediction accuracy. In this study, the profile
distributed SWC of grassland and forestland were predicted
using the measurement of MTSD 2 of farmland with linear R2

values of 0.91 and 0.88, respectively, and corresponding
RMSE values of 0.02 and 0.03 cm3 cm−3 (Fig. 4). Likewise,
the profile distributed SWC of farmland and forestland were
predicted with linear R2 values of 0.97 and 0.87, respectively,
and corresponding RMSE values of 0.02 and 0.04 cm3 cm−3.
The profile distributed SWC of farmland and grassland were
predicted with linear R2 values of 0.95 and 0.86, respectively,
and corresponding RMSE values of 0.02 and 0.02 cm3 cm−3

(Fig. 4). The highR2 values were comparable to other research
which used either temporal stability analysis (Gao et al.
2015a) or a polynomial regression combined with artificial
neural networks (Bono and Alvarez 2012). For example,
Gao et al. (2015a) used a single location measurement in the
0–0.4-m soil depth to predict SWS of 0.4–0.8-, 0.8–1.2-, and
1.2–1.6-m depths, with R2 values were 0.93, 0.79, and 0.72,
respectively. However, the mean R2 values of 0.81 derived
from data of 80 locations in their study were relatively lower
than the mean R2 values of 0.91 derived from data of only 4 or
5 soil depths in this study. This result indicated that the dy-
namic changes of SWS in shallow soil depth decreased the
prediction accuracy of deep soil depth SWS (Hu and Si 2014).
Thus, surface depths with inconstant soil moisture should be
removed to obtain a higher prediction accuracy. This result
also illustrated that the MTSD 2 used for SWC prediction
can be identified only by several limited depths, thereby in-
creasing the applicability of the temporal stability by reducing
a large amount of data measurement and processing activities.

4 Conclusions

This study assessed the temporal stability of profile SWC and
evaluated the feasibility of using SWC depth measurements to
predict root-zone SWC of other land uses in a karst depression
area. The differences in profile mean SWC were significant
(P < 0.05) between land uses mainly due to the diverse water
consumption characteristics of vegetation. This result can be
used to direct the vegetation restoration in karst critical zone.
The vertical CVP of the SWCwas lower than in the horizontal
dimension, and the CVP across soil profile of the SWC was
significantly higher than in the time series, indicating that the
profile SWC of each land use was more temporally stable.
Strong temporal persistence was acquired in vertical patterns

of SWC for the same land uses, while the similarity of the
vertical patterns of SWC was relatively weak between the
different land uses. The SWC at a depth can not only be used
to predict profile mean SWC of the same land use but also
could be used to predict profile mean and/or distributed SWC
of other land uses with high accuracy. This result is important
for water resource management, especially for regions where
there existed a variety of land uses. This study verified that the
temporal stability technique is a powerful tool in estimating
soil water status and further expanded the scope of temporal
stability analysis.
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