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Abstract
Purpose With the development of heavy industry, urban soil suffers serious pollution, which threatens the sustainable develop-
ment of cities. Understanding the spatial distribution characteristics of surface soil pollution aids in pollution prevention and
control and promotes sustainable development.
Materials and methods We use China’s Baotou as an example. Based on the data of 2820 sampling points in main urban areas
and some suburban areas of Baotou, we constructed a relationship network model for sampling points in surface soil by using the
complex network method. We combined the network method with spatial geographic information to analyze the spatial agglom-
eration characteristics of the surface soil pollution in Baotou China.
Results and discussion Sampling points at Dalahai Village (including 506D, 538B, and 538D) and Hayenaobao Village (includ-
ing 509C, 541A, and 541C), Puerhantu Town within the Kundulun District have the most serious pollution problems, and they
are all concentrated in the tailings dam. Sampling points 328D and 544A are scattered in the Leng Community, Kunhe Town,
Kundulun District and Changhan Village, Haringer Township, Jiuyuan District, but they have a close co-anomaly relationship
with the tailings dam. We suggest that these areas should be unified to give priority to pollution control. There is an obvious
difference for Al2O3, B, Hg, and U, which are abnormal in the power plant ash storage pools, but normal at the tailings dam.
Consequently, pollution control for power plant ash storage pools needs to be different from pollution control at the tailings dam.
Sampling points at the Fengying Community (including 580A and 580B), Kunhe Town, Kundulun District, and Gaoyoufang
Village (579D and 643B), Rare Earth Road, Qingshan District as well as other sampling points upstream of the Kundulun River
have a close co-anomaly relationship with the tailings dam. It is necessary to strengthen the purification treatment of sewage
upstream of the Kundulun River to reduce the spread of pollutants.
Conclusions These results provide a theoretical basis for the government to formulate specific cross-regional collaborative
governance measures.

Keywords Complex network . Geochemistry elements . Pollution assessment . Spatial distribution . Surface soil pollution .

Urban soil

1 Introduction

As part of the Earth’s pedosphere, urban soil has achieved
certain ecological, environmental, and economic functions,
working as both the source and sink of urban pollutants
(Rodriguez-Seijo et al. 2017; Yang et al. 2017). Therefore,
the pedosphere is related to the quality of urban ecological
environments and human health (Simon et al. 2013; Zhang
et al. 2015). With the rapid development of industrialization
and urbanization, soil pollution caused by metals and metal-
loids is a serious environmental problem especially heavy
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metal pollution in the surface soil (Wei and Yang 2010;
Yaylali-Abanuz 2011; Hu et al. 2013; Rodriguez-Seijo et al.
2017). Metal and metalloid contamination in urban local areas
spreads through water and air, and eventually precipitates in
other soil regions (Chen et al. 2005; Ajmone-Marsan and
Biasioli 2010; Bai et al. 2016; Zohar et al. 2017). Therefore,
it is necessary to analyze the spatial distribution of soil pollu-
tion. Moreover, it is critical to identify soil regions with the
same or similar pollution problems for collaborative gover-
nance of trans-regional soil pollution.

Currently, studies on the spatial distribution of heavy metals
in urban soil focus on the analysis of heavymetal content in soil
samples from different land use patterns (Fu and Wei 2013;
Tume et al. 2014; Zhang et al. 2015; Perez-Sirvent et al.
2016; Zhao and Hazelton 2016; Bourliva et al. 2017; Zong et
al. 2017). However, these studies lack detailed research on the
spatial agglomeration characteristics of urban soil pollution.
Literature on trans-regional pollution involving collaborative
governance is primarily explanatory. In addition, these studies
focus on researching large regional backgrounds from a macro
perspective. These studies mainly research the importance of
cross-regional collaborative governance (Bodin 2017), theoret-
ical benefits and constraints (Bodin et al. 2016), and the impor-
tance of leadership (Emerson et al. 2012). However, few studies
are based on a regional-scale background. Furthermore, there is
a lack of research on identifying specific pollution areas that
need to be coordinately controlled.

The analysis of geochemical elements in urban soil contains
abundant geological information. Studying the abnormal con-
tent of chemical elements in soil is an important basis for es-
tablishing environmental quality standards as well as pollution
remediation targets. The relationship between soil sampling
points and geochemical elements is a complex network.
Based on geochemical element content data in urban soil sam-
pling points, this paper uses the complex network method to
construct relationship networks among sampling points. The
complex network method is an effective tool for describing
the relationship between entities and entity status (Fan et al.
2016;Wang et al. 2016), and it can also analyze the relationship
among soil sampling points. Specifically, the community divi-
sion algorithm in complex networks can divide networks into
different communities. The links between nodes within one
community are relatively tight, and the connections between
different communities are relatively sparse (Barigozzi et al.
2011; Zhong et al. 2014). Thus, we analyzed the spatial ag-
glomeration characteristics of soil pollution by using the com-
munity division method. On this basis, we summarized the
spatial distribution characteristics of soil pollution and identi-
fied the soil regions with same or similar pollution problems.

Baotou City, located in the western part of the Inner
Mongolia Autonomous Region of China, is one of the earliest
industrial bases in ethnic minority areas of China. With the
development of industrialization and urbanization, Baotou has

become an important industrial city with metallurgical, me-
chanical, and electric power; meanwhile, the urban soil has
become seriously polluted. The object of this paper is to study
the surface soil in the main urban areas of Baotou and some
suburban areas. This paper combines basic geochemical anal-
ysis with the complex network method. Furthermore, we an-
alyze the spatial agglomeration characteristics of Baotou sur-
face soil pollution. Finally, we identify soil regions with the
same or similar pollution problems and summarized the spa-
tial distribution characteristics of soil pollution.

2 Materials and methods

2.1 Study area, data, and preparation

The scope of the sampling area is focused on the main urban
zone and some suburban areas in and around Baotou. The
latitude and longitude for the sample collection area are as
follows: north latitude 40° 30′–40° 45′, east longitude 109°
34′–110° 12′. The 1:50000 soil bulk density measurement area
is 705 km2. The sampling density is 4 points/km2. The number
of samples is 2820. The sample collection area primarily
covers a steel and iron industrial park, the Qingshan District,
the Kundulun District, the Donghe District, the Kundulun
River, the Sidaosha River, and some suburban areas. The steel
and iron industrial park, located west of the Kundulun District
in Baotou, covers an area of 63.94 km2. On the west side of
the Kundulun River is a steel factory, and a residential area is
located on the east bank of the Kundulun River. Southwest of
the steel and iron industrial park is a tailings dam, which
covers an area of 11 km2. The tailings dam is a Brare earth
lake,^ containing approximately 1.35 t of tailings and approx-
imately 15 million cubic meters of water. The Kundulun River
is the main industrial sewage river, and the Sidaosha River is
the main living sewage river in Baotou. A description of the
soil sample collection method is as follows: the sampling
depth is 20 cm, the original weight of each sample is approx-
imately 500 g, and every 4 samples were collected at one field
number and marked as filed number-A/B/C/D.

The data are derived from a subsidiary of the Geological
Survey of China. Data include map numbers, field sampling
point coordinates, field numbers, and 26 analysis indexes. The
analytical indicators include pH and 25 geochemical elements.
Advanced instrument and a reasonable supporting analysis
method are used in soil sample multi-element analysis and test-
ing. The main analytical instruments are X-ray fluorescence
(XRF), inductively coupled plasma mass spectrometry (ICP-
MS), and inductively coupled plasma optical emission spec-
trometry (ICP-OES). The most important elemental analysis
methods are shown in Table 1. We strictly monitor the quality
of various samples by standard reference materials, internal lab-
oratory inspections, password checks, and external inspections.
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We randomly selected 5% of the samples for repeated analysis.
The pass rate is 100%. External inspection results showed that
the relative error of most elements is less than 20%.

Tomake the data processingmore accurate and convenient,
we performed a pretreatment on the original data, as is ex-
plained below.

The pH index data is not complete. We chose 25 indi-
cators, excluding pH, for analysis. These 25 indicators in-
clude 17 metal elements (Al2O3, Cd, Ce, Co, Cr, Cu,
Fe2O3, K2O, La, Mn, Mo, Ni, Pb, Th, U, Y, Zn) and 8
metalloid elements (As, B, C, F, Hg, P, S, Se). Units for
Fe2O3, Al2O3, and K2O are 10−2, and units for the others
are 10−6. The original data A(aij):

A ¼
a1;1 … a1;25
⋮ aij ⋮

a2820;1 … a2820;25

2
4

3
5;

where aij represents the content of element j at sampling point i.
Currently, there are three different evaluation guidelines

for soil pollution (Chen et al. 2011; Xia and Lou 2006).
The first one is the lower limit for environmental soil
anomalies. The second one is the environmental soil qual-
ity standard (GB15618-1995). The third one is the thresh-
old value for soil pollution. The GB15618-1995 soil envi-
ronmental quality standard only contains eight types of
heavy metals and two types of organics. In addition, be-
cause of the great variety of soil in China, it is difficult to
realistically reflect the local soil contamination by a unified
national standard value. The lower limit value for environ-
mental soil anomalies is critical in revealing whether there
is pollution in soil. If the chemical substance content in soil
is higher than this limit, we must be alert (Xia and Lou
2006). The threshold value for soil pollution, which can
be determined through a risk assessment of polluted soil,
is critical for determining whether or not the soil is con-
taminated. This paper primarily studies the abnormal situ-
ation of the surface soil in Baotou. Therefore, we chose the
lower limit for the environmental soil anomalies to prelim-
inarily analyze the soil pollution situation.

Baotou is one of the cities in the Hetao area of Inner
Mongolia. The soil types, pH levels, and the geographical
environment of Baotou are similar to the entire Hetao area,
and climate conditions are the same. Currently, there is no
unified geochemical background value of surface soil in
Baotou. Therefore, this paper uses the anomaly lower limit
value calculated from the surface soil characteristics of the
Hetao area in Inner Mongolia to evaluate the soil pollution
situation in Baotou. In this paper, we adopted the traditional
method for calculating the lower limit anomaly (Galuszka
2007; Matschullat et al. 2000). We used the average (X) and
standard deviation (S) of element contents in the surface
soil of the Hetao area to calculate X ± 2 × S. We used these
two values as upper and lower iterations to eliminate data
until outliers can be eliminated. Furthermore, we used re-
maining data as background data to calculate the mean and
standard deviation. The formula for calculating the lower
limit anomaly is as follows (Matschullat et al. 2000;
Galuszka, 2007):

M the lower limit of anomalyð Þ ¼ X þ 2� S: ð1Þ

2.2 Spatial analytical methods

2.2.1 Construction of co-anomaly and threshold networks

Co-anomaly network: We selected the lower limit of geo-
chemical anomalies in the Hetao, Inner Mongolia area as
the standard value (as is shown in Table 2). Based on these
standard values, elemental content from surface soil sam-
pling points above the lower limit anomaly was screened
out. Normal is represented by B0.^ Element content higher
than the lower limit anomaly is represented by B1^.
BAnomaly^ is referred to as B1^. If there is no special
explanation, anomaly in this paper means that the element
content is higher than the lower limit anomaly. If the con-
tent of one or more elements is anomaly at one sampling
point, we call it abnormal sampling point. The original data

Table 1 Measurement instruments and methods for determining soil geochemistry (Liao et al. 2012)

Element Instrument Methods

As, (Ce), (Cr), (Cu), (La), (Mn), Nb, Ni,
S, P, (Pb), (Y), Al2O3, Fe2O3, K2O

XRF Use powder samples to prepare tablet preparation and measure samples directly.

Cd, (Ce), (Co), (La), (Pb), Th, U, (Y) ICP-MS Decompose samples with hydrofluoric acid, nitric acid, and perchloric acid. Dissolve
samples in aqua regia and transfer it to a polyethylene tube. A portion of the clear
solution was diluted with nitric acid. Then, use ICP-MS to test element content.

(Co), (Cr), (Cu), (Mn), Zn ICP-OES Decompose samples with nitric acid, hydrofluoric acid, and perchloric acid. Dissolve
samples with aqua regia, and transfer it to a 25-ml plastic tube. Then, use ICP-OES
to test element content.

The bracketed elements are compared using two analytical methods to verify and ensure the accuracy of the analytical data
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matrix A is transformed into a 0–1 matrix B(bij). The ma-
trix B represents the elemental anomaly situation.

bij ¼ 0; content of element j is normal at coordinate i
1; content of element j is abnormal at coordinate i

�
ð2Þ

By applying the element anomaly situation matrix B to
formula (3) (Li et al. 2014), we obtained the co-anomaly ma-
trix C(cij).

C ¼ BB
0 ð3Þ

cij ¼ 0; there is no common abnormal element between sampling points i and j
x; there are x common abnormal elements between sampling points i and j

�
ð4Þ

where B′ is the transposedmatrix ofB, matrixC is a symmetric
matrix, and the data of the diagonal represent the number of
abnormal elements at one coordinate point. Because this paper
studies the relationship between different abnormal sampling
points, we only retained the data above the diagonal. Thus, we
obtained the final co-anomaly matrix C(cij). Sampling points
are as nodes. If there are common abnormal elements between
sampling points, we define that there are co-anomaly relation-
ships between these sampling points. Co-anomaly relation-
ships for sampling points are as edges. In addition, the number
of common abnormal elements between sampling points is as
edge weight. Thus, the undirected weighted co-anomaly net-
work was constructed.

Threshold networkWe defined the number of common abnor-
mal elements between abnormal sampling points as the inten-
sity of the co-anomaly relationship between sampling points.
The more common abnormal elements there are between two
sampling points, the stronger the co-anomaly relationship. In
contrast, the fewer common abnormal elements, the weaker the
co-anomaly relationship. To observe the characteristics of co-
anomaly networks more clearly, we used the minimum number
of common abnormal elements as the threshold. We started the
network at the 0 node and gradually added edges in order of
edge weight (from large to small). We screened co-anomaly
networks with thresholds of 18, 17…1 individually. The thresh-
old of τ = i denotes edge weight greater than or equal to i.

2.2.2 Analysis of network topology characteristics

Average weighted degree In weighted networks, the weighted
degree is used to measure the correlation strength between one
node and other nodes. In this paper, the average weighted
degree Ravg(w) indicates how many common abnormal

elements exist between one sampling point and other sam-
pling points in the Baotou surface soil, on average. The for-
mula is as follows:

Ravg wð Þ ¼ 1

n
∑
n

j¼1
eijwij ð5Þ

The variable eij is the connection property between nodes i
and j. The variablewij is the edge weight between nodes i and j.

Average weighted clustering coefficient: In this paper, the
co-anomaly network is an undirected weighted network. The
average weighted clustering coefficient represents the close
degree of co-anomaly relationships among surface soil sam-
pling points. The greater the weighted clustering coefficient of
one node, the closer the co-anomaly relationship is among
other sampling points connected with that sampling point.
The formula is as follows (Barrat et al. 2004; Gao et al. 2011):

Ci ¼ 1

si ri−1ð Þ ∑ j;k
wij þ wik

2
eijeikejk ð6Þ

C
0
i ¼

1

n
∑iCi ð7Þ

Ci is the weighted clustering coefficient of node i. The
variable C

0
i is the average weighted clustering coefficient for

co-anomaly networks. The variable ri is the degree of node i.
The variable si is the point intensity value of node i in co-
anomaly networks. Finally, eijeikejk represents whether nodes
i, j, and k can constitute a triangle. If the value is 1, it means
that the three nodes are connected to each other, and they can
form a triangle. If the value is 0, it means that the three nodes
cannot form a triangle.

Community analysis: Community division is used to di-
vide the nodes into groups. Nodes in a group are densely

Table 2 The lower limit of geochemical anomalies in the Hetao, Inner Mongolia area

Element As Al2O3 B C Cd Ce Co Cr Cu F Fe2O3 Hg K2O

M 16.48 13.54 71.72 2.87 0.21 96.80 16.15 81.36 33.19 854.42 5.54 0.07 2.65

Element La Mn Mo Ni P Pb S Se Th U Y Zn

M 50.18 772.98 1.00 40.11 984.38 25.95 1114.68 0.30 14.35 3.60 28.32 91.54

Units for Fe2O3, Al2O3, and K2O are 10−2 ; the others are 10−6
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connected, and links between groups are sparse. We chose a
heuristic method to divide the network into communities. The
algorithm, based on the modular variables, can measure den-
sity within the community and between communities. Q rep-
resents the degree of modularity, and its value is between − 1
and 1. The equation is as follows:

Q ¼ 1

2m
∑i; j wij−

AiAj

2m

� �
δ Ci;C j
� �

; ð8Þ

where Ai =∑iwij is the sum of the weights for all edges con-
nected to node i. IfCi =Cj, δ(Ci,Cj) = 1; otherwise, δ(Ci,Cj) =
0. The sum of weights for all connections in the network is
represented by m =∑i, jwij.

In this paper, community division of co-anomaly net-
works is divided into two processes. First, we assumed each
node i is a community. For every node i, when that node
moved to its adjacent community j, we calculated the incre-
ment ofmodule degreewith theΔQ algorithm (Blondel et al.
2008). If ΔQ is negative, node i remains in the initial com-
munity. IfΔQ is positive, node imoves to adjacent commu-
nity j. In addition, themaximumvalue ofΔQwas calculated.
The processwas repeated until therewas no further improve-
ment for all nodes. In the second phase,we constructed a new
network whose nodes are the communities found in the first
stage. The weight between two different communities is the
sum of the number of links between nodes from those two
communities. In the new network, edges between nodes
from the same community are considered self-loops. After
the second stage, the first phase was re-applied to the new
network. The two phases iterate until there are no new
changes. Thus, the modularity is maximized.

ΔQ ¼ ∑cin þ Ai;in

2m
−

∑totþ Ai

2m

� �2
" #

−
∑in
2m

−
∑tot
2m

� �2

−
Ai

2m

� �2
" #

ð9Þ

The sum of weights for all links inside community C is
∑cin. ∑tot is the sum of weights for links adjacent to all nodes
in communityC. Ai, in is the sum of the weights for links from i
to all nodes in community C.

In this paper, we used the community method to analyze
spatial agglomeration characteristics of co-anomaly relation-
ships among surface soil sampling points in Baotou.
Furthermore, we identified areas with similar pollution prob-
lems in the surface soil of Baotou.

2.2.3 Spatial analysis of co-anomaly networks with different
thresholds

The intensity of the co-anomaly relationship among sampling
points in Baotou may be related to the distribution area and
distance between sampling points. We first analyzed the rela-
tionship between anomaly intensity and distance of co-
anomaly sampling points. According to the distance formula

(10), we calculated the distance between sampling points and
constructed the space distance matrix D(dij).

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x j
� �2 þ yi−y j


 �2
r

ð10Þ

D ¼
d1;1 ⋯ d1;2820
⋮ di; j ⋮

d2820;1 ⋯ d2820;2820

2
4

3
5

(xi, yi) and (xj, yj) are coordinates of sampling points i
and j. Variable di, j is the distance between sampling points
i and j. We analyzed the relationship between the number
of common abnormal elements and the spatial distance of
co-anomaly points.

Because there are many abnormal sampling points in sur-
face soil, the abnormal intensity of sampling points is differ-
ent. It is difficult to clearly identify the spatial distribution
characteristics of the co-anomaly relationship among abnor-
mal sampling points by analyzing the entire co-anomaly net-
work. Therefore, we used the Spearman correlation coefficient
formula (11) to calculate correlation coefficients between the
number of co-anomaly elements and the spatial distance of
abnormal sampling points. The Spearman rank correlation
method is used to analyze whether there is correlation between
levels xi and yi. We used the Spearman correlation coefficients
to determine whether there is a correlation between two vari-
ables by examining whether the two variables (X and Y) are
synchronous. Variables X and Y were sorted (ascending or
descending order, respectively) to get two sets of elements x
and y. The elements in set x subtracted the elements in set y
correspondingly. In this way, we generated a list of differences
(set d, where di = xi − yi). The Spearman correlation coefficient
formula is shown below (Gauthier 2001):

γ ¼ 1−
6∑N

i¼1d
2
i

N N2−1
� � ð11Þ

Threshold networks with large correlation coefficients and
strong variation can show clear spatial distribution of anoma-
lous relationships among abnormal sampling points.
Therefore, on the basis of the value and changing situation
of correlation coefficients, we selected threshold networks
with clear spatial distributions for further research.

3 Results and discussion

3.1 Overall analysis of surface soil pollution in Baotou

The co-anomaly networks constructed in this paper represent
the co-anomaly relationship between abnormal sampling
points. There are 2820 sampling points. As is shown in
Table 3, there are 1953 sampling points with co-anomaly
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relations in the threshold 1 network, which make up approx-
imately 69.25% of points. According to the average degree of
the threshold 1 network, each surface soil sampling point in
Baotou has co-anomaly relationships with, on average, 1173
sampling points. The above indicates that there are common
abnormal elements amongmost sampling points in the Baotou
surface soil, and the sampling points with co-anomaly rela-
tionships are relatively common. However, according to the
average weighted degree of the threshold 1 network, we know
a sampling point, on average, has 2371 abnormal elements in
common with other sampling points. In other words, on aver-
age, one sampling point has 2 abnormal elements in common
with another sampling point. This implies that co-anomaly
relationships among sampling points has a weak intensity. In
contrast, as is shown in Table 3, Fig. 1, and Fig. 2, there are
4515 edges in the threshold 11 network, accounting for only
0.39% of edges in the threshold 1 network. That is, co-
anomaly relationships between sampling points with a co-
anomaly intensity greater than 11 only account for 0.39% of
all co-anomaly relationships in the Baotou surface soil. The
above signifies that although the sampling points with co-
anomaly relationships are relatively common in Baotou sur-
face soil, the sampling points with high-intensity anomalies
are only in some local areas. The results are in agreement with
Liao and Xu as the overall pollution of surface soil in Baotou

is not extensive. Serious soil pollution is primarily distributed
in some local areas (Xu et al. 2011; Liao et al. 2012).

The weighted clustering coefficient of a node reflects the
closeness degree among neighborhoods for this node. The clos-
er the neighbor nodes are, the higher the clustering coefficient is
for the node (Gao et al. 2011; Li et al. 2014). As is shown in
Fig. 3, the average weighted clustering coefficient in co-
anomaly network in Baotou is relatively high. The average
weighted clustering coefficient of the threshold 18 network is
0.643, and the average weighted clustering coefficients for oth-
er threshold networks are all between 0.75 and 0.90. This re-
veals that there are close links among abnormal sampling points
in the surface soil in Baotou. Once pollution spreads from an
abnormal sampling point to its connected sampling points, then
pollutionmay generally spread among those neighbor sampling
points, resulting in a wider range of soil contamination.

On the basis of understanding the overall situation of the
surface soil in Baotou, we identified key nodes in co-anomaly
networks to further analyze soil pollution. In co-anomaly net-
works, the sampling points with large weighted degrees have
important information that indicates soil pollution. The greater
the weighted degree of a node is, the greater the pollution
influence of a sampling point. If some pollutants are detected
in some sampling points with large weighted degrees, then
areas with co-anomaly links with those sampling points are
likely to be contaminated. In co-anomaly networks, nodes
with larger weighted degrees are mainly distributed in steel
and iron industrial parks, as well as power plant ash storage
pools. Liao et al. studied the spatial distribution characteristics
of heavy metals such as Cd and Hg in the Baotou surface soil.
Their results confirm that the local area mainly dominated by
smelting is significantly polluted, and the environmental qual-
ity in the rest areas is good in general (Liao et al. 2012).
Therefore, identifying sampling points with a greater impact
can provide reference to a priority choice area for soil pollu-
tion prevention and control.

3.2 Identification of typical networks of surface soil
pollution in Baotou

Figure 4 is a scatter plot showing the number of common
abnormal elements and the spatial distance between co-
anomaly sampling points. The following conclusions can be
drawn from the figure: (1) the distances between abnormal
sampling points with large-intensity co-anomaly relations
are small. This indicates that surface soil areas with serious

Table 3 The co-anomaly network
index statistics Network The number

of nodes
The number
of edges

Average
degree

Average
weighted degree

Average weighted
clustering coefficient

The threshold 1 1953 1,145,486 1173.053 2371.564 0.894

The threshold 11 176 4515 51.307 636.045 0.837

Fig. 1 The threshold 1 co-anomaly network
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and similar pollution problems are relatively close in distance.
Identifying these areas can help us focus on serious soil pol-
lution in Baotou. (2) There are also co-anomaly relationships
between the sampling points that are far away from each other.
This indicates that there may be the same or similar pollution
in different areas, although the distance between these areas is
far. Urbanization rarely occurs homogenously across an entire
watershed, resulting in spatially variable of runoff and differ-
ing contributions of contaminating metals (Tang et al. 2005;
Zohar et al. 2017). Therefore, identifying these areas will help

us control soil uniformly. (3) In the case of low thresholds, the
relationship between the number of common abnormal ele-
ments and the spatial distance of co-anomaly sampling points
is almost identical. However, there is a clear break at threshold
14 in the scatter plot. This implies that the co-anomaly rela-
tionship between sampling points is very common in surface
soil in Baotou, but this general co-anomaly relationship is
only a low intensity co-anomaly. The high-intensity co-anom-
aly relationship is not universal in Baotou surface soil. The
high-intensity co-anomaly networks are unique, and the

Fig. 2 The threshold 11 co-
anomaly network

Fig. 3 The variation curve of
average weighted clustering
coefficients in co-anomaly
networks with different
thresholds
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regional distribution characteristics of high-intensity co-
anomaly networks are more obvious. Consequently, we fo-
cused on the analysis of high-intensity co-anomaly networks.

We used the correlation coefficients between the number of
common abnormal elements and the spatial distance to select
unique threshold networks to do further research. By increasing
the correlation coefficients, some connections would be filtered
out and the number of connections among the points would be
reduced (Tang et al. 2014). Threshold networks with large cor-
relation coefficients and large variation may represent networks
with obvious spatial distribution. We took the minimum num-
ber of common abnormal elements as the threshold. For differ-
ent threshold networks, we calculated the correlation coeffi-
cients between the number of common abnormal elements
and the distance. In addition, we further analyzed the variation
of correlation coefficients for different threshold networks.

Figure 5 shows the relationships between the number of
common abnormal elements and spatial distances in different

threshold networks. There is a negative correlation between the
number of common abnormal elements and the spatial distance.
In general, the farther the distance between sampling points, the
fewer common abnormal elements. Conversely, the closer the
distance, the higher number of common abnormal elements.
Figure 5 shows that the absolute values of negative correlation
coefficients for networks with threshold 17, 16, 15… 11 are
larger than those for the other threshold networks. This indi-
cates that the relationships between co-anomaly relationships
and the spatial distances are relatively clear in threshold 17, 16,
15… 11 networks. The absolute values of the negative correla-
tion coefficients for networks with a threshold of 10, 9… 1 are
relatively small and stable. The above is consistent with the
clear break phenomenon in Fig. 4. In addition, threshold 18,
17, 16… 11 networks represent strong co-anomaly relation-
ships. As a result, we selected threshold 18, 17, 16… 11 net-
works to analyze the spatial agglomeration characteristics of
surface soil pollution in Baotou.

3.3 Spatial agglomeration characteristics of surface
soil pollution in Baotou

Recently, many methods such as environmental magnetic
methods and geostatistical analysis have been successfully
applied as a proxy indicator to determine spatial distribution
of soil pollution (Blundell et al. 2009; Zhang et al. 2015). In
this paper, the co-anomaly relationship between sampling
points signifies soil sampling points with the same or similar
pollution problems. Analyzing the co-anomaly relationship
between soil sampling points is helpful for us to identify areas
with similar pollution problems. We analyzed the spatial ag-
glomeration characteristics of co-anomaly networks with dif-
ferent thresholds, which allows us to explore the spatial dis-
tribution of co-anomaly relationships of sampling points in

Fig. 4 Scatter plot showing the relationship between the number of
common abnormal elements and the spatial distance

Fig. 5 Variation curve of
correlation coefficients between
co-anomaly intensity and spatial
distances in different threshold
networks
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surface soil from different magnification angles. Thus, the co-
anomaly network analysis could present an alternative way to
extract information from large raw environmental datasets
(Fan et al. 2016). On this basis, we identified areas with sim-
ilar pollution problems in the surface soil of Baotou. Then, we
took corresponding pollution control measures for areas with
different degrees of pollution. Figure 6 shows the threshold
18, 17, 16… 11 networks and their spatial distribution maps.

The threshold 18, 17, and 16 networks are divided into two
communities. The red nodes belong to community 1, and the
blue nodes belong to community 2. In the threshold 18 net-
work, nodes from community 1 are concentrated around the
tailings dam. All nodes from community 1 have the same 18

abnormal elements: Cd, As, Mo, F, Se, S, P, C, La, Ce, Mn,
Fe2O3, Ni, Cu, Zn, Pb, Th, and Y. This indicates that 506D,
509C, 538B, 538D, 541A, and 541C and the remaining sam-
pling points around the tailings dam have the most serious and
similar pollution problems. The tailings dam occupies a large
area of land used to pile up waste. Some tailings are exposed
directly to the air, resulting in a series of environmental prob-
lems (Li et al. 2011; Xu et al. 2011; Liao et al. 2012). We
should focus on these areas to prevent the spread of pollution
into other areas. In the threshold 17 and 16 networks, nodes
from community 1 are not only concentrated in the tailings
dam but also scattered in regions far away from the tailings
dam, such as 328D and 544A. Although 328D and 544A are

(a) The sampling points distribution map of the threshold 18 network 

 (d) The sampling points distribution map of the threshold 15 network (c) The sampling points distribution map of the threshold 16 network

 (b) The sampling points distribution map of the threshold 17 network 

(g) The sampling points distribution map of the threshold 12 network (h) The sampling points distribution map of the threshold 11 network

(f) The sampling points distribution map of the threshold 13 network(e) The sampling points distribution map of the threshold 14 network

Fig. 6 Sampling points distribution maps of different threshold networks (maps (a) to (h) are threshold 18 to 11 networks' spatial distribution maps)
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far away from the tailings dam, these two nodes have 16 or 17
common abnormal elements with the nodes around the tail-
ings dam. This indicates that the two sampling points have
similar pollution problems to the tailings dam. Therefore, we
should take these two sampling points into account during the
treatment of seriously polluted areas around the tailings dam.
In general, the tailings dam and its surrounding soil are en-
richment areas of most elements, such as Pb, Zn, Cu, Ni, Cd,
As, F, etc. (Xu et al. 2011; Liao et al. 2012). The tailings dam
has serious, as well as similar, pollution problems, and should
be given priority for treatment. In addition, to prevent the
spread of pollutants to other areas, we should consider the
two sampling points of 328D and 544A. It is inefficient to
uniformly control polluted areas where sampling points are
loosely distributed and sparsely connected to each other.
Consequently, we propose a focus on the governance of core
sampling points. For example, the weighted degrees of 576C,
576B, 604C, and 548B sampling points are relatively large
and they have great pollution intensity. Moreover, those points
are closely linked to the sampling points around the tailings
dam, which suggests that we should first control these con-
taminated areas with limited funding.

The threshold 15, 14, 13, 12, and 11 networks are divided
into three communities. The red nodes belong to community
1, the blue nodes to community 2, and the green nodes to
community 3. Starting from the threshold 15 and 14 networks,
nodes from community 2 initially show concentrated distribu-
tion areas, which are mainly concentrated in the two power
plant ash storage pools. The remaining residue from coal
burning in the power plant caused the enrichment of many
elements. Previous studies have confirmed that waste from
coal-fired power plants causes radioactive contamination of
the surrounding soil (Mishra 2004). Common abnormal ele-
ments of sampling points in community 2 are primarily as
follows: Al2O3, B, C, Cu, Ce, Cd, Hg, La, Mo, Pb, S, Se,
Th, U, Y, and Zn. The distance between the ash storage pools
and the tailings dam is small. The ash storage pools havemany
of the same abnormal elements as the tailings dam. Liao et al.
confirmed that the contents of F, Zn, Ni, and Cu are all signif-
icant positive anomaly (Liao et al. 2012). Xu et al. concluded
that due to thermal power generation in the power plants, S
and Se elements agglomerated intensively in the surface soil
as the atmosphere settles, resulting in a large area of soil pol-
lution (Xu et al. 2011). However, sampling points at the ash
storage pools are obviously different from sampling points at
the tailings dam. Al2O3, B, Hg, and U are abnormal in the ash
storage pools, but normal in the tailings dam. Therefore, pol-
lution control for power plant ash storage pools needs to be
different from pollution control at the tailings dam. In the
threshold 15 and 14 networks, nodes from community 1 are
not only concentrated around the tailings dam, but some nodes
do not have a concentrated distribution area, such as 328D,
416B, 418C, 446A, 544A, 544B, 544D, and 607D. Those

sampling points are in close contact with the tailings dam.
Therefore, we should consider those sampling points for the
unified governance of the tailings dam. In the threshold 15 and
14 networks, nodes in community 3 have no concentrated
distribution area, but sampling points 576C and 576B are
closely related to sampling points in the tailings dam and the
ash storage pools. These sampling points have high pollution
intensity, and we should give priority to the treatment of these
contaminated areas with limited funding. Starting from the
threshold 13, 12, and 11 networks, the nodes from community
1 are not only distributed around the tailings dam but also
distributed upstream of the Kundulun River. Sampling points
579D, 580A, 580B, 643B, and the remaining sampling points
have many abnormal elements in common with the sampling
points around the tailings dam. Additionally, the common
abnormal elements are primarily As, Cd, Cu, F, Mo, Se, Mn,
Pb, and Zn. The enrichment of these elements in surrounding
surface soil is related to the sewage from industry (Liao et al.
2012; Xu et al. 2008). Therefore, when we control soil pollu-
tion in the tailings dam, we consider the sampling points up-
stream of the Kundulun River. In the threshold 13, 12, and 11
networks, the nodes from community 2 are concentrated not
only in the power plant ash storage pools but also in some
areas of the Donghe District (e.g., 732C, 733C, 805B, 806C,
806D). Soil pollution in the Donghe District is primarily
caused by an aluminum plant and a brick factory (Sun et al.
2016). Traffic emission and industrial plants are the two main
sources of heavy metal emission in urbanized areas (Chen et
al. 2010; Dayani and Mohammadi 2010). It has been proved
that the main enrichment elements are Cu, Pb, Zn, Cd, Hg, and
F in the Baotou residential area (Liao et al. 2012). The major
common abnormal elements of sampling points in the Donghe
District are Cd, Hg, and Pb, and the enrichment of these ele-
ments is primarily related to coal combustion, automobile ex-
haust emissions, and other human activities (Liao et al. 2012).
Finally, the remainder of the sampling points, which are pri-
marily the nodes from community 3, are scattered in a large
range, including 576C, 576B, 548B, 575C, 988A, 504C,
449A, 389D, 381A, and 941B. The weighted degrees of these
sampling points are large, which implies that these sampling
points have a strong influence and need to be controlled and
monitored vigorously.

4 Conclusions

The main purpose of this paper is to identify soil regions with
common pollution problems. We analyzed co-anomaly rela-
tionships between surface soil sampling points in main urban
areas and some suburbs of Baotou. On this basis, we con-
structed a co-anomaly network. We took the minimum num-
ber of common abnormal elements as a threshold and
screened co-anomaly networks at different thresholds.
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Combining the network community method with spatial geo-
graphic information, we analyzed the spatial distribution char-
acteristics of co-anomaly networks with different thresholds.
Furthermore, we analyzed the spatial agglomeration charac-
teristics of surface soil pollution in Baotou from different
threshold angles. Finally, we summarized the distribution area
of sampling points that have serious and common pollution
problems. The main research results are as follows:

1. In general, the overall amount of surface soil pollution in
Baotou is not extensive. Serious soil pollution is primarily
concentrated in the tailings dam, the power plant ash stor-
age pools, the Kundulun River, the Donghe District, and
the southeastern suburban area.

2. In this paper, we concluded that the sampling points from
surface soil in Baotou, which have the most serious and
common pollution problems, are mainly distributed in two
states. Sampling points around the tailings dam, such as
506D, 509C, 538B, 538D, 541A, and 541C, have the most
serious and similar pollution problems. The common ab-
normal elements in those sampling points are some heavy
metals and some radioactive elements. With the discharge
of industrial sewage, many abnormal elements and other
pollutants will spread to other areas, which will seriously
harm human health. Therefore, it is suggested that a uni-
fied priority governance should be carried out for these
above sampling points that have common pollution prob-
lems and are concentrated in the tailings dam. We should
investigate the tailings dam in detail and strengthen the
environmental quality monitoring around the pollution
source to fundamentally prevent further deterioration of
the environment. In addition, we should particularly con-
sider sampling points 328D and 544A, which are closely
related to the sampling points of the tailings dam, to pre-
vent the spread of pollution to other areas. In terms of the
other scattered areas with common and serious pollution
problems, we suggest selecting core sampling points for
key governance. For example, the weighted degrees of
576C, 576B, 604C, and 548B sampling points are large.
These sampling points have high pollution intensity. We
should give priority of the limited funding to the treatment
of these contaminated areas.

3. There are also some highly polluted areas in Baotou, such
as the power plant ash storage pools, the Donghe District,
and the Kundulun River. The distance between the ash
storage pools and the tailings dam is small, and the ash
storage pools have many of the same abnormal elements
as in the tailings dam. However, sampling points at the
ash storage pools are obviously different from sampling
points at the tailings dam. Al2O3, B, Hg and U are abnor-
mal in the power plant ash storage pools but normal in the
tailings dam. Therefore, pollution control of the power
plant ash storage pools needs to be different from the

tailings dam. Sampling points 579D, 580A, 580B,
643B, and others distributed upstream of the Kundulun
River have a close co-anomaly relationship with the sam-
pling points at the tailings dam. Consequently, we should
adopt a collaborative governance for the tailings dam and
the Kundulun River. We should control the pollution
source at the tailings dam, while strengthening the purifi-
cation treatment of the sewage in the Kundulun River. In
addition, soil pollution in the Donghe District is mainly
caused by human activities such as automobile exhaust
emissions and coal burning. Therefore, we propose to
strengthen collaborative governance on automobile ex-
haust emissions and coal burning in the Donghe District.

In this paper, we performed research on soil contamination.
We only analyzed the enrichment of elements in surface soil
and did not study the dilution of elements. In the future re-
search, wewill consider a study on element dilution for a more
comprehensive analysis.

Acknowledgments The authors would like to express their gratitude to
Haizhong An, Xiaoqi Sun, and Xueyong Liu, who provided valuable
suggestion. The authors would also like to thank AJE-American Journal
Experts for their professional suggestions regarding the language usage,
spelling, and grammar of this paper.

Funding information This research is supported by grants from the
National Natural Science Foundation of China (Grant No. 41701121), the
Beijing Youth Talents Funds (2017000020124G190) and the Fundamental
Research Funds for the Central Universities (Grant No. 2-9-2017-041).

References

Ajmone-Marsan F, Biasioli M (2010) Trace elements in soils of urban
areas. Water Air Soil Pollut 213(1–4):121–143

Bai Y, Wang M, Peng C, Alatalo JM (2016) Impacts of urbanization on the
distribution of heavymetals in soils along theHuangpuRiver, the drink-
ingwater source for Shanghai. Environ Sci Pollut Res 23(6):5222–5231

Barigozzi M, Fagiolo G, Mangioni G (2011) Identifying the community
structure of the international-trade multi-network. Physica A
390(11):2051–2066

Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The
architecture of complex weighted networks. Proc Natl Acad Sci U
S A 101(11):3747–3752

Blundell A, Hannam JA, Dearing JA, Boyle JF (2009) Detecting atmo-
spheric pollution in surface soils using magnetic measurements: a
reappraisal using an England and Wales database. Environ Pollut
157(10):2878–2890

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J Stat Mech: Theory
Exp. https://doi.org/10.1088/1742-5468/2008/10/P10008

Bodin O (2017) Collaborative environmental governance: achieving col-
lective action in social-ecological systems. Science 357(6352):659

Bodin O, Robins G, McAllister RRJ, Guerrero AM, Crona B, Tengo M,
Lubell M (2016) Theorizing benefits and constraints in collaborative
environmental governance: a transdisciplinary social-ecological net-
work approach for empirical investigations. Ecol Soc. https://doi.
org/10.5751/ES-08368-210140

J Soils Sediments (2019) 19:629–640 639

https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.5751/ES-08368-210140
https://doi.org/10.5751/ES-08368-210140


Bourliva A, Papadopoulou L, Aidona E, Giouri K (2017) Magnetic signa-
ture, geochemistry, and oral bioaccessibility of Btechnogenic^ metals
in contaminated industrial soils from Sindos Industrial Area, Northern
Greece. Environ Sci Pollut Res 24(20):17041–17055

Chen GG, LiangXH, Zhou GH, ZhangM, Lin CH (2011) Grade division
method for soil geochemical contamination and its application. Geol
China 38(6):1631–1639 (in Chinese)

Chen TB, Zheng YM, Lei M, Huang ZC, Wu HT, Chen H, Fan KK, Yu K,
WuX, Tian QZ (2005) Assessment of heavymetal pollution in surface
soils of urban parks in Beijing, China. Chemosphere 60(4):542–551

Chen X, Xia X, Zhao Y, Zhang P (2010) Heavy metal concentrations in
roadside soils and correlation with urban traffic in Beijing, China. J
Hazard Mater 181(1–3):640–646

Dayani M, Mohammadi J (2010) Geostatistical assessment of Pb, Zn and
Cd contamination in near-surface soils of the urban-mining transi-
tional region of Isfahan, Iran. Pedosphere 20(5):568–577

Emerson K, Nabatchi T, Balogh S (2012) An integrative framework for
collaborative governance. J Public Adm Res Theory 22(1):1–29

Fan XH, Wang L, Xu HH (2016) Characterizing air quality data from
complex network perspective. Environ Sci Pollut Res 23(4):3621–
3631. https://doi.org/10.1007/s11356-015-5596-y

Fu S, Wei CY (2013) Multivariate and spatial analysis of heavy metal
sources and variations in a large old antimony mine, China. J Soils
Sediments 13(1):106–116

GaluszkaA (2007) A review of geochemical background concepts and an
example using data from Poland. Environ Geol 52(5):861–870

Gao XY, An HZ, Liu HH, Ding YH (2011) Analysis on the topological
properties of the linkage complex network between crude oil future
price and spot price. Acta Phys Sin 60(6):068902 (in Chinese)

Gauthier TD (2001) Detecting trends using Spearman’s rank correlation
coefficient. Environ Forensic 2(4):359–362

HuYN, Liu XP, Bai JM, Shih KM, Zeng EY, ChengHF (2013) Assessing
heavy metal pollution in the surface soils of a region that had un-
dergone three decades of intense industrialization and urbanization.
Environ Sci Pollut Res 20(9):6150–6159

Li HJ, FangW, An HZ, Yan LL (2014) The shareholding similarity of the
shareholders of the worldwide listed energy companies based on a
two-mode primitive network and a one-mode derivative holding-
based network. Physica A 415:525–532

Li YJ, Wang JY, Zheng CL, Shui LY, Yi M, Cai L (2011) Characteristics
of heavy metal combined pollution in Baotou Tailing Dam and its
neighboring regions. Metal Mine 419:137–148 (in Chinese)

Liao L, Liu HL, Su MX, Duan HL, Wang JF, Zhao LJ (2012)
Geochemical characteristics of the soil from Baotou City, Inner
Mongolia and its environmental assessment. Geol Explor 48(4):
799–806 (in Chinese)

Matschullat J, Ottenstein R, Reimann C (2000) Geochemical back-
ground—can we calculate it. Environ Geol 39(9):990–1000

Mishra UC (2004) Environmental impact of coal industry and thermal
power plants in India. J Environ Radioact 72(1–2):35–40

Perez-Sirvent C, Hernandez-Perez C, Martinez-Sanchez MJ, Garcia-
LorenzoML, Bech J (2016) Geochemical characterisation of surface
waters, topsoils and efflorescences in a historic metal-mining area in
Spain. J Soils Sediments 16(4):1238–1252

Rodriguez-Seijo A, Andrade ML, Vega FA (2017) Origin and spatial
distribution of metals in urban soils. J Soils Sediments 17(5):
1514–1526

Simon E, Vidic A, Braun M, Fabian I, Tothmeresz B (2013) Trace ele-
ment concentrations in soils along urbanization gradients in the city
of Wien, Austria. Environ Sci Pollut Res 20(2):917–924

Sun P, Li YW, Zhang LK, Li YM,WangWD, YuWJ (2016) Heavymetal
pollution in topsoil from the Baotou industry area and its potential
ecological risk evaluation. Rock and Mineral Analysis 35(4):433–
439 (in Chinese)

Tang JJ, Wang YH, Wang H, Zhang S, Liu F (2014) Dynamic analysis of
traffic time series at different temporal scales: a complex networks
approach. Physica A 405:303–315

Tang Z, Engel BA, Pijanowski BC, Lim KJ (2005) Forecasting land use
change and its environmental impact at a watershed scale. J Environ
Manag 76(1):35–45

Tume P, King R, Gonzalez E, Bustamante G, Reverter F, Roca N, Bech J
(2014) Trace element concentrations in schoolyard soils from the
Talcahuano, Chile. J Geochem Explor 147:229–236

Wang XB, Ge JP, Wei WD, Li HS, Wu C, Zhu G (2016) Spatial
dynamics of the communities and the role of major countries
in the international rare earths trade: a complex network analy-
sis. PLoS One 11(5):e0154575. https://doi.org/10.1371/journal.
pone.0154575

Wei BG, Yang LS (2010) A review of heavy metal contaminations in
urban soils, urban road dusts and agricultural soils from China.
Microchem J 94(2):99–107

Xia JQ, Lou YM (2006) Definition and three evaluation guidelines of soil
contamination. J Ecol Rural Environ 22(1):87–90 (in Chinese)

Xu Q, Liu XD, Tang QF, Liu JC, Zhang LL (2011) A multi-element
survey of surface soil and pollution estimate in Baotou city. Arid
Land Geogr 34(1):91–99 (in Chinese)

Xu Q, Zhang LX, Liu SH, Liu XD, Zhang LJ (2008) Heavy metal pol-
lution of surface soil and its evaluation of potential ecological risk: a
case study of different functional areas in Baotou City. J Nat Dis
17(6):6–12 (in Chinese)

Yang JY, Yu F, Yu YC, Zhang JY, Wang RH, Srinivasulu M, Vasenev VI
(2017) Characterization, source apportionment, and risk assessment
of polycyclic aromatic hydrocarbons in urban soil of Nanjing,
China. J Soils Sediments 17(4):1116–1125

Yaylali-Abanuz G (2011) Heavy metal contamination of surface soil
around Gebze industrial area, Turkey. Microchem J 99(1):82–92

Zhang JJ, Wang Y, Liu JS, Liu Q, Zhou QH (2015) Multivariate and
geostatistical analyses of the sources and spatial distribution of
heavy metals in agricultural soil in Gongzhuling, Northeast China.
J Soils Sediments 16(2):634–644

Zhao Z, Hazelton P (2016) Evaluation of accumulation and concentration
of heavy metals in different urban roadside soil types in Miranda
Park, Sydney. J Soils Sediments 16(11):2548–2556

Zhong WQ, An HZ, Gao XY, Sun XQ (2014) The evolution of commu-
nities in the international oil trade network. Physica A 413:42–52

Zohar I, Teutsch N, Levin N, Mackin G, de Stigter H, Bookman R
(2017) Urbanization effects on sediment and trace metals distri-
bution in an urban winter pond (Netanya, Israel). J Soils
Sediments 17(8):2165–2176

Zong YT, Xiao Q, Lu SG (2017) Magnetic signature and source identi-
fication of heavy metal contamination in urban soils of steel indus-
trial city, Northeast China. J Soils Sediments 17(1):190–203

640 J Soils Sediments (2019) 19:629–640

https://doi.org/10.1007/s11356-015-5596-y
https://doi.org/10.1371/journal.pone.0154575
https://doi.org/10.1371/journal.pone.0154575

	Spatial...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Study area, data, and preparation
	Spatial analytical methods
	Construction of co-anomaly and threshold networks
	Analysis of network topology characteristics
	Spatial analysis of co-anomaly networks with different thresholds


	Results and discussion
	Overall analysis of surface soil pollution in Baotou
	Identification of typical networks of surface soil pollution in Baotou
	Spatial agglomeration characteristics of surface soil pollution in Baotou

	Conclusions
	References


