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Abstract
Purpose Contamination of sediments with heavy metals (HMs) is a worldwide environmental issue, due to the negative eco-
logical effects of HMs. Sediments are an important component of aquatic ecosystems, impacting the transformation and transfer
of HMs in the environment. Thus, remediating sediments polluted by HMs is a crucial activity within the full aquatic ecosystem
remediation process, and economical, effective, and environmentally friendly remediation techniques are urgently needed.
Materials andmethods We reviewed the existing literature on sediment remediation techniques and developments in the fields of
environmental science and engineering, attempting to provide a better understanding of the advances of remediation techniques
and new research directions for sediments contaminated by HMs.
Results and discussion This review summarized remediation methods (e.g., physical–chemical strategies, biological strategies,
and combined techniques) used to treat sediments contaminated with HMs. This included analyzing the mechanisms associated
with biological remediation technologies and their combination with other methods. Then, the review summarized the factors
influencing the selection of remediation methods and evaluated the prospects of new emerging remediation methods.
Conclusions Bioimmobilization techniques (e.g., phytostabilization and microorganism immobilization) have received increased
attention because of their low remediation cost and environmental compatibility. Furthermore, particular attention has been paid
to explore the role of sulfate-reducing bacteria in decreasing heavy metal mobility. The review provides a useful theoretical
foundation and technology reference for the remediation of sediment polluted by HMs.
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1 Introduction

Sediment pollution has emerged as a global environmental
problem since the 1980s, and has received great attention
(Peng et al. 2009; Burton 2010; Perelo 2010). Contaminants
of particular concern are both organic and inorganic (Perelo
2010; Vandenbossche et al. 2014). Among different pollut-
ants, heavy metals and metalloids (HMs, e.g., As, Cd, Cr,
Cu, Hg, Ni, Pb, and Zn) have received significant attention
in the multidisciplinary geosciences and environmental sci-
ences, due to their negative ecological effects, including deg-
radation resistance, bioaccumulation, and biomagnification

(Ali et al. 2013; Niu et al. 2013; Vandenbossche et al. 2014;
Dixit et al. 2015).

Worldwide, many countries and regions are facing the issue
of HMs pollution in sediment (Table 1). Qian et al. (2015)
summarized the HM content in sediment, reporting data from
20 countries across six continents. They found that HM pol-
lution in sediment is widespread. Zhu and Wang (2012) also
summarized the HM content, focusing on the sediments sam-
pled from themain river systems of China. They found serious
sediment pollution, particularly in the Haihe River and Pearl
River, where Cd and Hg have created high potential ecologi-
cal risk. In addition to natural sources (e.g., mineral
weathering and volcanic activity), anthropogenic activities,
primarily associated with industrial processes (e.g., mining
and metallurgy), are the major sources of metal enrichment
in sediments (Peng et al. 2009; Chiang et al. 2012; Ali et al.
2013; Vandenbossche et al. 2014; Akcil et al. 2015).

Districts with significant industrial development generally
have high concentrations of HMs in sediment. For example,
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maximum Cd levels in Keratsini Harbor in Greece, East
London harbor, and Port Elizabeth harbor in South Africa
have reached 1000 mg kg−1 (Fatoki and Mathabatha 2001;
Galanopoulou et al. 2009). These levels exceed the probable
effect concentration (PEC) value for Cd (Table 1), indicating
that levels are likely to have adverse effects on aquatic organ-
isms (MacDonald et al. 2000). The sediments of limnetic,
estuarine, and coastal ecosystems in southeastern China have
also been impacted by industrial pollution and other factors,
and are also heavily contaminated by HMs. This is particular-
ly the case for coastal sediments (Pan and Wang 2012; Tang
et al. 2014), where the maximum concentrations of many
HMs have exceeded the PEC (MacDonald et al. 2000) and
the grade III of marine sediment quality in China (GAQSIQ
2002) (Table 1). The elevated contamination of HMs along
China’s coastal environment (include both seawater and sed-
iment) may increase the risk of human exposure to HMs (Pan
and Wang 2012).

Sediments are a critical compartment of aquatic ecosys-
tems; these ecosystems are the main sink and source of HMs
(Burton 2010; Chiang et al. 2012; Zhang et al. 2014).
Dissolved metals can enter water bodies in different ways
and can accumulate in sediments through adsorption, precip-
itation/coprecipitation, and biological effects. This results in
HM concentrations that are far greater in sediments (by orders
of magnitude) than in the overlying water. It has been reported
that the anthropogenic inputs of HMs to aquatic systems have

reached 0.3–1 × 106 t year−1 (Schwarzenbach et al. 2006). In
some conditions, > 99% of HMs can be stored in sediments
(Peng et al. 2009). However, once the environmental or phys-
icochemical conditions change (e.g., pH, Eh, and dissolved
oxygen, etc.), HMs accumulated in sediments can be released
into the overlying water, possibly enter the food web, and
create adverse environmental effects (Horowitz 1991; Peng
et al. 2009; Akcil et al. 2015). Thus, sediments significantly
affect the transformation and transfer of HMs in the environ-
ment; moreover, as part of sediment management processes,
treating sediments contaminated by HMs is crucial to the full
aquatic ecosystem remediation process.

This review summarizes the remediation methods used to
treat sediments polluted by HMs, from the perspectives of
physical–chemical strategies, biological strategies, and tech-
niques that combine these strategies.

2 Physical-chemical strategies

2.1 Capping

Capping is an attractive, non-intrusive, and cost-effective
method for remediating contaminated sediments (Mohan
et al. 2000; Vandenbossche et al. 2014). Sandy materials
(e.g., clean sediment, sand, and gravel) or amendments (e.g.,
apatite, rock phosphate, lime, and zeolite) are usually mixed or

Table 1 Concentrations of
selected HMs in sediment from
locations around the world, with a
focus on China (mg kg−1 dry wt)

HMs Six
continents

(Qian et al.
2015)

Main river in
China

( Z h u a n d
Wang 2012)

Limnetic
ecosystems in
eastern China

(Tang e t a l .
2014)

Estuarine and
coastal
sediment in
China

(Pan and Wang
2012)

TECe PECf GB18668-

2002(III)g

As NDa 8.1 ~ 26.87b ND 2.4~820d 9.79 33.0 93.0

Cd 0.04 ~ 998 0.11 ~ 3.11 0.925 ± 0.936c 0 ~ 488.2 0.99 4.98 5.00

Cr 1.0 ~ 463 29.94 ~ 90.3 142 ± 46.8 3.4 ~ 560 43.4 111 270.0

Cu 0.5 ~ 604 23.41 ~ 86.58 54.7 ± 29.1 1 ~ 4000 31.6 149 200.0

Hg 0.01 ~ 1.8b 0.08 ~ 0.565 ND 0 ~ 41.1 0.18 1.06 1.00

Ni 2 ~ 240 ND 60.5 ± 21.6 2.1 ~ 220 22.7 48.6 ND

Pb 3 ~ 2369 19.04 ~ 77.83 61.9 ± 36.0 2 ~ 1828 35.8 128 250.0

Zn 7 ~ 4430 44.1 ~ 221.9 192 ± 120 4 ~ 13,933 121 459 600.0

a No data
bMean concentration range
cMean concentration ± standard deviation
d Range of measured value
e TEC represents threshold effect concentration, below which adverse effects are not expected to occur
(MacDonald et al. 2000)
f PEC represents probable effect concentration, above which adverse effects are expected to occur more often than
not (MacDonald et al. 2000)
g Grade III of marine sediment quality in China (GB18668-2002), applicable to ocean harbor waters and marine
development operations areas for special purposes (GAQSIQ 2002)
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tiered in specific proportions, and then placed on contaminat-
ed sediments. The purpose of capping is to decrease the solu-
bility, mobility, and transfer rate of HMs in sediment, through
physical–chemical isolation, or sediment stabilization. The
cap is typically composed of one or more of the following
elements (Mohan et al. 2000; Vandenbossche et al. 2014): (i)
stabilizing layer (e.g., geotextiles), providing local stability to
the native sediments to support the added weight of the cap;
(ii) isolation layer (e.g., sand), isolating the contaminants from
the environment; (iii) filter layer (e.g., gravel), providing hy-
draulic protection to the base isolation layer; and (iv) armor
layer (e.g., stone), protecting the filter and base isolation layers
from erosion (Fig. 1).

The low cost and environmentally friendly nature of the
process are some of the main advantages of capping.
However, capping also has some disadvantages. These in-
clude high workloads, difficulty in maintaining cap homoge-
neity, particularly in complex riverbeds, and increasing sedi-
ment volume while decreasing water capacity. As such, cap-
ping is generally not appropriate for shallow water bodies or
for water bodies with large water flows, as the capping mate-
rial can be easily washed away (Mohan et al. 2000;
Vandenbossche et al. 2014).

Capping can be classified as passive (or inactive) or reac-
tive (or active) (Vandenbossche et al. 2014). Passive capping
uses clean and neutral material to cover contaminated sedi-
ments. This capping creates a physical barrier to isolate pol-
luted sediment from the surrounding environment. Active
capping decreases the mobility, toxicity, and bioavailability
of contaminants using chemical reaction between capping ma-
terials (e.g., apatite, clays, zeolite, and activated carbon) and
contaminants. Passive capping usually has higher thickness
than active capping. Thus, passive capping is unsuitable in
shallow areas, under existing marine structures, or in sensitive
habitats (Vandenbossche et al. 2014).

According to the different adding manner of capping ma-
terials, capping can also be classified as overwater or under-
water (Zhang et al. 2016b). Overwater capping adds capping
material through the overlying material, whereas underwater
capping adds capping material directly onto the water bottom
(Fig. 1). Overwater capping is easy to operate, but can result in
large water disturbances and an uneven capping surface.
Underwater capping usually requires less capping material
and disturbs water less; it also results in a more even capping
effect. Capping can be applied both in situ and ex situ to
remediate contaminated sediment.

2.2 Washing

Sediment washing is a relatively simple and useful ex situ
remediation technology, where a solution is added to the pol-
luted sediment to transfer contaminants from sediment to aque-
ous solution (Mulligan et al. 2001; Peng et al. 2009). Washing

includes two steps: the solubilization of metals and the removal
of solubilized metals (Akcil et al. 2015). To enhance the sed-
iment washing performance, different additives are used to
facilitate the solubilization, dispersal, and desorption of metal
contaminants from polluted sediments (Peng et al. 2009; Akcil
et al. 2015). Ideal additives meet two important criteria: high
treatment efficiency and environmental compatibility (e.g.,
low toxicity and biodegradability) (Akcil et al. 2015).
Common additives include inorganic acids (e.g., hydrochloric
acid, sulfuric acid, and nitric acid), organic acids (e.g., oxalic,
citric, gluconic and ascorbic acids), chelators (e.g., EDDS,
EDTA, and NTA), and surfactants (e.g., rhamnolipids and
sophorolipids) (Peng et al. 2009; Akcil et al. 2015).

Some additives, however, may adversely affect the ecologi-
cal environment. For example, although EDTAmay be a wide-
ly used and more efficient extraction agent to remove some
HMs (e.g., Cd; Polettini et al. 2006), its high environmental
persistence may adversely affect the ecological environment
(Gorby et al. 1998; Bohuslavek et al. 2001; Meers et al.
2005b; Peng et al. 2009). Beolchini et al. (2013) evaluated the
efficiency of different chemical leaching agents (including sul-
furic, oxalic and citric acids) and bioleaching processes (using
different acidophilic bacterial strains) onHMmobilization (e.g.,
As, Cr, Ni, and Zn) in contaminated harbor sediments.
Considering both resource requirements and emissions, the
researchers found that diluted sulfuric acid is better than other
treatments to decrease the environment impact. Akcil et al.
(2015) reviewed the main washing additives in detail.

Washing is suitable for HMs weakly associated with
sediment particles (e.g., exchangeable, hydroxides, car-
bonates, and reducible oxides phases), and for coarse-
grained sediments (e.g., sands and gravels) (Mulligan
et al. 2001; Peng et al. 2009). However, dredged sediment
is usually fine-grained, and the finest particles are more
polluted and more difficult to wash because of the high
surface area available for adsorption (Akcil et al. 2015).
This is a critical limitation in applying the washing tech-
nique. This means that extraction tests should be conduct-
ed to determine optimal criteria (e.g., chemical type and
dosage, contact time, agitation, temperature, and extrac-
tion steps) required to meet regulatory requirements
(Mulligan et al. 2001; Akcil et al. 2015). Furthermore,
inorganic acids may not work well with calcareous sedi-
ments, because protons can be neutralized by calcite and
carbonate dissolution (high acid-neutralizing capacity)
(Fonti et al. 2013); chelating agents can effectively treat
dredged sediment contaminated with both organic pollut-
ants and HMs (Peng et al. 2009).

2.3 Immobilization

Immobilization (also called stabilization) strategies have also
been proposed as an in situ/ex situ remediation solution for
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sediments contaminated with metals, particularly for dredged
sediment (Akcil et al. 2015). This method reduces the solubil-
ity, mobility, and bioavailability of HMs using different
amendments, by adsorption, oxidation, reduction, and precip-
itation. The approach is an alternative to extracting HMs, and
while it cannot remove metals from sediment, it is still com-
mon because of its low cost and rapid remediation effect (Peng
et al. 2009). Common amendments include inorganic, organ-
ic, and complex formulation stabilizing agents (Fan et al.
2016). Widely used inorganic amendments include silico-
calcium materials (e.g., CaO, CaO2, MgO and fly ash, etc);
phosphates (e.g., rock phosphate, calcium hydrophosphate,
and hydroxyapatite); iron-bearing materials (e.g., Fe(OH)3,
FeCl3, FeSO4, Fe2(SO4)3, and Fe

0); aluminum salts (e.g., alu-
minum sulfate, aluminum chloride, and aluminum
polychloride); and mineral-based amendments (e.g., zeolite,
diatomite, and bentonite). Organic amendments generally in-
clude turf, farmyard manure, and green manure. A complex
formulation amendment is a mix of inorganic amendments
and/or organic amendments.

Xu (2017) found a combined stabilizing agent (potassium
dipropyl dithiophosphate and humic acid) achieved > 90% sta-
bilization efficiency in treating Cd, Cu, Pb, and Zn in sediment.
Jośko et al. (2013) found that carbonaceous materials (e.g.,
activated carbon, biochars, andmulti-walled carbon nanotubes)
reduced the negative effect of contaminated sediment on
Lepidium sativum. Huang et al. (2017) also found that the ex-
tractable fraction of Cd and Zn declined when sediment was
treated with biochar, however, adding a high concentration of
biochar (> 50 mg kg−1) decreased enzymes activity and micro-
bial abundance, and altered the microbial community structure.

Amendments usually have high cation exchange capacity,
are environmentally friendly, and are economically reasonable
(Peng et al. 2009; Akcil et al. 2015; Heyden and
Roychoudhury 2015). The stabilizing effect of amendments
on HMs is influenced by sediment characteristics, amendment
type, HM type and concentrations, remediation method, reme-
diation time, and evaluation methods. This complicates the
comparing of immobilization efficiencies of different sedi-
ments contaminated with different HMs. For example, the
changing of HM speciation is usually used to assess the stable
efficiency of HMs in sediment, and to reveal the remediation

mechanism; however, it is difficult to compare immobilization
efficiencies due to different sequential extraction methods
(Table 2). These difficulties make it challenging to choose
the appropriate amendments and application dosage. Chiang
et al. (2012) proposed a strategic framework to systematically
address the development of an in situ sediment remediation
solution (e.g., finding effective sorbent mixtures) through as-
sessment, feasibility, and performance studies. These strate-
gies provide guidance to researchers in the field of HM reme-
diation, and bridge the gap between laboratory tests and field
applications.

Some nanometer materials (e.g., nano-zero-valent iron
(nZVI), nanohydroxyapatite, nanosized metal oxides) have
higher reactivity and sorption abilities than the same materials
at normal sizes (Akcil et al. 2015). As such, these technologies
have been applied as an amendment with metal-contaminated
sediments, initially for soil or solid waste remediation. Many
scientific questions remain because of the complexity and
specificity of the sediment. For instance, Chen et al. (2016b)
found that nano-zero-valent iron/activated carbon composite
(nZVI/AC) could effectively immobilize HMs (e.g., Cd, Cr,
Cu, and Pb) in sediment from Huangpu River, China, by
converting relatively weakly bound HMs into more strongly
bound species (Table 2).

However, Kumar et al. (2014, 2015) found that nZVI had
an inhibitive effect on sulfate-reducing bacteria (SRB) in aqui-
fer sediment; this decreased biostabilization. Fajardo et al.
(2012) found that applying nZVI reduced the availability
and mobility of Zn and Pb in contaminated soil. The nZVI
also significantly changed the structure and composition of the
bacteria population. Pawlett et al. (2013) found that nZVI not
only changed the structure and composition of soil bacteria
population, but also significantly reduced microbial biomass.
These results show that nZVI toxicity can be highly dose- and
species-dependent. Thus, as a new environmental restoration
material, there is significant uncertainty associated with nano-
meter materials, and more research is needed on their environ-
mental behavior, toxicity mechanisms, and bioavailability
(Fajardo et al. 2012). Other important sediment remediation
and management research topics include the reduction, reuse,
and recycling of immobilized sediments (Wang et al. 2015a, b;
Couvidat et al. 2016).

Fig. 1 Schematic diagram of
capping
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2.4 Electrochemical remediation

Electrochemical remediation (also called electrokinetic
treatments) involves passing a low-intensity electric cur-
rent (e.g., AC or DC fields) between a cathode and an
anode embedded in polluted sediment in wet condition
(Mulligan et al. 2001; Peng et al. 2009; Akcil et al. 2015;
Pedersen et al. 2015). The electric field causes the transport
of ions, small charged particles, and water between the
electrodes. Positive ions move to the negatively charged
cathode, while negative ions move to the positively
charged anode (Peng et al. 2009) (Fig. 2). When the reme-
diation process has been completed, the contaminants con-
centrated around the electrode can be treated with various
physical–chemical methods, including electroplating, pre-
cipitation/coprecipitation, pumping water near the elec-
trodes, complexing with ion-exchange resins, or other
methods (Mulligan et al. 2001; Peng et al. 2009; Akcil
et al. 2015; Pedersen et al. 2015).

Electrochemical remediation is appropriate for fine-grained
sediment, because fine particles (e.g., clay) can adsorb most
metals, thus having high electric conductivity and a strong
electric field (Mulligan et al. 2001; Peng et al. 2009). Metals
that are present as soluble ions and that are bound to soils as
oxides, hydroxides, and carbonates can be removed by this
method, as well as other ions, such as cyanide and nitrate, and
radionuclides (e.g., Sr and U) (Mulligan et al. 2001). This
method has the advantages of having no or few by-products,
and is easy to control. Further, HM recovery can help recover
costs (Mulligan et al. 2001; Akcil et al. 2015).

The main mechanisms of electrochemical remediation
include electromigration (charged chemical movement),
electro-osmosis (fluid movement), electrophoresis
(charged particle movement), and electrolysis (chemical

reactions due to the electric field) (Mulligan et al. 2001;
Peng et al. 2009). Electromigration is considered to be the
main transfer mechanism of HMs, because the transfer
rate using this method is higher than achieved using other
methods (Mulligan et al. 2001; Peng et al. 2009). Current
density, time, cell set-up, stirring rate, dry/wet material
ratio, and sediment properties can influence remediation
efficiency. Of these factors, remediation time and current
density usually have the greatest effects (Pedersen et al.
2015).

The electrode reactions can produce OH− and H+ at the
cathode and anode, respectively (Peng et al. 2009). If the
pH is not controlled, the H+ in the anode will migrate
through the sediment towards the cathode, while the
OH− will migrate towards the anode (Peng et al. 2009;
Pedersen et al. 2015) (Fig. 2). The pH in sediment de-
pends on the migration level of OH− and H+. For exam-
ple, increasing the OH− content increases the pH value
around the cathode. When HMs encounter this type of
basic condition (i.e., high pH), they are likely to be
adsorbed onto soil particles or form precipitates such as
hydroxides and oxyhydroxides; on the contrary, in acidic
condition, those ions desorb, solubilize, and migrate
(Peng et al. 2009; Pedersen et al. 2015). As a result, the
increasing pH around the cathode impedes the removal of
HMs. Desorbing agents (e.g., acidification and surfac-
tants) have been effectively used to increase contaminant
removal efficiency, by solubilizing the metal hydroxides,
carbonates, or other species adsorbed onto sediment par-
ticles, and protonate the organic functional groups (Peng
et al. 2009). Future research is needed to better select
desorbing agents and optimize the soil or sediment elec-
trochemical remediation process (Kaya and Yukselen
2005; Nystroem et al. 2006).

Table 2 Stabilization effects for Cd using different immobilization methods

Sampling sites Sediment
style

Cd
content
(mg kg−1)

Amendments Time
(d)

Stabilization effect for Cd Sequential
extraction
methods

References

Hwasun wharf in Incheon
North Port, Korea

Marine
sediment

0.8 Red mud, apatite
and their
composite

120 Red mud showed the best effect,
F5 was increased by 6.8%

Tessier (Shin and
Kim
2015)

Dongting Lake, Hunan
Province, China

Marine
sediment

4.7 Zeolitemodified by
HCl, NaOH and
NaCl

7 NaCl modified zeolite had better
effect, exchangeable fraction was
reduced by 27%

BCR (Wen et al.
2016)

Xiawan Creek,
Xiangjiang River,
Hunan Province, China

Marine
sediment

98 Bentonite and
concrete
admixtures

120 F5 was increased from 6 to 40%;
however, F1 and F2 were slightly
increased

Tessier (Yan et al.
2017)

Suzhou Creek, Shanghai,
China

Freshwater
sediment

23.4 Apatite,
ferrihydrite and
their composite

150 Composite had better effect; residual
phase was increased by 10%

BCR (Qian et al.
2009)

HuangpuRiver, Shanghai,
China

Freshwater
sediment

360 Nano-zero-valent
iron/activated
carbon

150 F1 was reduced by 70%; F2 was
reduced by 67%

Tessier (Chen et al.
2016a,
2016b)
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2.5 Thermal treatments

Thermal treatments include thermal extraction and vitrifica-
tion. After a dewatering pretreatment, heat is used to treat the
contaminated sediment. The high temperature destroys most
organic pollutants in the sediment through oxidation.
Meanwhile, many HMs can be immobilized in the sediment
matrix. However, somemetals, such as As, Cd, and Hg, can be
volatilized, and others, such as As, Mo, and V, can become
more leachable, due to oxyanions formation (Mulligan et al.
2001; Akcil et al. 2015). Thermal treatments are mainly used
to treat organic contaminants. Temperature and retention time
are the two dominant factors driving decontamination level
(Mulligan et al. 2001; Akcil et al. 2015). At 100–500 °C, some
organic contaminants, such as low-molecular hydrocarbons
and polycyclic aromatic hydrocarbons (PAHs), can be re-
moved through thermal desorption and vaporization.
However, when temperature is > 800 °C, organic contami-
nants can be completely destroyed, and some inorganic con-
taminants in the sediment can be evaporated (e.g., As, Cd, and
Hg) or immobilized by melting (i.e., vitrification) (Mulligan
et al. 2001; Zoubeir et al. 2007; Akcil et al. 2015).

There are several commercially available thermal chemical
treatment processes, including Cement Lock, X-Trax™ pro-
cess, Novosol® process, and Mercury Recovery Services
(Mulligan et al. 2001; Zoubeir et al. 2007; Akcil et al.
2015). Cement Lock is a typical thermal treatment technique
and has been used to remediate sediment, especially dredged
sediment. During the process (Fig. 3), contaminated sediment
and lime are firstly mixed and added into a rotary kiln reactor
smelter. After being melted (1200–1600 °C), quenched, and
pulverized, the mixture can be used for blend cement prod-
ucts. In order to remove the acid gas, volatilized HMs, and

other combustion products in the off-gases, gas processing
equipment (e.g., particulate filter and activated carbon filter)
is required. Pilot tests using this technique result in estimated
costs of US$20–30/m3 (Mulligan et al. 2001).

3 Biological strategies

3.1 Phytoremediation

Phytoremediation involves using plants and associated micro-
organisms to partially or completely remediate selected con-
taminants from soil, sludge, sediments, wastewater, and
groundwater (Ali et al. 2013; Dixit et al. 2015). There are three
reasons to use phytoremediation to treat polluted land: (1) for
risk containment (phytostabilization); (2) for phytoextraction of
HMs with market value (e.g., Au, Ni, and Tl); and (3) for
durable land management, using phytoextraction to improve
soil quality to facilitate subsequent crop cultivation with a high
market value (Ali et al. 2013). As a green technology with a
positive public perception, phytoremediation is a novel, effi-
cient, cost-effective, environmentally and eco-friendly, in situ
applicable, and solar-driven remediation strategy (Ali et al.
2013). The method has been widely used to remove organic
(e.g., polychlorinated biphenyls, PAHs, nitroaromatic and
halohydrocarbon, etc.) and inorganic (e.g., radionuclide and
HMs) pollutants from various environmental media, including
wastewater, soil, and sediment (e.g., shallow rivers, lakes, and
wetlands) (Bert et al. 2009; Peng et al. 2009; Perelo 2010; Ali
et al. 2013; Mani and Kumar 2014; Dixit et al. 2015).

Phytoremediation techniques include phytovolatilization,
phytodegradation, phytofiltration, phytoextraction,
phytostabilization, and rhizo(sphere) degradation (Fig. 4). Of

Fig. 2 Electrodialytic cell set-up
for sediment treatment (source:
Pedersen et al. 2015)
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these, phytoextraction (known as phytosequestration,
phytoabsorption, or phytoaccumulation) is a critical biochem-
ical process to remove HMs from contaminated environmen-
tal media (Ali et al. 2013; Dixit et al. 2015). Metal
phytoextraction includes three steps (Vassilev et al. 2004;
Bert et al. 2009): (1) cultivation of suitable plant species at
the polluted site; (2) harvest metal-enriched biomass from the
site; and (3) postharvest treatment to produce market value
(e.g., energy recovery from thermal treatment).

Phytoextraction efficiency depends on many factors, in-
cluding the bioavailability of HMs, soil properties, HM spe-
ciation, and the plant species (Ali et al. 2013). Ideal plants for
phytoextraction need a high growth rate, significant above-
ground biomass, a widely distributed and highly branched
root system, ability to accumulate the target HMs from soil,
ability to translocate the accumulated HMs from roots to
shoots, ability to tolerate the toxicity of target HMs, ability
to adapt to prevailing environmental and climatic conditions,
resistance to pathogens and pests, easy cultivation and harvest,
and herbivore repulsion to avoid food chain contamination
(Vassilev et al. 2004; Bert et al. 2009; Ali et al. 2013; Dixit
et al. 2015).

Two main factors drive the phytoextraction capacity of a
plant: shoot metal content and shoot biomass. However,
hyperaccumulation and hypertolerance are more important
for phytoremediation than high biomass (Ali et al. 2013).
There has been significant research about HM removal using
phytoremediation, with particular focus on using
hyperaccumulators to degrade and detoxify contaminants; this
is because of the efficacy and cost efficiency of the approach
(Dixit et al. 2015). The criteria used for hyperaccumulation
varies by metal; however, hyperaccumulators are considered
to be plant species that usually accumulate > 100 mg kg−1 dry
weight of Cd; > 1000 mg kg−1 dry weight of Cu, Ni, and Pb;
or > 10,000 mg kg−1 dry weight Mn and Zn in plant shoots
when grown in HM-rich soils (Ali et al. 2013; Dixit et al.
2015). Many researches have reviewed hyperaccumulators
and their application in remediation (e.g., Ali et al. 2013;
Mani and Kumar 2014; Dixit et al. 2015). Significant research
is focusing on screening and exploiting hyperaccumulators
with high remediation potential (e.g., transgenic plants)
(Kotrba et al. 2009); this research is critical to the effective
application of phytoremediation. However, the ecological in-
fluence of phytoremediation using transgenics must also be
carefully evaluated (Kotrba et al. 2009).

Rhizosphere microorganisms are of great importance to
plant growth and their ability to tolerate HMs (Dixit et al.
2015). The rhizosphere is an important component and main
mechanism of phytoremediation. Phytoremediation costs are
expected to be < 25% of some other remediation techniques,
including in situ soil mixing/solidification/stabilization, water
flooding/soil flushing/soil washing, electrokinetics, and chem-
ical reduction/oxidation (Mani and Kumar 2014).
Phytoremediation is a green and promising technique to remedi-
ate HM-contaminated soils; however, there are also limitations,
such as low biomass and slow growth rate lead to long remedi-
ation timeframes; there is difficulty in mobilizing the more
tightly-bound fractions of HMs; the approach only applies at
low to moderate pollution level of HMs (not heavily polluted
environmental media); and mismanagement and improper care
may lead to risks of food chain contamination (Ali et al. 2013).

Phytoremediation is mostly used in dredged sediments,
using ex situ approaches (Akcil et al. 2015; Doni et al. 2015;
Choudhury et al. 2016). Research shows that some hydro-
phytes can also decrease HM toxicity through plant uptake
and rhizosphere microorganism activity (Peng et al. 2009).
As such, phytoremediation can also be used for in situ sed-
iment remediation. For example, Xie et al. (2016) found that
Hydrilla verticillata had a better comprehensive restoration
effect than Vallisneria natans and Ceratophyllum
demersum in Cu and Pb co-polluted sediments. Qiao et al.
(2016) concluded that Vallisneria natans can serve as a pi-
oneer plant to ecologically restore Cd and Zn co-polluted
sediments. However, direct uptake by hydrophytes is usu-
ally small, while the indirect reactions (e.g., stimulation of
microbial activity, redox reactions/formation, and precipi-
tation of insoluble metal compounds in the rhizosphere)
may play a relatively important role (Clemente et al. 2005;
Peng et al. 2009; Ahemad 2014). Therefore, more re-
searchers have focused on remediating HM-contaminated
sediments using microorganisms.

3.2 Microbial remediation

3.2.1 Microbial resistance to metals

Microorganisms are widespread in contaminated media.
Microorganisms have developed many strategies to evade
the stress and toxicities associated with different HMs
(Ahemad 2014; Fls et al. 2017). Mechanisms used by

Fig. 3 Process flow diagram of
Cement Lock (adapted from
Mulligan et al. 2001)
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microorganisms to resist metals include exclusion using a per-
meability barrier, intracellular and extracellular sequestration,
active transport efflux pumps, enzymatic detoxification, and
reductions in cellular sensitivity to metal ions (Nies 1999;
Bruins et al. 2000; Ahemad 2014). Microorganisms can min-
eralize organic pollutants to generate end products (e.g., CO2

and H2O), or to generate metabolic intermediates that serve as
main substances for cell growth (Dixit et al. 2015). Inorganic
contaminants (e.g., HMs) cannot be directly degraded into
harmless compounds. However, microorganisms can change
the chemical form, mobility, toxicity, and bioavailability of
HMs through growth metabolism and metabolic products.
Interactions between microbial cells and HMs mainly occur
through biosorption, bioaccumulation, bioassimilation,
bioprecipitation, bioleaching, biodegradation/biosynthesis,
and biotransformation (Fig. 5).

Biosorption describes the association of soluble HMs with
the cell surface through complexation (e.g., electrostatic, co-
valent, exopolysaccharides), chelation/coordination, reduc-
tion, precipitation, cation/anion-exchange (Tabak et al. 2005;
Ahemad 2014; Fls et al. 2017). For example, many HMs can
bind onto anionic groups (e.g., amine, amide, carboxyl, hy-
droxyl, sulfhydryl, and sulfonate) and extracellular polymers
(e.g., polysaccharides, proteins, and humic substances). This
reduces HM toxicity by forming complexes or by creating a
useful barrier around the cell (Tsezos 2009; Ahemad 2014).

Bioaccumulation is the retention and concentration of a
substance within an organism. In this process, solutes are
transported from the outside of the microbial cell through
the cellular membrane into the cell cytoplasm, where the metal
is sequestered (Tabak et al. 2005).

Bioassimilation of HMs involves the active transport of a
microbial cell’s siderophores. In aerobic conditions, iron is
mainly present as Fe(III). Due to low solubility in water (i.e.,
10−18), Fe(III) cannot be obtained by microbes as a free ion
(Tabak et al. 2005). In order to solve this problem, microbes
produce siderophores, which are low-molecular-weight che-
lating agents that bind with iron and transport it into the cell

using an energy-dependent process (John et al. 2001).
Meanwhile, some metals (e.g., Pu) can form complexes with
siderophores, and many of these complexes are recognized by
cell uptake proteins (John et al. 2001; Tabak et al. 2005).

Bioprecipitation involves using microbial metabolism to
transform soluble species to insoluble hydroxides, carbonates,
phosphates, and sulfides (Tsezos 2009). For example,
bioprecipitation of HMs using microbiologically produced
sulfides (e.g., SRB) is an efficient method to immobilize
HMs (Tabak et al. 2005).

Bioleaching is the dissolution of metallic minerals and the
release of associated metals through microorganism activity.
The best-known strains—Fe/S-oxidizing bacteria (e.g.,
Thiobacillus and Leptospirillum ferrooxidans)—can oxidize
iron and sulfide, producing sulfuric acid and releasing associ-
ated HMs into an aqueous solution (Tabak et al. 2005; Akcil
et al. 2015). This approach has been used in large-scale oper-
ations to recover metals from ores.

Biodegradation usually refers to the oxidation of organic
contaminants. However, the biodegradation of some organic
complexing agents (e.g., EDTA and NTA) significantly af-
fects HM mobility, toxicity, and bioavailability in subsurface
environments (Tabak et al. 2005).

Biotransformation (e.g., methylation/reduction,
dealkylation/oxidation) can change the chemical form of
HMs, altering HM mobility, toxicity, and bioavailability. For
example, direct enzymatic reduction through metal-reducing
microorganism can reduce soluble and mobile Cr(VI),
Tc(VII), and U(VI) into insoluble and immobile Cr(III),
Tc(IV), and U(IV), respectively; the reduced products (e.g.,
Fe(II) and H2S) of metal-reducing microorganisms and SRB
can also indirectly reduce Cr(VI), Tc(VII), and U(VI) (Tabak
et al. 2005; Tsezos 2009; Ahemad 2014).

Interactions between microbial cells with HMs provide
a bioremedia t ion s t ra tegy for microorganisms .
Biotransformation, biosorption, and bioaccumulation are
the main three kinds of microbial interaction processes
that affect HM toxicity and transport, playing a critical

Fig. 4 Different processes
involved in the phytoremediation
of HMs (source: Dixit et al. 2015)
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role in microbial remediation (Tabak et al. 2005). In a
narrow sense, microbial remediation refers to bioremedi-
ation (Mulligan et al. 2001; Akcil et al. 2015; Dixit et al.
2015). Microbial remediation uses microorganisms to re-
move or fix HMs. The approach has low costs and is non-
invasive; it can be done on-site and coupled with physical
or chemical treatment technologies (Mani and Kumar
2014). Microbial remediation has been considered as a
safe, easy, and effective technology (Dixit et al. 2015;
Fls et al. 2017). However, microbial remediation also
has some disadvantages (Tsezos 2009; Mani and Kumar
2014; Akcil et al. 2015). For example, it is time-
consuming and has limited real applications; it can be
difficult to predict the bioremediation effect; and the re-
lated mechanisms are complicated and not always fully
understood. As a new and most promising bioremediation
technique, however, microorganisms have been applied to
restore wastewater, soil, and solid waste. It has also been
used more recently to restore sediments. For HM-
contaminated sediments, there are two different strategies:
biomobilization and bioimmobilization.

3.2.2 Biomobilization

Unlike organic contaminations, HMs cannot be biodegraded.
Instead, the speciation of HMs can be changed (e.g., mobi-
lized or immobilized) through a biogeochemical process,
changing the HM mobility, toxicity, and bioavailability.
Biomobilization has been widely used to remediate HM-
contaminated sediment. This process usually involves two
steps. First, HMs are mobilized into a solution using biologi-
cal methods (e.g., adding microorganism directly, microbial

preparation, and biostimulation). Second, dissolved HMs are
separated into solid and liquid phases and then treated.
Bioleaching is one of the most common approaches to
biomobilization, as it uses the effects of biological oxidation
and acid production to translate insoluble metallic compounds
into soluble ion states. This method has been widely used to
leach ore (Oliveira et al. 2014); treat mine tailings (Park et al.
2014; Nguyen and Lee 2015); and bioremediate environmen-
tal media (soil, sludge, and sediment) contaminated by HMs
(Seidel et al. 2004, 2006; Gan et al. 2015, 2016; Zeng et al.
2015a, b).

Microorganisms used in bioleaching mainly include chemo-
autotrophic bacteria and fungi (single and composite strain),
such as Leptospirillum ferrooxidans, Acidithiobacillus
thiooxidans, Acidithiobacillus ferrooxidans, and Aspergillus
niger. Nguyen and Lee (2015) found that 42.4, 45.0, 47.7,
92.0, and 67.2% of As, Cu, Fe, Mn, and Zn, respectively, in
mine tailings can be removed using a mixture culture of
Acidithiobacillus thiooxidans and Acidithiobacillus
ferrooxidans, after 500 h at 0.5% elemental sulfur concentra-
tion. Zeng et al. (2015a, b) found that Aspergillus niger strain
SY1 can remove Cd, Cu, Pb, and Zn from dredged sediments
contaminated with multiple metals, particularly Cd, with a re-
moval rate > 90%.

Gan et al. (2016) suggested that the acid-tolerant microorgan-
isms Aspergillus niger and Rhodotorula can degrade dissolved
organic matter. This effect can help Acidithiobacillus
ferrooxidans, Leptospirillum ferriphilum, and Acidithiobacillus
thiooxidans accelerate sulfur and pyrite use; the bioleaching
efficiency of Cd, Cu, Mn, and Zn reached 84.2, 90.9, 94, and
94.7%, respectively. Subsequent research fromGan et al. (2015)
found that when bioleaching multiple HMs from polluted

Fig. 5 Interactions between a
microbial cell and HMs (source:
Tsezos 2009; Ahemad 2014)
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sediment, a moderately thermophilic consortium (Sulfobacillus
thermosulfidooxidans and Acidithiobacillus caldus) achieved
higher acidification and metal solubilization efficiencies than
did pure strains. The solubilization efficiency for Cd, Cu, Mn,
and Zn reached 89, 94, 95, and 98%, respectively, while the
efficiency for As, Hg, and Pb was only 45, 34, and 22%,
respectively.

Direct and indirect mechanisms are both involved in solu-
bilizing metals (Mulligan et al. 2001; Chen and Lin 2004;
Akcil et al. 2015; Gan et al. 2015). Direct leaching solubilizes
metal sulfides to metal sulfates through enzymatic oxidation
(Eq. 1, see below); in the indirect mechanism, bacteria oxi-
dized elemental sulfur or reduced sulfur compound to sulfuric
acid. It lowers the pH and subsequently enhances metal solu-
bilization (Eqs. 2 and 3). However, it is widely accepted that
there is no direct mechanism of biological metal sulfide oxi-
dation. On the contrary, the true factors that solubilize metals
from ores are the indirect mechanisms (Vera et al. 2013; Akcil
et al. 2015). The dissolution of metal-bearing minerals can
follow two different reaction pathways. The pathways depend
on the acid-solubility of the sulfides involved: acid-insoluble
metal sulfides (e.g., pyrite, molybdenite, tungstenite) are ex-
clusively oxidized through electron extraction (Eqs. 4 and 5,
the thiosulfate pathway, Fig. 6a); and acid-soluble metal sul-
fides (e.g., sphalerite, galena, arsenopyrite, chalcopyrite,
hauerite) are dissolved by the combined actions of Fe(III)
oxidative and proton attacks (Eqs. 6–8, the polysulfide path-
way, Fig. 6b).

MSþ 2O2→
bacteriaMSO4 ð1Þ

S0 þ H2Oþ 1:5O2→
bacteria H2SO4 ð2Þ

H2SO4 þ sediment−M →bacteria sediment−2HþMSO4 ð3Þ
FeS2 þ 6Fe3þ þ 3H2O→S2O

2−
3 þ 7Fe2þ þ 6Hþ ð4Þ

S2O
2−
3 þ 8Fe3þ þ 5H2O→ 2SO2−

4 þ 8Fe2þ þ 10Hþ ð5Þ
MSþ Fe3þ þ Hþ→M2þ þ 0:5H2Sn þ Fe2þ n≥2ð Þ ð6Þ
0:5H2Sn þ Fe3þ→0:125S8 þ Fe2þ þ Hþ ð7Þ
0:125S8 þ 1:5O2 þ H2O→SO2−

4 þ 2Hþ ð8Þ

Bioleaching involves combining proton attacks and oxida-
tion processes, as such, sediments having high levels of metal
sulfides and other reduced metal forms should be especially
appropriate for bacterial leaching techniques (Akcil et al.
2015). The sulfur oxidation rate is the critical factor impacting
bioleaching. It is influenced by pH (Park et al. 2014; Fonti
et al. 2015b), ORP, temperature, DOM (Gan et al. 2016), the
ratio of sulfur added to total sediment solids (Tsai et al. 2003),
types of elemental sulfur (Seidel et al. 2006), dosage (Oliveira
et al. 2014; Nguyen and Lee 2015; Porzionato et al. 2017), and
mode of addition (Porzionato et al. 2017). Tichy et al. (1998)

and Seidel et al. (2006) suggested that during suspension
leaching, biological sulfur yields better results than technical
sulfur. Porzionato et al. (2017) found that heap leach systems
with superficial scattered sulfur perform better than systems
with sulfur integrated into the mixture. Compared to other
approaches, bioleaching has lower costs, lower energy re-
quirements, higher environmental safety, and more operation-
al flexibility (Zeng et al. 2015b). However, it also has some
disadvantages: metal solubilization experiences slow kinetics;
the process is time-consuming; there are fewer applications;
and there is a risk of groundwater contamination (Mani and
Kumar 2014; Zeng et al. 2015a).

When only a simple microbiological approach is used to
remediate sediment, the removal effect for some HMs is in-
sufficient. This inefficiency is particularly true for sediments
contaminated by multiple HMs. Nguyen and Lee (2015)
found that a mixed culture of Acidithiobacillus ferrooxidans
and Acidithiobacillus thiooxidans experienced a low As, Cu,
and Fe removal rate (range 42.4–47.7%). Gan et al. (2015)
also found that a moderately thermophilic consortium
(Sulfobacillus thermosulfidooxidans and Acidithiobacillus
caldus) obtained a low As, Hg, and Pb removal rate (range
22–45%). Combining microbiological approaches with other
methods has become a focus for biomobilization research. For
example, Zeng et al. (2015a) found that the process combined
with bioleaching and a Fenton-like reaction was an effective
approach to remove HMs and to enhance the dewaterability of
polluted dredged sediments. After adding H2O2, the Fenton-
like reaction was activated, and the Cd, Cu, Pb, and Zn re-
moval rates were increased from 90 to 99.5%, 60 to 70%, 20
to 39%, and 60 to 70%, respectively.

3.2.3 Bioimmobilization

Bioimmobilization refers to using biological methods (e.g.,
adding microorganism directly, microbial preparation, and
biostimulation) to transform toxic metallic compounds into
low- or non-toxic states through biosorption, bioaccumula-
tion, bioprecipitation, and biotransformation. The goal of
bioimmobilization is to reduce HM solubility, mobility, bio-
availability, and toxicity without completely removing them
from sediments. Bioimmobilization is significantly different
from biomobilization and other physical–chemical immobili-
zation approaches. Compost and SRB have served as
bioimmobilization agents to stabilize HMs and restore soil,
sludge, and sediment.

Compost can break down organic contaminants. Mattei
et al. (2016) found that co-composting dredged sediment
along with green waste (mainly consisting of mixed tree
branches) significantly degraded PAHs. Compost is consid-
ered an appropriate method in reclaiming dredged sediments,
opening opportunities for their use as technosol or as a plant-
growing substrate. Macía et al. (2014) also proved the
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viability of the ecological management of marine dredged
sediments through the elaboration of technosols. Although
co-composting is an inefficient technique in reducing HMs,
it can transform exchangeable HMs into more stable organic-
bound forms (Mattei et al. 2016). Considerable research sug-
gests that HM bioavailability could be reduced through com-
plexation, adsorption, reduction, and volatilization during
composting (Park et al. 2011; Mattei et al. 2016; Hazarika
et al. 2017).

However, some research has reached the opposite conclu-
sions. For example, it had been found that compost amend-
ments have significantly reduced the risk of human exposure
to toxic As concentrations (Kumpiene et al. 2008). However,
Fang et al. (2017) found that repeatedly applying composted
sewage sludge to soils contributed to the formation of reduc-
ing conditions. This enhanced the leached As concentrations
by approximately one order of magnitude. Beesley et al.
(2014) found that when olive mill waste compost was used
as an amendment with heavily contaminated mine soil, it sol-
ubilized a considerable amount of As into the pore water.
Walker et al. (2004) also found that compost (prepared from
a mixture of olive leaves and the solid fraction of olive mill
wastewater in a pilot plant) increased plant-available Cu, Mn,
and Zn in soil; cow manure prevented soil acidification and
decreased HMs bioavailability in amended soils. Hazarika
et al. (2017) found that rotary drum composting of paper mill
sludge efficiently reduced bioavailable and leachable fractions
of HMs. In general, using compost to stabilize HMs is com-
mon for restoring soil and sludge, but not sediment (Akcil
et al. 2015).

With respect to HM bioimmobilization, researchers have
examined the role of SRB in decreasing HM mobility by

generating sulfides. Sulfides have a very low solubility prod-
uct constant and support HM precipitation, recycling, and re-
use (Muyzer and Stams 2008). Previous research has shown
that SRB effectively immobilizes HMs. Thus, SRB have been
successfully used in wastewater treatment (e.g., acid mine
drainage) (Vitor et al. 2015; Zhang and Wang 2016); this
provides a reference for its application in other environmental
matrices, such as soil and sediment. However, few studies
have been conducted using SRB to remediate soil or
sediment. Mamouni et al. (2002) studied the influences of
electron donor and acceptor on SRB bioremediation of soil
polluted by trichloroethene and Ni. Groudev et al. (2014)
studied the effect of SRB biostimulation on radionuclides
(e.g., Ra and U) and non-ferrous metals (e.g., Cd, Cu, and
Zn) for in situ remediation. Fonti et al. (2015a) studied chang-
es in bacterial diversity during the SRB biostimulation of con-
taminated marine sediments.

4 Combined methods

Physical–chemical methods, also known as traditional tech-
niques, are usually highly efficient in remediation, but often
have high costs. Biological methods are considered promising
strategies; they are usually environmentally friendly, but re-
quire significant remediation time and are unstable in their
remediation efficiency. As such, both methods have advan-
tages and disadvantages. Due to the heterogeneous nature
and compositional complexity of sediment, a single physi-
cal–chemical method or biological method cannot usually
achieve an ideal remediation effect. This is particularly true
when numerous HMs contaminate the sediment. Combining

Fig. 6 Schematic comparison of
the thiosulfate (a) and polysulfide
(b) mechanisms in bioleaching
metal sulfides (MSmetal sulfides,
M2+ metal cations, Af
Acidithiobacillus ferrooxidans, At
Acidithiobacillus thiooxidans and
Lf Leptospirillum ferrooxidans)
(from Schippers and Sand 1999;
Vera et al. 2013; Akcil et al. 2015)
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the methods helps maximize their advantages, enhancing re-
mediation efficiency. Combined methods can be classified as
(1) physical–chemical methods with phytoremediation, (2)
physical–chemical methods with microorganisms, (3)
phytoremediation with microorganisms, and (4) group
technology.

4.1 Physical–chemical methods
with phytoremediation

Low hyperaccumulator biomass limits the application of
phytoremediation. During HM phytoextraction in soil or sed-
iment remediation, metal complexing agents (e.g., EDTA and
EDDS) are usually used first to activate HMs. Then, plants
(e.g., sunflower and willow) with high growth rates and large
biomass are used to extract HMs, increasing remediation effi-
ciency (Meers et al. 2005a, 2005b, 2007; Bert et al. 2009;
Shahid et al. 2014). Combined physical–chemical methods
and phytoremediation are usually used to remediate dredged
sediment. Meers et al. (2005a, 2005b) examined HM mobili-
zation (e.g., Cd, Cu, Zn, and Ni) into a solution of dredged
sediment-derived surface soil, applying EDTA or EDDS.
They found that both EDTA and EDDS enhanced the
phytoextraction of Brassic rapa, Helianthus annuus,
Cannabis sativa, and Zea mays.

Based on this, Meers et al. (2007) utilized EDDS and five
willow species (Salix spp.) to remediate sediment-derived sur-
face soils polluted at different levels and sandy soils in pot
experiments. They found that Salix schwerinii, Salix
dasyclados, and Salix fragilis had better phytoextraction for
Cd and Zn, and the promoting effect of EDTAwas influenced
by the type of environmental media, and HM type and level.
Based on existing studies, although EDTA has poor biode-
gradability, it remains the most efficient organic ligand in in-
creasing metal solubilization, uptake, and translocation. This
is because EDTA can form highly soluble and stable metal-
EDTA complexes (Shahid et al. 2014). EDTA-enhancedmetal
phytoremediation is affected by different biogeochemical pro-
cesses in the plants, soil, metal, and the EDTA itself (Meers
et al. 2005a, 2005b, 2007; Shahid et al. 2014). There are two
concerns when applying EDTA (Shahid et al. 2014). First, the
metal-EDTA complexes have a relatively low biodegradabil-
ity and can modify the bio-physico-chemical properties of the
soil or sediment. Second, adding EDTA may increase HM
field leaching, generating groundwater pollution and environ-
mental risk.

4.2 Physical–chemical methods with microorganisms

The combined method of applying physical–chemical
methods and microorganisms is mainly used in bioleaching
and biostabilization. Tan (2011) used Filamentous Bacteria to
enhance the bioleaching of Acidithiobacillus ferrooxidans to

treat sediments. The study found that applying Filamentous
bacteria can reduce treatment time, and significantly increase
Pb removal efficiency. Bioleaching is influenced by pH, ORP,
HM speciation, and sediment properties. Liu (2016) investi-
gated the effect of sodium dodecyl sulphate (SDS) on
bioleaching Cd, Cu, and Zn from Xiangjiang sediment using
sulfur-oxidizing bacteria (Acidithiobacillus ferrooxidans and
Acidithiobacillus thiooxidans). Results showed that SDS
could increase the surface hydrophilia of sulfur powder, the
solubility of elemental sulfur, the interaction between sulfur
and sulfur-oxidizing bacteria, and the sulfur oxidation rate.
When the SDS dose ranged from 0 to 0.5 g L−1, the removal
rate of Cd, Cu, and Zn increased to 87.74, 84.48, and 83.08%,
respectively.

Zeng et al. (2015a) studied the effect of a Fenton-like reac-
tion in promoting the bioleaching of Aspergillus niger strain
SY1 to remediate dredged sediment. The study found that
adding H2O2 initiated a Fenton-like reaction, leading to fur-
ther metal removal. The removal efficiencies of Cd, Cu, Pb,
and Zn increased from 90 to 99.5%, 60 to 70%, 20 to 39%,
and 60 to 70%, respectively. The combined process efficiently
improved the dewaterability of contaminated dredged
sediments.

Microorganism immobilization studies have focused on
using SRB to decrease HM mobility by generating sulfides
(Kumar et al. 2014, 2015; Li et al. 2016). However, three
technical problems limit SRB bioremediation. First, ideal en-
vironmental conditions (e.g., pH, Eh, SO4

2−, T, and electron
donors) for SRB growth cannot usually be met simultaneous-
ly, leading to poor field test performance (Mamouni et al.
2002; Muyzer and Stams 2008; Kumar et al. 2014). Second,
SRB are sensitive to acidity and high HM concentrations,
inhibiting SRB activity, particularly when SRB cells are di-
rectly suspended in the medium (Hsu et al. 2010; Zhang et al.
2016a). Finally, an excess carbon source supply can cause
secondary pollution by organic matter (Min et al. 2008; Chai
et al. 2009).

To address these problems, studies have tried to enhance
bioremediation efficiency and stability by creating a suitable
environment, using an immobilization technique and an inner
cohesive nutrient source. Karri et al. (2005) found that a zero-
valent iron (Fe0) can provide a low oxidation reduction envi-
ronment for SRB; the hydrogen produced through the chem-
ical corrosion of Fe0 can be used as the electron donor for
SRB. Recent studies by Kumar et al. (2014, 2015) also found
that adding Fe0 can strengthen the antijamming capability of
SRB to pH and Eh, and enhance the biostabilization efficiency
of HMs (e.g., Zn). The integrated Fe0 and SRB system was
used by Li et al. (2016) to treat sediment that was heavily
polluted with HMs in the Xiangjiang River in Hunan
Province, China. The results showed that the remediation ef-
ficiency of Fe0 integrated with SRB was better than the single
system of Fe0 or SRB on their own. This is because more
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stable fractions of HMs were produced in the integrated sys-
tem than in the single system. The amount of HM leaching
was also significantly lower in the integrated system than in
the single system.

Chai et al. (2009) and Min et al. (2008) previously studied
immobilized SRB and inner cohesive nutrient source tech-
niques. These methods provided good SRB growth condi-
tions, ensuring low effluent COD concentrations and a high
HM removal rate. However, these techniques have beenmain-
ly used to treat wastewater, not soil or sediment (Hsu et al.
2010; Zhang et al. 2016a). New research conducted by Li
et al. (2017) demonstrated that immobilized SRB beads with
inner cohesive nutrients also effectively stabilized HMs to
treat sediment. For example, the stabilization efficiencies of
HMs (e.g., Cd, Cu, Pb, and Zn) were higher than using free
SRB. Further, the beads can be reused several times, and sec-
ondary pollution is avoided. These improvements have en-
hanced the biostabilization efficiency of SRB. However, sed-
iment composition is complex, and identifying the
immobilized product is difficult. As such, the biostabilization
mechanism associated with SRB in treating sediment is un-
clear, especially with respect to the changing bacterial com-
munity composition and the relationships between microor-
ganisms. These are critical for biostabilization regulation and
control.

4.3 Phytoremediation and microorganisms

It is common to combine phytoremediation and microorgan-
ism use; this combined approach has been widely used in soil
remediation and in the ex situ remediation of dredged sedi-
ment. Microorganisms that survive in contaminated environ-
mental media have developed many strategies to change the
chemical forms of HMs in the rhizosphere (Fig. 7), and further
change HM bioavailability of HMs and phytoextraction of
plants (Ahemad 2014; Sarwar et al. 2017). Besides the bioac-
cumulation and biotransformation mechanisms of the micro-
organism itself, the microorganisms use the following mech-
anisms to promote plant growth (Ahemad 2014): antibiotic
production, N2 fixation, insoluble phosphorus solubilization,
siderophores production, phytohormones production, the low-
ering of ethylene concentrations, antifungal metabolite pro-
duction, and induced systemic resistance. Microorganisms
used to promote plant growth to remediate HMs mainly in-
clude saprophytic and symbiotic plant growth promoting bac-
teria (PGPB) and mycorrhizal fungi (saprophytic and symbi-
otic) (Philippot et al. 2013; Sarwar et al. 2017).

Considerable research shows that metal-resistant PGPB
can be used as a bioinoculant or biofertilizer, significantly
improving plant growth in HM-contaminated/stressed soils
and enhancing phytoremediation efficiency (Ahemad 2014).
Ahemad (2014) reviewed the prospects of using PGPB for
bacteria-assisted phytoremediation. The research found that

using bacteria with metal detoxifying traits, combining with
plant-beneficial properties, is a promising, cost-effective, and
environmentally friendly metal bioremediation method.
Farwell et al. (2007) found that, after being treated with
Pseudomonas putida UW4, shoot biomass and Ni accumula-
tion of Brassica napus increased. When studying HM-
contaminated sediments, Wan (2012) found that endophytic
bacteria S. nematodiphila LRE07 became resistant to Cd, Cu,
and Cr. Endophyte inoculation of S. nematodiphila LRE07
enhanced the photosynthetic pigment and growth of
Solanum nigrum L, and S. nematodiphila LRE07 improved
the antioxidative capability of its host plant and reduced ROS
injury caused by Cd exposure. This was primarily due to in-
creased mineral element uptake and antioxidant enzyme ac-
tivities. Moreover, endophytic bacteria could survive in plants
and continued its activity in the plant’s offspring seeds.

These studies were conducted using nutrient solution cul-
tures, without pot experiment and field tests. However, the
studies show that endophytic bacteria may have a significant
potential in remediating soil and sediment contaminated by
HMs. Liu (2015) found that the Cd-resistant microbes
Empedobacter brevis and Delftia tsumhatensis could enhance
the phytoremediation effect (e.g., plant growth and Cd
phytoextraction) of Brassica juncea, Solanum nigrum L.,
Lolium perenne L., and Elymus dahuricus Turcz.

Mycorrhizal fungi are a major component of living organ-
isms in the root zone and live in association with most higher
plants in different forms (Sarwar et al. 2017). The associations
between fungi and plant roots can benefit plants in various
ways, including enhancing the availability of plant nutrients
through an extensive hyphal network (Sarwar et al. 2017).
These fungal associations can also modify the chemical com-
position of root exudates, soil pH, and HM bioavailability in
the soil (Sarwar et al. 2017). Arbuscular mycorrhizal fungi
(AMF) are the most common mycorrhizal fungi (Fig. 7),
influencing HM uptake and accumulation in plants, and in-
creasing plant tolerance to HMs. These processes are also
influenced by the plant and fungi types, and soil characteris-
tics (Merlos et al. 2016; Wu et al. 2016).

There are two main viewpoints on the effect of fungi. Some
researchers have found that fungi can increase HM
phytoextraction. Other researchers have found that fungi can
reduce HM phytoextraction, increasing plant tolerance to HMs.
Chen et al. (2003) found that inoculating Trifolium pratense L.
with arbuscular mycorrhiza Glomus mosseae increased plant
yields and Zn phytoextraction. Li (2011) found that Glomus
mosseae can also increase the exchangeable and carbonate-
bounded forms of HMs in dredged sediment. This enhanced
the phytoextraction of HMs (e.g., Cd, Cr, Pb, and Zn) bymaize,
Lolium multiflorum Lam, and Medicogo sativa L.

However, Wu et al. (2016) found that, after being inoculat-
ed with Rhizophagus irregularis, the extraradical mycelium of
arbuscular mycorrhiza could uptake and transmit Cr to the
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mycorrhizal roots of Taraxacum platypecidum Diels.
However, Cr migration from roots to shoots was restrained,
immobilizing the Cr in roots and relieving the plant of Cr
phytotoxicity. Merlos et al. (2016) found that two maize cul-
tivars with different copper tolerances (the Cu-sensitive cv.
Orense and the Cu-tolerant cv. Oropesa.) experienced in-
creased Cu concentrations after being inoculated with
Rhizophagus irregularis. The mycorrhizal plant cv. Orense
may have experienced an increase in Cu tolerance due to an
increased induction of shoot phytochelatin biosynthesis
through symbiosis. Hou et al . (2016) found that
Rhizophagus intraradices can also improve Glycyrrhiza
uralensis Fisch growth, including plant biomass, phosphorus,
and chlorophyll levels. When applying biogas residue,
Rhizophagus intraradices significantly reduced Cu and Pb
concentrations in Glycyrrhiza uralensis Fisch.

4.4 Group technology

Group technology refers to the combination of three or more
remediation methods. This approach is emerging as a trend in
sediment remediation. During real-world, practical remedia-
tion processes, a single technique generally does not obtain an
ideal result, and single techniques cannot generally be univer-
sally applied. Thus, selection methods must depend on local
conditions. Combining different methods should be done
using an approach that fully uses each method’s advantages,
enhancing remediation results as much as possible.

However, this type of remediation method has not been
widely applied in field experiments. Seidel et al. (2004) used
group technology to treat HM-contaminated dredged sedi-
ments on a pilot scale. This involved conditioning the dredged
sludge with plants, applying solid-bed leaching of HMs using
microbially produced sulfuric acid, and revitalizing the
leached sediment by adding CaCO3 and compost. The study
found that Phalaris arundinacea was the most suitable for
conditioning sediment; after 21 days of subsequent
bioleaching, most of the metal contaminants were leached

(Cd, Co, Mn, Ni, and Zn were removed at a rate of 61–81%,
Cu was reduced by 21%, and Cr and Pb were almost
immobilized). After alkalization of the bioleaching process
water and solid-liquid separation, the leached sediment was
treated with 5% pulverized limestone and 3% compost. The
revitalized sediments were then exposed to the weather. After
revitalization, growth rates were compared using pot experi-
ments, with Phaseolus vulgaris, Brassica rapa, and oats
Avena sativa. These tests demonstrated that the plants grew
as well on revitalized sediment as on agricultural reference
soil.

Yu (2007) and Yu et al. (2009) used in situ stabilization,
oxidizing sulphides by aerating sediment, stabilizing HMs using
phosphates, and improving the sediment dewatering capacity by
injecting lime and flocculants. Ex situ composting followed,
treating HM-contaminated river sediments in a practical

Fig. 7 The rhizosphere (AMF arbuscular mycorrhizal fungi) (source: Philippot et al. 2013)

Table 3 Advantages and disadvantages for in situ and ex situ
remediation

Remediation
method

Advantage Disadvantage

In situ ① Relatively inexpensive
② Easy operation
③ Fast remediation
④ Non-disruptive to natu-

ral hydrological condi-
tions

⑤ Reduces handling and
exposure of sediments

⑥ Low release of
contaminants due to low
resuspension of
sediment

① Lacking process control
② Bad environmental

condition in remediation
③ Lower remediation

efficiency than ex situ
④ Lacking application
⑤ Risk of contaminant

re-release due to a lack of
reduction in total content

Ex situ ① Source control
② Process under control
③ High remediation

efficiency

① Relatively expensive
② Disruptive to natural

hydrological conditions
③ Possible secondary

pollution due to large
environmental
disturbances
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engineering application. Results showed that, after in situ stabi-
lization, the extracted content of HMs (e.g., Cu, Pb, and Zn)
significantly decreased by 65–90%. After high-temperature aer-
obic composting, the exchangeable and carbonate-bounded
forms of HMs (e.g., Cu and Zn) were both reduced. After the
full treatment process, the sediment was a candidate for use as a
fertilizer for riparian plants.

5 Choice of remediation methods

Heavy metals cannot be degraded by biochemical processes;
they can only be transformed between soluble and insoluble
forms (Peng et al. 2009; Akcil et al. 2015). This process
changes the chemical forms and toxicity of HMs. Only deter-
mining the total content of HMs cannot provide sufficient
information for their mobility and bioavailability in aquatic
benthic ecosystems. Instead, HM toxicity and bioavailability
depend heavily on their speciation (Peng et al. 2009; Burton
2010; Fonti et al. 2015a). The remediation methods (physical–
chemical strategies, biological strategies, and combined
methods) reviewed above essentially increase either metal sol-
ubility (mobilization) or stability (immobilization), to reduce
HM toxicity and bioavailability (Akcil et al. 2015).

These two remediation strategies are usually used in in situ
and ex situ remediation technologies, respectively (Peng et al.
2009). In in situ remediation, HM is not thoroughly removed
from sediment; instead, the method enhances stability be-
tween HMs and sediments using methods such as adsorption,
precipitation, and complexation. Ex situ remediation is de-
signed to move HMs away from the sediment, and is usually
followed by additional treatment of the HM water solution
using physico–chemical and biological methods.

Table 3 summarizes the advantages and disadvantages of in
situ and ex situ remediation. In situ remediation approaches
usual ly include amendments , sand capping, and
phytoremediation; ex situ remediation approaches usually in-
clude washing, electrochemical remediation, flotation, and
ultrasonic-assisted extraction (Peng et al. 2009; Akcil et al.
2015). Adopting a remediation technology usually depends
on specific sediment characteristics, such as metal loads, par-
ticle size distributions, and metal species distribution (Peng
et al. 2009; Akcil et al. 2015). In addition, when choosing a
remediation method, the function of water body should also
be considered. This includes assessing the need to dredge the
port, wharf, or river (especially urban) systems, and consider-
ing other factors, such as financial and human costs.

6 Prospects

There are many remediation technologies available to treat
contaminated sediments. Immobilization methods cannot

fully remove HMs from sediment; however, compared to oth-
er methods, they are less expensive, require less time, are
easily operated, create less environmental disturbance, and
result in low contaminant releases. Immobilization methods
have significant potential as an in situ remediation technique.
Compared with traditional physical–chemical immobilization
methods (e.g., adding amendments), bioimmobilization tech-
niques (e.g., phytostabilization and microorganism immobili-
zation) have received increased attention, because of their low
remediation cost and environmental compatibility.
Microorganism immobilization, and its combination with oth-
er methods to restore sediments, has become a research
hotspot in the environmental science and engineering fields.

Sulfur-reducing bacteria (SRB) have a better immobi-
lization effect on HMs compared to other approaches,
making it a more promising approach for sediment reme-
diation. However, the majority of research on SRB has
been in wastewater treatment settings. Few studies had
been conducted using SRB for soil or sediment remedia-
tion. Complications remain with the use of SRB, includ-
ing poor remediation efficiency in field tests, sensitivity to
acidity and high contaminant concentrations, and excess
carbon source production that causes secondary pollution
of organic matter. Using SRB has exhibited low and un-
stable remediation efficiency with certain HMs, particu-
larly when there are multiple contaminants. This results in
less than ideal outcomes.

More positively, the successful application of immobilized
SRB in wastewater treatment provides a reference for its ap-
plication in other environmental matrices, such as soil and
sediment. Using immobilized SRB to treat sediment contam-
inated by HMs may solve the problems associated with SRB,
enhancing its remediation efficiency. However, for sediment
remediation, research should focus on the technologies used to
prepare immobilized SRB, optimizing experimental scales,
and further revealing biostabilization mechanisms.
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