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Abstract

Purpose Soil nutrient concentrations and stoichiometry are important indicators of plant growth, terrestrial productivity, and
ecosystem functioning. Nevertheless, little is known about the vertical distribution and the environmental factors influencing the
spatial patterns of different forest types under the BGrain for Green^ program and the BNatural Forest Resources Protection^
project in Northwest of China.
Materials and methods We collected 114 soil profile samples within a 0–100-cm depth from black locust and Chinese pine
plantations, and secondary oak forests.We determined the vertical distributions of soil organic carbon (SOC), total nitrogen (TN),
total phosphorus (TP), and their ratios along environmental gradients in Shaanxi Province, Northwest China.
Results and discussion The results showed that both SOC and TN concentrations decreased exponentially within the soil profiles
of the three forest types, but there was minimal change in TP. Significant differences in SOC, TN, and TP were found in the
surface soil layers among the forest types. Both SOC and TN were relatively low in the N-fixing black locust plantations and TP
was comparatively low in the Chinese pine plantations. The C:N:P ratios decreased with increasing soil depth for the three forest
types. These ratios were comparatively high in the Chinese pine plantations, relatively low in the black locust plantations, and
moderate in the oak forests. The differences in the ratios among the three forest types were more significant in surface soil than in
deep soil. Precipitation was positively correlated with the concentrations of SOC and TN and the ratios of C:N:P. Temperature
was negatively correlated with concentrations of SOC and TN and the ratios of C:N:P across all soil depths. A log-transformed
linear C-N relationship was found for all three forest types, suggesting a well-constrained coupling between the levels of the two
elements.
Conclusions Our results demonstrated the effect of different tree species on soil C:N:P ratios and their controlling factors within
soil profiles along environmental gradients. The secondary oak forest accumulated soil C and N more effectively than the
plantations. The Chinese pine plantations were relatively more susceptible to P limitation. Therefore, the mechanism of different

plant species on soil biogeochemical processes at the whole
soil profile level must be considered when developing forest
management strategies and implementing vegetation restora-
tion projects.

Keywords Forest types . Northwest China . Soil nutrient
status . Spatial variability . Vertical distribution

1 Introduction

As the largest carbon (C) pool in the terrestrial biosphere, soil
plays an important role in global C cycling. Soil C stores
exceed those found in vegetation biomass and atmospheric
reservoirs combined. Therefore, any minor change in soil
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organic C (SOC) will have a significant impact on atmospher-
ic carbon dioxide (CO2) concentrations (Eswaran et al. 1993).
Meanwhile, nitrogen (N) and phosphorus (P) are the key nu-
trients and limiting elements of terrestrial ecosystems. The
availabilities of N and P in soil strongly influence primary
production and C accumulation, and a tight correlation has
been observed between the C and N in terrestrial biogeochem-
ical cycles (Cleveland and Liptzin 2007). Therefore, a great
deal of research worldwide has focused on the storage, pat-
tern, and environmental controls of the spatial-temporal soil
C:N:P stoichiometry across different soil types, biomes, to-
pography, and vegetation types. These data have increased
the understanding of biogeochemical cycles and the potential
feedbacks of terrestrial ecosystems to global climate change
(Jobbagy and Jackson 2000; Yang et al. 2007, Yang et al.
2008; Tarnocai et al. 2009; Wiesmeier et al. 2012; Bing
et al. 2016; Wang et al. 2017).

Soil C:N:P stoichiometry is regulated by plant nutrient up-
take, litterfall, and root exudates. Meanwhile, the physiologi-
cal strategies of vegetation types to optimize use of limiting
nutrients may also affect soil C, N, and P (McGroddy et al.
2004). The effects of vegetation type on soil C:N:P stoichi-
ometry have been documented in many studies. They revealed
that conifers and broadleaf trees have different impacts on soil
C:N:P characteristics (Jobbagy and Jackson 2000; Chen et al.
2004; Li et al. 2005; Marin-Spiotta and Sharma 2013; Ma
et al. 2015; Chai et al. 2015; Dawud et al. 2017; Feng et al.
2017). Moreover, an increasing number of studies also report-
ed significant differences between plantations and natural/
secondary forests in terms of soil C:N:P ratios (Chen et al.
2004; Li et al. 2005; Marin-Spiotta and Sharma 2013; Cao
and Chen 2017). Soil C and N concentrations was lower in
plantations than in natural forests (Behera and Sahani 2003;
Lemenih et al. 2004; Lemma et al. 2006; Cao and Chen 2017),
but higher in afforested agricultural lands than in natural for-
ests (Wall and Hytonen 2005). A meta-analysis based on 73
published studies showed that soil C and N concentrations in
plantations were 36 and 26.5% lower than those in natural
forests, respectively (Liao et al. 2012).

Although large-scale soil C:N:P stoichiometry patterns
have been surveyed regionally, continentally, and globally,
the results have been inconsistent. This discrepancy could be
explained in terms of vegetation type, climate zone, biome,
soil order, and soil weathering stage (Jobbagy and Jackson
2000; Yang et al. 2007; Tarnocai et al. 2009; Tian et al.
2010; Wiesmeier et al. 2012; Bing et al. 2016; Feng et al.
2017; Wang et al. 2017). Therefore, soil C:N:P stoichiometry
should be investigated under different types of plant restora-
tion, particularly in Northwest of China which has experi-
enced large-scale vegetation construction due to severe soil
and water losses since the 1970s. The BGrain for Green^ pro-
gram and the BNatural Forest Resources Protection^ project
were launched in 1998 to restore ecological environments

across Northwestern China. They have provided many eco-
logical benefits including increases in vegetation cover (Cui
et al. 2015b), biodiversity conservation (Chen and Cao 2014),
and forest C sequestration (Cui et al. 2015a; Cao and Chen
2017). However, little information is available on soil C, N,
and P concentrations and their stoichiometries in the second-
ary forests under the aegis of the BNatural Forest Resources
Protection^ project. In addition, relative differences in soil
C:N:P between secondary forests and plantations remain to
be determined.

Knowing the effects of plantations and secondary forests
on soil C:N:P stoichiometry helps assess soil nutrient status,
biogeochemical equilibrium, and ecosystem stability. It also
improves predictions for the effects of current and future
changes in land use and cover on both regional and global C
cycles (Bonner et al. 2013; Cao and Chen 2017). In this study,
widely distributed N-fixing black locust (Robinia
pseudoacacia) and indigenous Chinese pine (Pinus
tabulaeformis) plantations, and secondary oak (Quercus
liaotungensis) forests were selected in Shaanxi Province,
Northwest China. The vertical distributions of their soil
C:N:P stoichiometries were analyzed along environmental
gradients from south to north regional climate. The first ob-
jective was to compare the vertical distributions and the ratios
of the SOC, TN, and TP in the 0–100 cm soil profiles under
the three forests. The second objective was to quantify the
correlations between the spatial variations in soil C:N:P stoi-
chiometry and selected environmental factors. The results of
this study may help improve forest management and vegeta-
tion recovery.

2 Methods and materials

2.1 Study area

The study was conducted along a south to north gradient in
Shaanxi Province, China (105°29′ to 111°15′ E and 31°42′ to
39°35′ N). Both mean annual temperature (18–6 °C) and mean
annual precipitation (1400–320 mm) gradually declined from
south to north. The vegetation type ranges from north subtropical
broadleaf forest zone to warm temperate humid and semi-humid
forest zone and moderate temperate arid and semi-arid desert
grassland. The latest forest inventory data available for Shaanxi
Province reports that the secondary oak forest, protected under
the BNatural Forest Resources Protection^ project, accounts for
the largest proportion of forest area (50%) and timber volume
(50%) in the whole province. The indigenous Chinese pine plan-
tation also accounts for a large proportion of forested area (52%)
and timber volume (51%) among all plantations. The fast-grow-
ing, N-fixing black locust has been widely planted across
Shaanxi Province during the implementation of the BGrain for
Green^ program, with more than 70,000 ha planted over the past
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few decades (Qiu et al. 2010). This deciduous N-fixing species is
native to North America and was introduced to China from
Europe at the beginning of the twentieth century (Shan et al.
2002; Cierjacks et al. 2013; Tsunekawa et al. 2014).

2.2 Field sampling and laboratory analysis

We compared soil C, N, and P stoichiometries in the large
proportion of middle-age forests in N-fixing black locust and
indigenous Chinese pine plantations (20–30-year-old) and in
secondary oak forests (30–40-year-old) based on the forest
inventory database of Shaanxi Province. These are the main
types of forests covered under the BGrain for Green^ program
and the BNatural Forest Resources Protection^ project imple-
mented across Shaanxi. Black locust and Chinese pine plan-
tations were planted on abandoned cultivated lands, while
secondary oak forests were regenerated naturally on aban-
doned farmlands originally populated by native oak forests
before being cleared. Furthermore, 12, 11, and 15 sampling
sites were selected for black locust, Chinese pine, and oak
forest, respectively, based mainly on the relative distribution
of each forest types from south to north through Shaanxi
(Electronic Supplementary Material, Fig. S1). All sampling
sites were located far from human habitation and were neither
fertilized nor irrigated. Longitude, latitude, and elevation were
recorded at each site using a global positioning system (GPS).

Field soil sampling was conducted from July to August
2011. A total of 114 soil profiles were collected from 38 sites
(three soil profiles per site) along the south to north gradient.
Soil samples were taken from each profile at depth intervals of
0–10 cm, 10–20 cm, 20–30 cm, 30–50 cm, and 50–100 cm.
Soil bulk density samples were collected using a standard
100 cm3 container and oven-dried at 105 °C for 24 h until a
constant weight was obtained. Soil samples for C, N, and P
analyses were air-dried for over 1 week, sieved through a 2-
mm mesh, handpicked to remove plant detritus, and then
ground in a ball mill. Soil organic carbon (SOC) was deter-
mined using the wet oxidation method (Nelson et al. 1996).
Total N (TN) was measured using the Kjeldahl method
(Bremner and Mulvaney 1982), and total P (TP) was deter-
mined using the HClO4-H2SO4 colorimetric method
(Parkinson and Allen 1975).

2.3 Climate data

Datasets containing the mean annual temperature (MAT) and
mean annual precipitation (MAP) for each sampling site used
were obtained from the China Meteorological Data Sharing
Service System (CMDSSS; http://cdc.cma.gov.cn/). We
analyzed the datasets and established correlations between
MAT and MAP using geographic variables (longitude,
latitude, and altitude) recorded at 52 meteorological stations
across the region. We then estimated the temperature and

precipitation of the sampling sites based on the established
regressions (Fang et al. 2001; Piao et al. 2003; Li et al.
2015). The regressions were calculated in this study as fol-
lows:

MAT ¼ 62:431−0:005*H−0:606*Y−0:234*X

r2 ¼ 0:964;P ¼ 0:000

ð1Þ

MAP ¼ 602:549−101:111*Y þ 31:938*X þ 0:091*H

r2 ¼ 0:753;P ¼ 0:001
ð2Þ

where X, Y, and H represent longitude, latitude, and elevation,
respectively.

2.4 Estimation of SOC, TN, and TP

The SOC density for each soil profile was estimated from the
following equation (Batjes 1996; Wiesmeier et al. 2012; Yang
et al. 2007, 2008):

SOCDi ¼ SOCi
*BDi

*Ti
* 1−Cið Þ=100 ð3Þ

where SOCDi, SOCi, BDi, Ti, and Ci are SOC density
(kg m−2), SOC (g kg−1), bulk density (g cm−3), soil thickness
(cm), and volume percentage of the fraction > 2 mm at layer i,
respectively. The same procedure was used to estimate the
densities of TN and TP.

2.5 Statistical analysis

One-way ANOVAs were run with post hoc to determine
whether the distributions of SOC, TN, TP, and the stoichio-
metric ratios of the three forest types differed significantly. A
partial correlation analysis was used to examine the relation-
ships among SOC, TN, and TP and the various environmental
drivers, latitude, longitude, elevation, temperature, and precip-
itation (Wang et al. 2004). The level of statistical significance
was set at P < 0.05. All analyses were performed using SPSS
(version 20, IBM Crop., Armonk, NY, USA).

3 Results

3.1 Vertical distribution of SOC, TN, and TP

In all three forest types, SOC and TN concentrations de-
creased exponentially with soil depth in the top 0–1 m layer
(P < 0.001; Fig. 1a, b). The SOC and TN concentrations were
higher in the secondary oak forests than in both Chinese pine
and black locust plantations within the first 30 cm (P < 0.001),
but there were no significant differences in SOC and TN
among the three forest types below 30 cm. In contrast, there
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was minimal change in soil TP with increasing depth for the
three forest types (Fig. 1c). The soil TP concentrations in the
Chinese pine plantations were significantly lower than in the
black locust plantations and the oak forests along the soil
profile (P < 0.001, Fig. 1c). On the other hand, the soil TP
concentrations in N-fixing black locust plantations were not
higher than those of the secondary oak forests.

The SOC and TN densities for the three forest types also
decreased within soil depth (the last two depth intervals
converted to the equivalent of 10 cm thickness; Figs. 2 and
3). The SOC densities of the N-fixing black locust plantations
were significantly lower than those of the Chinese pine plan-
tations and secondary oak forests. They did not, however,
significantly differ between the secondary oak forests and
the Chinese pine plantations in the upper 30 cm layer

(Fig. 2). The soil TN densities were significantly higher in
the secondary oak forests than these of black locust and
Chinese pine plantations at 0–10 cm and 10–20 cm (Fig. 3).
The soil TP densities of the N-fixing black locust plantations
were significantly higher than those of the non-N-fixing forest
types. The soil TP densities of the secondary oak forests,
however, were significantly higher than that of the highest
density in the Chinese pine plantation within the top 30.
Nevertheless, little difference in soil TP density was found
between the oak forests and the black locust plantations at
depth intervals of 30–50 cm and 50–100 cm (Fig. 4).
Approximately 50% of the SOC and TN stocks in the upper
1 m soil layer were stored within the top 30-cm depth interval,
while the top 50-cm depth interval was stored about half of the
total TP stocks in all three forest types (Figs. 2, 3, and 4).

Fig. 1 Vertical distribution of the
SOC (a), TN (b), and TP (c)
concentrations for the three forest
types

Fig. 2 Vertical distribution of the
densities (a–c) and the
proportional distribution of SOC
(d–f) in black locust plantations
(a, d), Chinese pine plantations
(b, e), and secondary oak forests
(c, f). Different letters denote
significant differences among
forest types (LSD test, P < 0.05).
Error bars represent standard
deviation of the means
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3.2 Vertical distributions of SOC, TN, and TP
stoichiometric ratios

The soil C:N, C:P, and N:P ratios all significantly decreased
(P < 0.001) with increasing soil depth (Fig. 5). The C:N ratio

varied only slightly along the profile with a coefficient varia-
tion of 11.17% compared to that of the C:P and N:P ratios. The
ratios of C:N, C:P, and N:P were significantly higher in the
Chinese pine plantations than those in the N-fixing black lo-
cust plantations at each depth interval (Fig. 5). Moreover, the

Fig. 3 Vertical distribution of the
densities (a–c) and the
proportional distributions of TN
(d–f) in black locust plantations
(a, d), Chinese pine plantations
(b, e), and secondary oak forests
(c, f). Different letters denote
significant differences among
forest types (LSD test, P < 0.05).
Error bars represent standard
deviation of the means

Fig. 4 Vertical distribution of the
densities (a–c) and the
proportional distribution of TP
(d–f) in black locust plantations
(a, d), Chinese pine plantations
(b, e), and secondary oak forests
(c, f). Different letters denote
significant differences among
forest types (LSD test, P < 0.05).
Error bars represent standard
deviation of the means
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C:N:P values in the secondary oak forests were in between
those for the black locust and Chinese pine plantations. The

differences among the three forest types were more significant
in surface soil than in deep soil (Fig. 5).

Fig. 5 Vertical distribution of
C:N (a), C:P (b), and N:P (c)
ratios for black locust plantations,
Chinese pine plantations, and
secondary oak forests. Different
letters denote significant
differences among these three
forest types (LSD test, P < 0.05).
Error bars represent standard
deviation of the means
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3.3 Environmental controls of SOC, TN, and TP,
and their spatial variations

The SOC, TN, and TP concentrations and their ratios exhib-
ited significant spatial variations (Table 1). TP increased with
latitude and decreased with longitude and elevation. All the
correlations between TP and the geographic variables weak-
ened with increasing soil depth. In contrast, the SOC and TN
were significantly correlated with elevation at all soil depths
but not with longitude or latitude (Table 1). The C:N, N:P, and
C:P ratios were positively correlated with longitude and ele-
vation but negatively correlated with latitude. The correlations
were significant at almost each soil interval for N:P and C:P,
but only weakly significant at the top 30 cm for C:N (Table 1).

Temperature and precipitation had strong impacts on soil
TP, C:N, N:P, and C:P (Table 2). Temperature had a positive
effect on soil TP whereas precipitation had a negative effect
upon it. Conversely, N:P and C:P ratios were negatively cor-
related with temperature and positively correlated with precip-
itation (Table 2).

3.4 Relationships between SOC, TN, and TP
concentrations

The TP concentrations were positively correlatedwith TN, but
significantly correlated with SOC only at 0–30 cm (Table 3).
There were, however, significant correlations between SOC
and TN for all three forest types and all soil depths (Table 3,
Fig. 6). In addition, an isometric relationship (the slopes of
log-transformed C and N correlations were not statistically
different from 1) between SOC and TN was observed in
Chinese pine plantations at 20–100 cm and in oak forests in
the top 20 cm, respectively (Table 4). In contrast, no isometric
relationship was found for black locust plantations.

Nevertheless, the slopes of the stoichiometric C-N relation-
ship did not significantly differ among the three forest types
(P > 0.05).

4 Discussion

4.1 Vertical distributions of SOC, TN, and TP
concentrations and ratios

In this study, the vertical distributions of the SOC, TN, and TP
concentrations and their ratios were investigated in three dif-
ferent types of forest along a south to north gradient in
Shaanxi Province, Northwest China. The results showed that,
except for TP, the soil nutrient concentrations decreased along
the soil profile. These results were consistent with findings
from previous studies conducted in plantations on the Loess
Plateau (Zhang et al. 2013; Song et al. 2016), subalpine forests
of the eastern Tibetan Plateau (Feng et al. 2017), and other
land use types (i.e., shrub, crop, and desert) worldwide
(Jobbagy and Jackson 2000; Wang et al. 2004; Kahle et al.
2010; Chai et al. 2015). The decreasing trend with soil depth
for SOC and TN was determined by the input pattern of or-
ganic matter in the soil, such as plant root and litter, which
gradually decreased down the vertical profile. On the other
hand, the soil TP profile pattern was mainly attributed to the
parent material located in the bottom of the soil, which pro-
vided the major sources of P (Walker and Adams 1958).
Long-term weathering of the parent material, together with
an accumulation of P in the surface soil layer through translo-
cation by plants, ultimately resulted in a relatively stable ver-
tical TP distribution (Tian et al. 2010). Consequently, C:P and
N:P declined much faster than C:N with increasing soil depth.
This observation was consistent with the results reported in a

Table 1 Partial correlation coefficients of soil C, N, and P concentrations and ratios with longitude, latitude, and elevation in Northwest China

Soil depth (cm) Longitude Latitude Elevation Longitude Latitude Elevation Longitude Latitude Elevation
C N P

0–10 − 0.094 − 0.103 0.341** − 0.223* 0.035 0.242** − 0.597** 0.534** − 0.484**
10–20 − 0.008 − 0.166 0.339** − 0.149 − 0.106 0.312** − 0.54** 0.437** − 0.366**
20–30 − 0.004 − 0.254** 0.359** − 0.133 − 0.162 0.227** − 0.486** 0.476** − 0.37**
30–50 − 0.041 − 0.308** 0.392** − 0.094 − 0.287** 0.301** − 0.458** 0.429** − 0.349**
50–100 − 0.06 − 0.234** 0.222* − 0.1 − 0.254** 0.176* − 0.18 0.210* − 0.196*

C:N N:P C:P

0–10 0.411* − 0.505** 0.485** 0.363* − 0.507** 0.504** 0.421* − 0.552** 0.517**

10–20 0.398* − 0.367* 0.336* 0.371* − 0.551** 0.492** 0.460** − 0.555** 0.475**

20–30 0.347* − 0.451** 0.560** 0.394* − 0.593** 0.402* 0.448** − 0.614** 0.494**

30–50 0.190 − 0.264 0.309 0.421* − 0.621** 0.428* 0.437** − 0.625** 0.509**

50–100 0.075 − 0.060 0.010 0.068 − 0.450** 0.323* 0.132 − 0.463** 0.325*

**P < 0.01

*P < 0.05
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nationwide synthesis of data compiled from many studies
conducted in China (Tian et al. 2010). The soil surface layer
(0–30 cm) interacts directly with the atmosphere and is the
most sensitive to land-use changes (Batjes 1996; Wang et al.
2004). Differences in SOC and TN concentrations and their
densities among the three forest types occur mainly within the
0–30 cm surface soil layers.

N-fixing species have been widely proven to increase the
soil SOC and TN concentrations, N stores, N cycling and
availability, and primary productivity in the recovery of de-
graded mining lands, deforested lands, and agroforestry sys-
tems (Deans et al. 1999; Uselman et al. 2000; Rice et al. 2004;
Macedo et al. 2008; Wang et al. 2010). For example, soil
organic matter and N concentrations in the 0–5 cm soil layer
were 40–50% and 20–50% higher in the N-fixing forests than
in the non-N-fixing forests, respectively, in the restoration of
degraded lands of southern China (Wang et al. 2010).
However, the current study and previous studies indicated that
SOC and TN concentrations and densities in the soils under
N-fixing black locust stands were lower than those under other
species (Tateno et al. 2007; Song et al. 2016). Tateno et al.

(2007) described high litter decomposition rates and low litter
and soil organic layers inputs in the black locust plantations of
the Loess Plateau. In addition, the fast litter decomposition
rates of the black locust plantation can also be accounted for
by the significantly lower soil C:N ratios in the black locust
plantations compared to those under other forest types, espe-
cially in the surface soil layer (Bui and Henderson 2013; Zhao
et al. 2015). A meta-analysis of 74 publications on the influ-
ence of land-use changes on soil C stocks revealed that soil C
stocks in N-fixing tree species were not significantly higher
than those under other tree species (Guo and Gifford 2002).
The secondary oak forests in our field investigations had larg-
er and thicker litter layers than those in the other forest types.
Consequently, the soil under secondary oak forest had higher
SOC and TN concentrations and densities than those under the
black locust and Chinese pine plantations. Therefore, second-
ary oak forests were more effective at accumulating C and N
than black locust and Chinese pine plantations.

Soil TP patterns are affected by the interactions among
climate, vegetation type, and parent material (Sundqvist
et al. 2014; Zhou et al. 2016). It is generally accepted that soil
P concentrations in most regions of China, especially the
Loess Plateau, are below the global average, resulting from
low P inputs by weathering and strong losses by soil erosion
and water runoff (Han et al. 2005; Zheng and Shangguan
2007; Zhou et al. 2016). In our study, we observed that soil
TP concentration and density were significantly lower in the
coniferous Chinese pine plantations than in the two broad-
leaved forest types, which is mainly a result of more acidity
in the foliage and litter of coniferous trees. Moreover, the
concentrations of other P forms (i.e., the diluted HCl-
extractable inorganic P) were significantly lower in coniferous
forests than those in broadleaf forests of Chile and Southwest
China (Thomas et al. 1999; Zhou et al. 2016). In addition, the

Table 2 Partial correlations
among soil C, N, and P
concentrations and ratios with
temperature and precipitation in
Northwest China

Soil depth (cm) Temperature Precipitation

C N P C N P

0–10 − 0.319 − 0.175 0.508* 0.166 0.03 −0.523*
10–20 − 0.280 − 0.317 0.465* 0.191 0.266 − 0.424*
20–30 − 0.271 − 0.109 0.385* 0.393 0.243 − 0.454*
30–50 − 0.186 − 0.128 0.358* 0.294 0.285 − 0.375*
50–100 − 0.125 − 0.063 0.319* 0.303 0.232 − 0.169*

C:N N:P C:P C:N N:P C:P

0–10 − 0.394* − 0.419* − 0.419* 0.546** 0.564** 0.593**

10–20 − 0.261 − 0.390* − 0.363* 0.375* 0.592** 0.570**

20–30 − 0.502* − 0.263 − 0.366* 0.547** 0.594** 0.630**

30–50 − 0.263 − 0.282 − 0.381* 0.321 0.622** 0.646**

50–100 0.002 − 0.217 − 0.219 0.044 0.488** 0.495**

**P < 0.01

*P < 0.05

Table 3 Correlation coefficients among C, N, and P for different soil
depth intervals

Soil depth (cm) C-N N-P C-P

r p r p r p

0–10 0.934 0.000 0.564 0.000 − 0.528 0.000

10–20 0.879 0.000 0.237 0.012 − 0.251 0.008

20–30 0.912 0.000 0.318 0.001 − 0.323 0.001

30–50 0.915 0.000 0.114 0.233 − 0.16 0.094

50–100 0.595 0.000 0.108 0.258 − 0.073 0.445

Total 0.845 0.000 0.219 0.021 − 0.275 0.003
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soil N:P ratios in the Chinese pine plantations were higher
than those under the other two forest types which implied P
limitation for growth of Chinese pine in the study area.
Therefore, the synergistic effects of soil nutrient limitation
with aggravating water deficiency conditions induced by
global warming may threaten the recovery of Chinese pine
plantations. These facts should be taken into consideration
when planning forest management and ecological restoration.

4.2 Relationships between SOC, TN, TP,
and environmental factors

Our analysis indicated significant effects of climate on soil
nutrient concentrations and their ratios. Both SOC and TN
concentrations were positively correlated with precipitation
and negatively correlated with temperature, but not signifi-
cantly. These results were consistent with those obtained from
Chinese (Wu et al. 2003; Wang et al. 2004; Yang et al. 2007),
American (Epstein et al. 2002), and global (Jobbagy and
Jackson 2000) datasets. The SOC was determined from the

balance between plant biomass production input and the mi-
crobiological decomposition output (Post et al. 1982;
Davidson and Janssens 2006). Increased precipitation may
promote plant growth, thereby increasing soil C and N inputs
in the form of litterfall and fine roots. Increases in temperature
would accelerate the mineralization of soil organic matter and
decrease both SOC and N (Fang et al. 2001; Wu et al. 2003;
Yang et al. 2007; Chai et al. 2015). However, the combined
effects of temperature and precipitation on SOC and TN are
complex and not simply the sum of the individual influences
of each factor (Jobbagy and Jackson 2000; Davidson and
Janssens 2006). In our study area, both precipitation and tem-
perature declined gradually from south to north, while precip-
itation was the main variable affecting SOC. Consequently,
the SOC storage also decreased from south to north similarly
to the precipitation gradients. The overall SOC storage in
China is inversely proportional to temperature and directly
proportional to precipitation. The correlation between SOC
and temperature was stronger than that between SOC and
precipitation (Wang et al. 2004). In contrast, both precipitation

Fig. 6 Relationship between log-
transformed C and N at different
soil depths for black locust plan-
tations, Chinese pine plantations,
and oak forests. a 0–10 cm. b 10–
20 cm. c 20–30 cm. d 30–50 cm. e
50–100 cm. f 0–100 cm. All
fitting equations are significant
(P < 0.05)

Table 4 Analysis of log-
transformed soil C and N rela-
tionships at different soil depth
intervals for black locust planta-
tions, Chinese pine plantations,
and secondary oak forests

Soil depth (cm) Black locust Chinese pine Secondary oak

Slope Intercept r2 Slope Intercept r2 Slope Intercept r2

0–10 0.89 − 0.87 0.98 0.79 − 0.83 0.79 0.85 − 0.87 0.88

10–20 0.85 − 0.81 0.95 0.79 − 0.81 0.69 0.91 − 0.92 0.91

20–30 0.71 − 0.68 0.89 0.93 − 0.96 0.77 0.76 − 0.78 0.78

30–50 0.59 − 0.48 0.82 1.00 − 0.99 0.82 0.83 − 0.79 0.80

50–100 0.61 − 0.36 0.77 0.97 − 0.92 0.61 0.52 − 0.29 0.59

Total 0.76 − 0.48 0.91 1.04 − 1.09 0.74 0.69 − 0.41 0.77

Slopes not statistically different from 1.0 are indicated in italic type, and all equations are significant (P < 0.05)
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and temperature significantly affect soil TP. Increased temper-
ature accelerates the weathering of parent materials where the
soil P originates, and an increase in precipitation facilitates the
leaching of P from the soil. Therefore, soil TP increases with
latitude and decreases with longitude because of the precipi-
tation gradients in these two spatial variables. Soil TP also
decreases with elevation since temperature falls with rising
altitude. In our study, the N concentration increased and the
P concentration decreased with increasing elevation (Table 3).
The results of our study corroborate those previous reports
which also stated that C and P concentrations, litter decompo-
sition rates, and microbial N and P uptake and release all
decline with increasing elevation (Sundqvist et al. 2014).

A linear log-transformed soil C-N relationship was found in
all three forest types, suggesting a closely linked interaction be-
tween SOC and TN. Since the slope of the C-N stoichiometric
relationships was not statistically different from 1.0, the SOC and
TN were scaled isometrically in both the Chinese pine and oak
forests. Similar soil C-N isometric patterns were also document-
ed in a global forest meta-analysis (Cleveland and Liptzin 2007;
Yang and Luo 2011). These trends may reflect the isometric C-N
stoichiometry of plants from which soil C and N originate
(McGroddy et al. 2004; Cleveland and Liptzin 2007). Certain
studies, however, found no isometric C-N stoichiometry in
plants, which complicated our understanding of the interaction
between plants and soils (Yang and Luo 2011). This isometric
stoichiometry was not examined between soil N (or C) and P at
every depth in this study, althoughmany studies have indicated a
tightly linked relationship between N and P in plant leaves (Han
et al. 2005; Reich and Oleksyn 2004; Reich et al. 2010) and fine
roots (Yuan et al. 2011). Awell-constrained soil N:Pwas noted in
the Chinese (Tian et al. 2010) and global (Cleveland and Liptzin
2007) datasets. In both cases, only the surface (0–10 cm) had
relatively consistent N:P ratios. Decoupling soil N (or C) and P in
deeper soil layers is the result of differences in the main sources
of these nutrients. The SOC was highly correlated with soil or-
ganic P andC,whereasN and Pweremoderately associatedwith
the soil organic matter (Walker and Adams 1958).

5 Conclusions

Large-scale ecological restoration projects have been conduct-
ed in Northwestern China using different plant species, which
have exerted profound effects on the dynamics and patterns of
soil nutrients. Our field investigation examined the vertical
distributions of soil C, N, and P concentrations and their ratios
for the three major forest types in the region. We found that
both SOC and TN decreased but TP only slightly decreased
along the soil depth profile for all three forests. The concen-
trations and storage of SOC and TN in N-fixing black locust
plantations were not higher than those in the indigenous
Chinese pine plantations or the secondary oak forests.

Precipitation and temperature had significant effects on
SOC, TN, and TP concentrations and their ratios. SOC and
TN varied directly with precipitation and inversely with tem-
perature. In contrast, TP is less significantly affected by cli-
mate since its source is primarily the parent material in the
deeper soil strata. Since they grew mainly in arid and semi-
arid nature of the region, Chinese pine plantations had lower
soil TP densities and were more severely limited in terms of
nutrient and water availability than the black locust and oak
forests. Consequently, Chinese pine should be given particular
attention when developing ecological restoration projects in
the region.
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