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Fertilization with inorganic and organic nutrients changes
diazotroph community composition and N-fixation rates
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Abstract
Purpose Nitrogen fixation by free-living diazotrophs from the
atmosphere is an important pathway for nitrogen input into the
soil. However, there is little information regarding soil
diazotrophic community composition and diversity under
long-term fertilization in rice paddy ecosystems.
Materials and methods Using the 15N2-tracing method and
nifH gene as a molecular marker, we investigated the abundance,
structure, and activity of soil diazotrophic community in soil at a
30-year-old filed experimental site treated with four different
fertilizer management practices: control (non-fertilization),

chemical NPK fertilizers, NPK plus rice straw (NPK+RS), or
NPK plus chicken manure (NPK+OM).
Results and discussion Among all the treatments, the NPK+
OM treatment significantly improved the soil nutritional status.
Fertilization increased both bacteria and nifH gene abun-
dances, with the highest values (p < 0.05) found in the
NPK+OM treatment. The potential nitrogen fixation rate
ranged from 14.6 to 118 μg kg−1 day−1, and the highest rates
(p < 0.05) were also observed in the NPK+OM treatment.
Long-term chemical NPK fertilization decreased the diversity
of diazotrophic community, whereas NPK+RS and NPK+OM
treatments maintained the diversity of diazotrophic communi-
ty. Long-term fertilization changed diazotrophic community as
compared to non-fertilization, but there were no significant
differences among fertilized treatments. Most nifH sequences
were closely linked to Alphaproteobacteria, which was domi-
nated by the genera Bradyrhizobium. Relatively higher
Cyanobacteria abundances were observed in the unfertilized
soil as compared with fertilized soil.
Conclusions Our results suggest that long-term fertilization
increased the abundance of diazotrophs and changed their
community structure, and combined use of chicken manure
and chemical NPK fertilizers can significantly improve the
activity of diazotrophic community.

Keywords Diazotrophic community . Long-term
fertilization . Nitrogen fixation . Rice paddy soil

1 Introduction

Rice is one of the most important staple food feeding more
than three billion people (Maclean 2002). Approximately 40%
increase in rice yield is expected to meet the ever-expanding
population in 2050s (Van Nguyen and Ferrero 2006). In this
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sense, more chemical or organic fertilizers will be required to
satisfy the nutrient requirements for high rice productivity. In
paddy soil, microbes are assumed to be adapted to the high
nutrient availability, and their community composition and
functional gene diversity that affect carbon (C), nitrogen(N),
and phosphorus (P) cycles are closely related to rice produc-
tivity (Pan et al. 2017; Su et al. 2015). On the other hand, in
contrast to upland farmlands, rice paddy soil provides a
unique system to gain insights into the microbiology switches
between oxic and anoxic conditions in wetland systems
(Wegner and Liesack 2015).

Nitrogen is a critical nutrient for terrestrial net primary pro-
duction. However, plants can not directly access N2, which
makes up about 80% of the atmosphere (Santi et al. 2013).
Diazotrophs, or N2-fixers, are widely distributed among the ar-
chaeal and bacterial taxa (Dixon andKahn 2004), and contribute
to plant available N thorough reducing atmospheric N2 to am-
monium in the soil (Reardon et al. 2014). From paddy filed soils,
a number of culturable N2-fixing microorganisms have been
isolated, such as Azospirillum, Bacillus, Burkholderia, and
Herbaspirillum (Boddey et al. 1995; Xie et al. 2003; Okubo
et al. 2012). Additionally, many studies have observed an inter-
esting phenomenon that paddy soil can continuously maintain
its fertility for a long time under flooded condition (Ladha et al.
1997), which probably because the oxygen-limited environment
has the potential to increase nitrogenase activity, therefore en-
hance nitrogen fixation in soil (Reed et al. 2011; Ferrando and
Fernandez Scavino 2015).

The intensive use of chemical or organic fertilizers, which
consists of the largest part of human interference in the global
nitrogen cycle, raised environmental concerns regarding the
increased greenhouse gas emissions and groundwater pollu-
tion (Dixon and Kahn 2004). Meanwhile, the abundance and
diversity of diazotrophic bacteria may be suppressed by high
fertilizer application in many agricultural ecosystems
(Fuentes-Ramírez et al. 1999; Reed et al. 2011). Therefore,
balancing the fertilizer usage and biological nitrogen fixation
will be beneficial to maximizing crop yields and minimizing
production costs. To address this issue, it is important to un-
derstand how diazotrophic community responds to different
fertilization practices use under different agricultural systems
(Yeoh et al. 2016). Chinnadurai et al. (2014) found that nifH
gene abundance was closely related to soil available N con-
centration, and significantly higher in long-term organically
managed maize soil compared to inorganic nutrient manage-
ment practices; Reed et al. (2007) found that phosphorous
fertilization can stimulate nitrogen fixation rate and increases
soil inorganic nitrogen concentrations in a restored prairie. In
addition, Berthrong et al. (2014) suggested that nitrogen fer-
tilization rather than elevated CO2 suppressed the diazotrophic
community diversity and abundance in a pine forest. So far, it
is well demonstrated that different management regimes affect
nifH gene abundance and community composition in upland

agricultural systems (Hsu and Buckley 2009; Mirza et al.
2013; Wang et al. 2016), but less information is available for
waterlogged agricultural soils. Paddy ecosystems provide an
excellent case to investigate the diazotrophic community
abundance and composition under anaerobic/aerobic condi-
tions. However, few studies have attempted to explore the
effects of long-term different fertilization practices on
diazotrophic abundance and community structure in this
unique agricultural ecosystem (Zhao et al. 2016).

In the current study, we selected a 30-year-old fertilization
experimental filed with control (non-fertilization), chemical
NPK, NPK plus rice straw (NPK+RS) or manure (NPK+
OM). We hypothesized that diazotrophic community might
be suppressed due to long-term nitrogen fertilization applica-
tion in rice paddy soil. For this purpose, we have examined the
abundance, structure of nitrogen-fixing communities, and
their potential nitrogen fixation rate estimate by 15N2 tracing
method under long-term different fertilization treatments.

2 Materials and methods

2.1 Study site and soil sampling

The long-term fertilization experimental site was
established in 1986, located in Ningxiang County, Hunan
Province (112°18′E, 28°07′N). This region has a continen-
tal monsoon warm and humid climate. The average eleva-
tion of the region is 36 m, with a mean annual precipitation
of 1550 mm and mean temperature of 17 °C. Since 1986,
the field has been under rice-rice-barley rotation. The early
and late season rice was cultivated from May to August
and August to October, respectively. The initial physical
and chemical properties (0–20 cm depth) in 1986 was as
follow: pH 6.85, organic matter 29.4 g kg−1, total N
2.0 g kg−1, total P 0.6 g kg−1, total K 20.6 g kg−1, available
N 144 mg kg−1, Olsen P 12.9 mg kg−1, exchangeable K
33 mg kg−1.

Four treatments were established in this experiment: con-
trol (no fertilization; CK), chemical NPK fertilizers (NPK),
and chemical NPK fertilizers plus rice straw (NPK+RS) or
chicken manure (NPK+OM). The straw residue was applied
at the rate of 6375 kg ha−1 year−1 with the molar N/P ratio of
molar 10.5:1. Chemical NPK fertilizers were applied as urea-
N at 300 kg ha−1 year−1, and as superphosphate at P2O5

100 kg ha−1 year−1, and potassium chloride at K2O
140 kg ha−1 year−1, respectively. Chicken manure containing
1.77% N, 0.80% P2O5, and 1.12% K2O at the amount of
5290 kg ha−1 year−1 with the N/P ratio of 3.1:1. Each fertili-
zation treatment received the same levels of nitrogen, phos-
phorus, potassium from fertilizers. On June 2016, soil samples
were collected from three replicate plots of each treatment. A
composite sample from each plot was obtained by mixing five
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random soil cores from the plowing depth (0–20 cm). Each
soil sample was divided into three parts, one was freeze-dried
for DNA extractions, the second was stored at 4 °C for bio-
logical characteristics analyses, and the remaining was air-
dried and passed through a 2-mm sieve for chemical analyses.

2.2 Soil analyses

Soil pH was determined using a glass combination electrode
with a 1:2.5 soil to water ratio. Soil organic carbon (SOC), total
nitrogen (TN), and total sulfur (TS) concentrations were deter-
mined by dry combustion using an Elemental Analyzer (Vario
Macro, Elementar, Germany). Soil total phosphorus (TP) was
measured by the wet acid digestion method combined with
colorimetric procedures. Soil Olsen phosphorus (Olsen P)
was measured by extracting with 0.5 M NaHCO3 with 1:25
(w/v) and colorimetric analysis (Olsen 1954). Exchangeable
potassium was extracted with 1 M CH3COONH4 (pH 7.0)
with a 1:10 (w/v) soil to solution ratio for 30 min andmeasured
by atomic absorption spectrometry. Soil NH4

+and NO3
− con-

tents were measuredwith 2MKCl extraction, filtering through
a 0.45-μm pore size ploy sulfone membrane, and then analysis
with a continuous flow analyzer (SAN++; SKALAR,
The Netherlands). Substrate-induced respiration (SIR) was
measured after adding 0.5 mg glucose g−1 soil saturating levels
of labile carbon according to Ge et al. (2016).

2.3 Potential N-fixation rate

Soil nitrogen fixation rate was measured by 15N2-based meth-
od modified from Hsu and Buckley (2009) and Keuter et al.
(2014). Briefly, fresh soil (5 g dry weight) was placed into
100 mL glass jars, the soil was then flooded so that 2 mm
excess water covered the soil. Then milliliters of air in the
headspace of each jar was replaced with 15N2 (98%

15N), the
soil samples were incubated for 15 days in the dark at 25 °C.
Another set of soil samples were incubated with ambient air as
controls. Each sample was replicated five times. After incuba-
tion, the soil samples were air-dried at room temperature, and
then ground to pass a 200-mesh sieve for analyzing 15N en-
richment using a Delta VAdvantage isotope ratio mass spec-
trometer (Thermo Finnigan, Germany). The potential 15N fix-
ation rate was calculated by multiplying the difference in en-
richment atom percent excess between a labeled sample and
the control sample and the concentration (g kg−1 soil) of total
nitrogen in soil (Bei et al. 2013).

2.4 Soil DNA extraction

DNA was extracted from 0.50 g of soil using the FastDNA
SPIN kit for soil (MP Biomedicals, Santa Ana, CA, USA)
following the manufacturer’s instructions. DNA quality and
concentration were determined using a NanoDrop ND-2000

spectrophotometer (NanoDrop Technologies, Wilmington,
DE, USA), then stored at − 20 °C until amplification. The
DNA yields were as follows: CK, 65.0 ± 4.65 μg g−1 soil;
NPK+RS, 138.8 ± 52.0 μg g−1 soil; NPK, 99.2 ± 6.73 μg g−1

soil; NPK+OM, 155 ± 10.9 μg g−1 soil.

2.5 PCR, cloning, and sequencing

Diluted DNA (1:10) was used to amplify the nifH gene
( ~ 3 6 0 b p ) w i t h t h e p r i m e r s P o l F
(TGCGAYCCSAARGCBGACTC) and PolR (ATSGCCAT
CATYTCRCCGGA) (Poly et al. 2001). Each reactionmixture
contained 2 μL of template DNA, 22.5 μL of 2× PCRMaster
Mix, 1.5 μL of each primer, 0.2 μL of bovine serum albumin
(BSA) and made up to 50 μL with sterile water (ddH2O). The
thermal cycle profile consisted of the following: 2 min of
denaturation, followed by 35 rounds of cycles at 95 °C for
30 s, 59 °C for 30 s, and 72 °C for 45 s, and then completed by
a final extension at 72 °C for 7 min. Aliquots (2 μL) of the
amplified products were visualized on ethidium bromide-
stained 1.2% agarose gels. The amplified products were puri-
fied according to the manufacture’s guide. The purified PCR
products were cloned into Escherichia coli plasmids using the
kit pGEM-T Easy Vector (Promega, Madison, WI, USA) rec-
ommended by themanufacturer. Positive colonies were select-
ed and amplified with primers M13F (GTAAACGA
CGGCCAG) and M13R (CAGGAAACAGCTATGAC).
Forty-two positive clones per sample were randomly selected
and sequenced using the Sanger technology (MajorBio Ltd.,
Shanghai, China).

2.6 NifH gene sequence and analysis

NifH gene sequence analysis was carried out with BioEditor
7.0.9.0 (Hall 1999) to remove the vector sequences. Due to the
low resolution of identification for the nifH gene at the DNA
level (Lema et al. 2012), the nifH gene was translated into a
deduced amino acid sequence using the BioEditor. The de-
duced amino acid sequences were defined as operation taxo-
nomic units (OTUs) at 98 and 97% similarity using Mothur
1.38.1 (Schloss et al. 2009), the coverage was higher when
OTUs defined at the 98% similarity level (Table 1). A repre-
sentative sequence of each OTU was subjected to BLAST
search against the GenBank database; the closest species
match for query sequences were included for phylogenetic
analysis. Reference sequences from the GenBank database
and the respective OTUs (98% similarity) sequences were
aligned using the Clustal W program (Thompson et al.
1994). A phylogenetic tree was constructed based on 98%
deduced amino acid sequences of nifH gene by the
Maximum likelihood method based on a Poisson correction
model with the MEGA 5.0 software (Tamura et al. 2011) with
1000 bootstrap replicates.
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2.7 Quantification of nifH and bacterial 16S rRNA genes

Quantitative PCR (qPCR) was performed with a real-time
PCR detection system (Light Cycle 480; Roche). The nifH
gene was quantified using PolF/PolR primers (Poly et al.
2001) and the bacteria quantified based on 16S rRNA gene
using the primers 515F (GTGCCAGCMGCCGCGGTAA)
and 907R (CCGTCAATTCCTTTGAGTTT) (Biddle et al.
2008). Each sample was prepared in three replicates in a
20 μL volume, containing 10 μL Absolute SYBER
Fluorescein Mix (Thermo Scientific, Grand Island, NY),
0.4 μL forward and reverse primer, 1 μL of 1:10 diluted
DNA template, and 8.2 μL double ddH2O. The template-
free control reactions contained 1 μL of ddH2O instead of
DNA. Thermal conditions for nifH gene were set as follows:
5 min at 95 °C, following by 40 cycles of 10 s at 95 °C, 30 s at
59 °C, and 72 °C for 40 s. For 16S rRNA gene, thermal
conditions were set as follows: 5 min at 95 °C, following by
45 cycles of 10 s at 95 °C, 45 s at 53 °C, 45 s at 72 °C, and 15 s
at 84 °C. Standard curves for qPCR were created using an up
to 10-fold dilution series of PCR product containing a frag-
ment with known nifH or 16S rRNA gene copy numbers.

2.8 Nucleotide sequence accession numbers

The nifH gene sequences obtained in this study were deposit-
ed in the GenBank under accession numbers KY 311079 to
KY 311559.

2.9 Statistical analyses

To test the difference between the fertilization treatments, one-
way analysis of variance (ANOVA), followed by Fisher’s least
significant difference (LSD) post-hoc tests were performed by
using SPSS (version 16.0). NifH gene sequences were subject-
ed to Good’s coverage, rarefaction analysis, Chao1, and
Shannon-Weaver diversity analysis using by Mothur 1.38.1
(Schloss et al. 2009). Redundancy (RDA) and Multivariate

Regression Tree (MRT) analyses were performed to explore
the diazotrophic community composition and identify the most
important environmental factors (999 permutations) affecting
the dizazotrophic community composition, respectively, based
on diversity of nifH gene OTUs using the correlation matrix.
Adonis was used to test the difference in diazotrophic commu-
nity composition between treatments. RDA was performed
with Vegan package, MRT was generated using Mvpart and
MVPARTwrap packages in R 3.2.5 (Team RC 2016).

3 Results

3.1 Effects of long-term fertilization on soil biochemical
properties

The soil properties varied significantly after 30 years under
different fertilization regimes (Table 2). Among all the treat-
ments, NPK+OM had significantly higher (p < 0.05) SOC,
TN, TS, Olsen P, and exchangeable K concentrations.
Specifically, compared with CK, the AP concentration in-
creased approximately 10-fold in the NPK+OM treatment.
Moreover, NPK+OM treatment significantly (p < 0.05) in-
creased soil microbial biomass as indicated by SIR. The CK
treatment had significantly higher pH than the fertilization
treatments. Soil ammonium concentration was significantly
higher (p < 0.05) in both NPK and NPK+OM treatments,
and the lowest concentration was found in the NPK+RS treat-
ment. No significant differences in nitrate concentrations were
detected among treatments.

PCA of the soil biochemical properties showed that 91.6%
of total variance was explained by the first two axes, with PC1
and PC2 accounted for 78.0 and 13.6% of the total variance,
respectively (Fig. S1, Electronic Supplementary Material).
Along the PC1 axis, NPK+OM clearly separated from other
treatments. Therefore, the PC1 axis could be a good predictor
of the soil nutritional status after different long-term fertiliza-
tion regimes.

Table 1 Number of OTUs and
diversity of nifH-deduced protein
sequences at different OTU cutoff
values [mean (standard error)]

OTU
similarity (%)

Treatment Total
sequences

Observed OTUs Shannon Chao1 Good’s
coverage (%)

98 CK 115 36 3.06(0.02) 57.9(6.3) 84.3

NPK+RS 121 38 2.87(0.17) 48.0(3.0) 86.8

NPK 122 30 2.70(0.17) 38.3(6.2) 90.2

NPK+OM 123 38 3.04(0.18) 55.0(6.7) 86.2

97 CK 115 31 2.93(0.09) 46.2(8.2) 87.8

NPK+RS 121 30 2.59(0.17) 36.1(3.2) 90.9

NPK 122 23 2.45(0.08) 30.2(2.7) 92.6

NPK+OM 123 30 2.86(0.19) 37.5(2.5) 91.9
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3.2 Effects of long-term fertilization on 16S rRNA gene
and nifH abundances

Different fertilization regimes had significant effects on soil
bacterial biomass as estimated by the abundances of 16S
rRNA gene (Fig. 1). The number of soil bacterial 16S rRNA
gene ranged from 3.4 × 1010 to 2.0 × 1011 g−1 dry soil.
Compared with CK, The NPK+OM treatment significantly
increased the abundance of 16S rRNA gene, whereas no sig-
nificant differences were found among CK, NPK, and NPK+
RS treatments. The nifH gene copy numbers ranged from
2.8 × 108 to 1.7 × 109 g−1 dry soil. Similar to 16S rRNA gene,
the highest nifH gene abundance was found in the NPK+OM
treatment and the lowest was detected in the CK treatment.
Regardless fertilization treatments, the increase of nifH gene
copy number was positively related to the 16S rRNA gene
(r = 0.84, p < 0.001). Additionally, the soil nifH gene

abundance was significantly correlated (p < 0.05) with SOC,
TN, AP, and SIR, and soil 16S rRNA gene abundance was
significantly related (p < 0.05) with pH, SOC, TN, TS, AP,
and SIR (Table 2).

3.3 Effects of long-term fertilization on potential nitrogen
fixation rate

Soil potential nitrogen fixation rate estimated by the 15N2 trac-
ing method ranged from 14.6 to 118 μg kg−1 day−1 (Fig. 2).
Significantly higher (p < 0.05) rate was found in the NPK+OM
treatment, whereas there were no significant differences in po-
tential nitrogen fixation rates among CK, NPK+RS, and NPK
treatments. Additionally, the potential nitrogen fixation rate was

Fig. 1 Abundance of 16S rRNA and nifH gene in paddy soil under
different long-term fertilization regimes. Error bars indicate the standard
error of the means of three replicates. Different letters indicate significant
difference at p < 0.05

Table 2 Basic chemical
properties and substrate-induced
respiration (SIR) and their rela-
tionships with nifH and 16S
rRNA gene abundances under
different fertilization treatments
[mean (standard error)]

Measurements CK NPK+RS NPK NPK+OM Correlation**

nifH 16S

pH (1:2.5) 6.47 (0.07)a 6.21 (0.07)b 6.11 (0.04)b 6.07 (0.03)b NS –

SOC (g kg−1) 20.6 (0.52)c 22.7 (0.33)b 19.4 (0.40)c 30.5 (0.73)a + ++

TN (g kg−1) 1.90 (0.15)c 2.13 (0.47)b 1.98 (0.44)c 2.96 (0.55)a + ++

TS (g kg−1) 0.54 (0.02)b 0.55 (0.01)b 0.50 (0.01)b 0.65 (0.02)a NS +

C/N 10.8 (0.24)a 9.87 (0.24)b 9.80 (0.10)b 10.3 (0.14)ab NS NS

Olsen P (mg kg−1) 2.42 (0.62)c 5.66 (0.33)bc 7.83 (0.40)b 23.7 (2.33)a + ++

Exchangeable K (mg kg−1) 25.2 (1.10)c 29.8 (2.19)bc 33.3 (2.17)b 41.4 (1.76)a NS NS

NH4+ (mg kg−1) 30.8 (1.63)ab 26.8 (1.99)b 36.9 (0.68)a 38.2 (4.52)a NS NS

NO3− (mg kg−1) 28.6 (1.84)a 31.0 (0.97)a 30.2 (2.11)a 30.0 (1.88)a NS NS

SIR (mg CO2-C kg−1 h−1) 1.59 (0.21)c 2.18 (0.32)bc 2.94 (0.13)b 3.88 (0.39)a + +

Significant differences between treatments are indicated by different letters (p < 0.05)

**Pearson’s coefficient; NS, not significant; +/−; significant positive or negative correlation at p < 0.05; ++/−−;
significant positive or negative correlation at p < 0.01

Fig. 2 Soil potential nitrogen fixation rate under different fertilization
treatment. Significant differences between treatments are indicated by
different letters (p < 0.05)
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significantly (p < 0.05) correlated with 16S rRNA (r = 0.62,
p = 0.0381) or nifH gene (r = 0.66, p = 0.0193) abundance.

3.4 Effect of long-term fertilization on nifH gene diversity

A total of 481 clone library sequences were identified at
the 98 and 97% protein levels (Table 1), which generated
76 and 60 OTUs, respectively. The CK, NPK+RS, and
NPK+OM had very similar observed OTU numbers at both
OTU cutoff levels. In addition, the CK treatment had the
highest Shannon and Chao1 estimator values, despite of
the lowest sequencing effort (Table 1). Among all the treat-
ments, the lowest OTU numbers and diversity estimators
were detected in the NPK treatments (p < 0.05) regardless
the OTU cutoff levels. Furthermore, the lowest diversity of
nifH genes for NPK treatment was also proved by the rar-
efaction curve, which almost approached an asymptote
with sampling effect at the 97% similarity level (Fig. S2,
Electronic Supplementary Material).

Phylogenetic tree was generated to classify the nifH gene
clusters based on the known related N-fixing genotypes.
Phylogenetic analysis showed that the 481 translated nifH
amino acids sequences derived from different long-term fer-
tilization treatments were clustered in various taxonomic
groups at 98% similarity level (Fig. 3). Alphaproteobacteria
(14 OTUs; 271 sequences) were the most dominated nifH

sequences in four treatments, followed by Deltaprobacteria
(6 OTUs; 34 sequences), Betaproteobacteria (3 OTUs, 24
sequences), and Cyanobacteria (2 OTUs, 21 sequences),
and the rest of the sequences belonged to the phylotypes in-
cluding Firmicutes, Bacteroidia, and Actinobacteria.

Among all the sequences, OTU22, OTU1, and OTU23
were the most abundant OTUs which contained over one third
of nifH sequence (Table S1, Electronic Supplementary
Material). BLAST results indicated that all these three OTUs
were affiliated with Bradyrhizobium species with 97–99%
identity. The OTU heat map revealed that the soil in the CK
treatment contained less sequences in the OTU22 than soils in
other treatments, but the highest sequence numbers in OTU15
and OTU16 (Fig. 4). Moreover, OTU16 was exclusively de-
tected in the CK treatment. OTU15 and OTU16 affiliated with
the order Nostocales within the Cyanobacteria phylotypes
(100 and 97% amino acid identity, respectively) (Table S1,
Electronic Supplementary Material). Among the fertilized
treatments, OTU7 contained sequences most abundant NPK
treatment as compared with NPK+RS and NPK+OM treat-
ments, OTU7 was closely related to the Methylobacter
marinus (AAK97414) class with 93% amino acid identity.
The OTU heat map showed that NPK+RS and NPK+OM
had relatively less different OTU compositions. However,
compared with the NPK+RS treatment, the NPK+OM treat-
ment had contained more OTU19 and OTU25, which closely
related to the Azospirillum lipoferum (ABG88868) and
Alkaliflexus imshenetskii (WP_026474998), respectively
(Fig. 4 and Table S1, Electronic Supplementary Material).

3.5 Diazotrophic community composition and its
influencing factors

In order to explore the relationship between the soil properties
and diazortrophic community composition, RDA and MRT
were used in our study (Fig. 5a, b). RDA showed that long-
term different fertilization treatments changed dizazotrophic
community composition. The first two axes of the RDA ex-
plained 48.5% of the total diazortrophic community variation.
Diazortrophic community in the CK treatment differed from
other fertilization treatments (PerMANOVA; F = 2.51,
p = 0.013). However, the different fertilization practices had
no significantly different effects on diazotrophic community
composition (PerMANOVA; F = 1.33, p = 0.17).

The MRT analysis conformed that soil pH is an important
factor affecting soil diazotrophic community composition; the
whole tree explained about 40% of the variance of nifH com-
munity. Soil pH clearly separated CK from other treatments at
the first split due to the high abundance of the indicator species
of OTU16 (Fig. 5b). In addition, SOC concentration also af-
fected nifH community, and its effect separated from NPK+
OM treatment from other fertilized treatments.

Fig. 3 OTU heat map under four different long-term fertilization treat-
ments; only OTUs with more than three sequences are presented
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Fig. 4 Maximum likelihood
phylogenetic trees of translated
nifH gene sequences (120 amino
acids) at 98% similarity level.
Bootstrap values (%) were
generated from 1000 replicates,
and values of > 50% are shown.
The tree was rooted with a nifH
protein sequence from archaeon
(Methanothermococcus
okinawensis). The sequences with
known bacteria are indicated by
species names and protein
accession numbers in GenBank.
OTUs are showed by OTU
number and the associated with
accession number, and only
OTUs more than three sequences
are present. The number in
parentheses represents the
number of clones in each OTU
and the total number of clones

1082 J Soils Sediments (2018) 18:1076–1086



4 Discussion

Long-term fertilizer application altered soil nutritional status in
rice paddy soils. Among all the fertilization treatments, the
NPK+OM showed the maximum effect in improving soil fer-
tilities, indicating that chicken manure is an effective farming
practice for maintaining soil fertility when combined with
chemical fertilization application. The influence of long-term
fertilization on soil fertilities can be linked to the changes in
microbial community compositions, due to the importance of
microbes in soil ecosystems. Soil nifH gene is one of the most
important genetic markers reflecting ecological functionality
or human induced disturbances (Mirza et al. 2013; Berthrong
et al. 2014; Izquierdo and Klaus 2015). In rice paddy ecosys-
tems, frequent flooding and intensive use of fertilizers affect
diazotrophic communities (Wartiainen et al. 2008; Mårtensson
et al. 2009; Shu et al. 2012). Most studies focus on nifH com-
munity changes as affected by fertilizationmanagementsmain-
ly in relatively short periods (a few years or less). Conversely,
very little information is available about the long-term re-
sponses under different fertilization treatments. In our study,
using the molecular marker of nifH gene and the 15N2-tracing
method, we reveled that long-term application of different fer-
tilizers changed the abundance, composition, and activity of
diazortrophic community.

In contrast to our hypothesis, we observed that no suppres-
sive effects of long-term fertilization on the abundance of nifH
gene. Instead, long-term fertilization resulted in increase of
nifH gene and 16S rDNA gene abundances. Our results were
in line with those which showed that application of straw,
chemical fertilizers, or livestock had positive effects on abun-
dances of total bacteria and diazotrophic communities (Hai

et al. 2009; Sun et al. 2015a). Additionally, the NPK+OM
treatment had the significant highest potential nitrogen fixation
as compared to other treatments, which indicated that chicken
manure application in combination with chemical NPK stimu-
late the abundance and activity of diazotrophic communities.
The reason might be because organic manures not only im-
proved soil nutrition and carbon availability, but also provided
a better living condition for microbial communities (Sun et al.
2015b). More importantly, the organic manure had lowest mo-
lar N/P ratio (3.1:1) as compared NPK (13:1) and NPK+
RS(10.5:1). The treatments with high N/P ratio may escalate
soil phosphorus limitation, and therefore restrict growth of the
heterotrophic diazotrophs for nitrogen fixation.

O u r p h y l o g e n e t i c a n a l y s i s s h o w e d t h a t
Alphaproteobacteria were the main source of nifH gene se-
quences under different fertilization treatments. More specifi-
cally, these sequences were identified as members of order
Rhizobiales, and affiliated with the Bradyrhizobium-related
species. In agriculture systems, Bradyrhizobium is recognized
as signature land use change indicator microorganism under
different edaphoclimatic conditions (Zhalnina et al. 2013). The
high abundance of Bradyrhizobium species sequences may be
because they are as they are oligotrophic bacteria which can
survive even under nutrient-deprived and diverse conditions
(Yousuf et al. 2014; Piromyou et al. 2015). Moreover, the root
of rice can be colonized by Rhizobia which would results in
high abundances of Bradyrhizobium species. Indeed,
Bradyrhizobium species have been reported that as active
nitrogen-fixing bacteria associated with rice (Chaintreuil
et al. 2000), switchgrass (Bahulikar et al. 2014), and sorghum
(Rodrigues Coelho et al. 2008). Furthermore, free-living
Bradyrhizobium species have been shown to fix N2 in soil
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based on a study using the 15N2-DNA-SIP technology
(Buckley et al. 2008). Our findings are consistent with Su
et al. (2015), that Bradyrhizobium was the most abundant gen-
era among the bacterial phylogenetic composition in a paddy
field without leguminous crop rotation.

Besides the high abundance of Alphaproteobacteria,
nifH genes were found in all the treatments. The nifH gene
sequences were also found in various taxonomic groups,
including Deltaprobacteria, Betaproteobacteria, and
Cyanobacteria. Cyanobacteria may contribute significant-
ly to soil nitrogen fixation even though they may not be
dominating diazotrophs in the soil (Wartiainen et al. 2008).
Rice paddy ecosystems are considered as favorable habi-
tats for Cyanobacteria. Nevertheless, many studies failed
to detect their present in the paddy soil (Wartiainen et al.
2008; Shu et al. 2012). Interestingly, OTU15 and OTU16,
which were affiliated with the phylum Cyanobacteria, were
mostly found in the CK treatment. In the present study, PolF/
PolR primers covered most of the known nitrogen-fixing mi-
croorganisms (including Cyanobacteria) in various environ-
mental samples or laboratory cultures (Demba Diallo et al.
2004; Diez et al. 2012; Estrella Alcaman et al. 2015).
Therefore, these primers can give reliable information on
Cyanobacteria present in paddy soils. In the CK treatment,
the relatively high abundance of Cyanobacteria might be an
indication that autotrophic nitrogen-fixing bacteria were fa-
vored more than heterotrophic nitrogen-fixing bacteria due
to no nitrogen fertilizer inputs. This supported that the opinion
that rice paddy soil can sustain moderate but constant yields
without N fertilizers for thousands of years as compared with
upland soils (Ladha and Reddy 2003).

Long-term fertilization altered soil nifH community compo-
sition in the paddy soils indicated by RDA results and OTU
heat map (Figs. 3 and 5).The CK treatment was distinctive
from other fertilization treatments. In addition, although no
significant differences were found among the fertilization treat-
ments, some genotypes were slightly higher in the NPK treat-
ment than those in the other treatments. Furthermore, com-
pared with the NPK+RS treatment, NPK+OM contained more
OTU19 and OTU25 sequences. The changes in nifH gene
composition may be related to dynamics of soil biochemical
properties with long-term different fertilizer treatments. The
MRT results confirmed that the difference in nifH community
between CK and other treatment was related with the relatively
higher pH values in CK. Soil pH is thought to be the primary
factor shaping soil microbial community (Shen et al. 2013; Sun
et al. 2015b; Zhalnina et al. 2015). After 33 years of different
fertilization treatments, the pH values decreased from 6.47 to
6.07, which was in consistency with the previous studies that
long-term fertilization decreased pH due to the nitrification or
input of acidifying nitrogen fertilizers. Our results showed that
decreased pH triggered by the long-term fertilization treat-
ments could be a good predictor of nifH community

composition. Similar results were also observed in other stud-
ies (Mirza et al. 2013; Liang et al. 2016; Wang et al. 2017).
However, until recently, studies on drivers for diazotrophic
community composition are still lack of consensus. Some stud-
ies found that soil C, N, and C/N rather than soil pH were the
main factors affecting nifH community composition (Shu et al.
2012; Gonzalez Perez et al. 2014). Indeed, the effects of soil
physicochemical properties on diazotrophic community com-
position perhaps cannot be replicated over season or year
(Reardon et al. 2014), which suggested that complexity of
nifH community composition to the changing environment.
Therefore, multi-year investigations are necessary to identify
the more detailed changes of diazotrophic communities.

Greater diversities of diazotrophic communities were
found in the NPK+OM and NPK+RS treatments among the
fertilized treatments, whereas the lowest diversity was ob-
served in the NPK treatment. Interestingly, the CK treatment
had greater α-diversity (as estimated by Shannon and Chao 1)
and higher OTUs at 98 and 97% cut off levels, respectively,
despite of the lowest sequence numbers. Similar to our results,
Sun et al. (2015b) demonstrated that long-term application of
chemical fertilizers decreased bacterial diversity as compared
to the unfertilized and NPK manure, Hui (2012) found that
NPK fertilizer also decreased the diversity of nifH community
compared to NPK plus manure or manure alone in a black soil
region of northeast China. Moreover, in rice paddy filed, Tan
et al. (2003) found that chemical N fertilizer decreased the
diversity of root-associated nifH communities. Together, our
data provide evidence that long-term NPK fertilizer applica-
tion leads to suppressed nifH gene diversity in rice paddy soil,
and that NPK fertilizer plus straw or manure can maintain
diversity of the diazotrophic community.

5 Conclusions

In conclusion, our results highlighted the effects of long-term
different fertilization practices on the abundance and structure
of dizaotrophic communities in rice paddy ecosystems.
Chemical NPK fertilization decreased diversity of dizaotrophic
community. However, NPK fertilizer combined with organic
manure improved not only the diversity of dizaotrophic com-
munity, but also their abundance and nitrogen fixation rate.
Importantly, the high performance of Cyanobacteria in the
unfertilized soil is an evidence that diazotrophic community
may change their structure to increase nitrogen fixation in a
paddy rice ecosystem.
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