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Abstract
Purpose Returning straw to soil improved soil carbon seques-
tration capacity and increase soil organic matter. However, in
different soil depth, especially in subsoil, there were few stud-
ies on the effects of straw decomposition on soil carbon se-
questration and the properties of humic substances. Therefore,
an in-situ incubation study, with six different straw rates and
three different soil depths, was carried out to explore the ef-
fects of straw decomposition on soil organic carbon and humic
substance composition at different soil depths.
Materials and methods The experiment was composed of six
straw rates: 0, 0.44, 0.88, 1.32, 2.64, and 5.28% of soil dry
mass. The maize straw was proportionately mixed with soil
and put into nylon bags. Then, the nylon bags were buried in
soil at three depths (15, 30, and 45 cm) and the straw decom-
position trial lasted for 17 consecutive months in-situ. Soil
samples were collected after completion of the field trial.
Humic substances were quantitatively and qualitatively ana-
lyzed using the modification method of humus composition
and the methods specified by the International Humus
Association. Fourier transform infrared spectroscopy and
fluorescence spectroscopy were used in this study.
Results and discussion Results indicated that CO2 concentra-
tion increased with increase in soil depth. Compared with the
Bzero^ straw control, soil organic carbon contents in the treat-
ments amended with 1.32, 2.64, and 5.28% maize straw

increased significantly, and most accumulations were at 30–
45 cm depths. FTIR and fluorescence emission spectra anal-
yses indicated that the addition of straw enhanced the aliphatic
structure and decreased the aromaticity of humic acid (HA),
that was to say that HA molecular structure approaches to the
development of simplification and younger. The maximum
change in HA molecular structure was under the 5.28% treat-
ment in the 30–45 cm depth.
Conclusions Returning maize straw to the subsoil layers is
more conducive to the accumulation of soil organic carbon
and improvement of the quality and activity of HA and the
organic carbon in the subsoil can be renewed.

Keywords Different depth . Fluorescence emission spectra .

FTIR spectra . Humic acid . Straw

1 Introduction

Returning crop straw to soil becomes one of the important
measures to improve soil organic matter and maintain soil
fertility. However, as the amount of crop straw remaining on
the soil surface diminished, the inputs of organic carbon de-
creased, which may potentially reduce the content of soil or-
ganic matter and influence soil formation (Karlen et al. 2011;
Jin et al. 2015; Tormena et al. 2017). Humic substance is one
of the most important components of soil organic matter
(Vergnoux et al. 2011). Humic substance can be classified into
humic acid (HA), fulvic acid (FA), and humin (Hu) (Song
et al. 2014). Therefore, carbon sequestration in humic sub-
stance is very important for understanding global carbon cy-
cle. Studies showed that HAs extracted from fertilized soils
contain more aliphatic and phenolic hydroxyl groups than the
HAs extracted from un-fertilized soils (Galantini and Rosell
2006). Aliphatic and aromatic molecules containing
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hydrophobic carbon are selectively preserved in humic sub-
stances (Spaccini et al. 2002), and the hydrophobic compo-
nents are able to prevent the entry of degrading enzymes
(Piccolo et al. 1999).

Lenka and Lal (2013) found that the organic matter
content in 0–10 cm soil layer increased by 25 and 50%,
respectively, with 8 and 16 t hm−2 straw mulching for
15 years. Bhattacharyya et al. (2012) showed that the
application of rice straw together with inorganic nitrogen
fertilizers can significantly increase the contents of total
carbon in surface soil. Many researchers have showed that
straw management, incorporating straw into the soil or
mulching on the surface, has a significant effect on the
properties of the surface soil (Zhang et al. 2012; Chang
et al. 2014; Yang et al. 2015). The fertility status in the
subsoil impacts on crop yields (Breulmann et al. 2016;
Cao et al. 2003). Fontaine et al. (2007) indicated that
the poor permeability of the plow pan below (at 20 cm)
limits the relocation of water and organic materials into
the subsoil, and this jeopardizes subsoil fertility in the
long run. Lützow et al. (2006) showed that the environ-
mental conditions in the subsoil are different from those
in the topsoil. For example, the temperature change in the
subsoil is small and the nutrient availability is low, which
may lead to a decrease in organic matter mineralization
associated with a potential increase in organic matter
accumulation in the subsoil. And Nkebiwe et al. (2016)
indicated that deep fertilizers placement can reduce the
negative effects of increasing temperatures and droughts
on global food production. In a laboratory experiments,
Kuzyakov (2010) studied the effects of substrate addition
to different soil depths on dynamics of soil organic matter,
but the results applied to field scale may not be fully
applicable and more field trials are needed.

The purpose of this paper was to test the following hypoth-
eses: (1) more organic carbon accumulation would occur in
deeper than shallow soil when the same amount of maize
straw was applied; (2) soil humus compositions and HA struc-
ture characteristics vary in soil depth. In this study, a 17-month
long field incubation experiment was conducted to study the
effects of maize straw decomposition on soil organic carbon
and humus in different soil depths under the natural conditions
in northeastern China.

2 Materials and methods

2.1 Experimental site

The experiment field was selected from the monoculture corn
study at Jilin Agricultural University Experimental Station
which was located in Nanguan District of Changchun City,
Jinlin province (43° 48′ 38.20″ N, 125° 23′ 16.81″ E). The
climate in this site belongs to north temperate continental
monsoon type, with distinct four seasons and moderate dry-
wet characteristics. The mean annual temperature and precip-
itation were 4.8 °C and 617 mm, respectively, and most of
precipitation falls between July and August. The soil in this
site was classified as black soil (FAO 1990).

2.2 Experimental materials

Soil was collected from 0 to 15 cm (S1), 15–30 cm (S2), and
30–45 cm (S3) depth. Selected chemical properties of the soil
were shown in Table 1. Experimental crop residues were ma-
ture maize straw. Straws were chopped into 3–5 cm size
pieces. The straw had the following properties: organic carbon
content is 437.6 g kg−1, total nitrogen content is 5.72 g kg−1,
and C/N is 76.50.

2.3 Experimental design

Six rates of straw to soil was used in this study, ranging from
0% (B0), 0.44%(B1), 0.88% (B2), 1.32% (B3), 2.64% (B4),
and 5.28% (B5) of soil dry mass. The treatment of 0.44% is
equivalent to the full amount of straw returned to field.
According to the annual straw production in this area, we
assumed that the total amount of straw returned to soil (bulk
density of 1.2 g cm−3) in 0–20 cm layers was 10 t ha−1. A
given amount of straw (varied with treatments) was homoge-
neously mixed with soil (4 kg for each treatment). Themixture
was filled into nylon bags (mesh size, 100 μm). The nylon
bags were buried into soil at three depths (15, 30, and 45 cm)
with three replicates inMay 1, 2014. The nylon bags were dug
out from the ground after 17 months. The soil samples were
air-dried and the undecomposed straw were removed.

Table 1 Basic properties of the
soil tested in the experiment Depth

(cm)
Organic carbon
(g kg−1)

Total N (g kg−1) Alkalytic N
(mg kg−1)

Available P
(mg kg−1)

Available K
(mg kg−1)

pH

0 ~ 15 17.63 ± 0.35 1.25 ± 0.15 127.25 0.34 199.6 6.24

15 ~ 30 16.20 ± 0.46 1.14 ± 0.19 117.36 0.30 144.0 6.44

30 ~ 45 14.67 ± 0.50 1.01 ± 0.20 102.15 0.24 121.5 6.52

Date are means of three replicates ±SD
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2.4 CO2 measurement methods

Concentrations of CO2 in bags were determined using
alkali absorption method. Briefly, one end of the infusion
tubes (B1-1, Jiangxi Hongda Medical Devices Group,
Ltd., China.) with holes were buried into each nylon

bag, and the other end is exposed to the surface.
Syringes filled with a given volume of NaOH solution
were used to suck in a certain volume of gas from the
infusion tube. The CO2 in inhaled gas will be absorbed
by the NaOH solution and then the syringes were sealed
quickly and transported back to lab. The content of CO2
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Fig. 1 Changes of soil CO2

concentration at different depths.
a Changes of soil CO2

concentration at 0–15 cm depth. b
Changes of soil CO2

concentration at 15–30 cm depth.
c Changes of soil CO2

concentration at 30–45 cm depth.
S1, S2, and S3 represent 0–15,
15–30, and 30–45 cm soil layers,
respectively. B0, B1, B2, B3, B4,
and B5 represent 0, 0.44, 0.88,
1.32, 2.64, and 5.28% of the straw
incorporation levels, respectively
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in solutions was immediately determined using alkali ti-
tration method. CO2 concentrations were measured ap-
proximately every 10 days and the sampling period was
from July 6 to September 30 in 2014. And then the rela-
tive amount of CO2 in the soil air was calculated.

2.5 Analysis methods

Total nitrogen was analyzed using semi-micro Kjeldahl meth-
od; alkalytic nitrogen was analyzed using alkali diffusion
method; available phosphorus was analyzed using sodium
bicarbonate–molybdenum antimony colorimetry; available
potassium was analyzed using flame photometer, pH was
measured by using pH meter (Lu 2000). Soil organic carbon
(SOC) and the content of C in humic substance were deter-
mined using K2Cr2O7 external heating method (Lao 1988).

Humus composition was analyzed following the method
described by Dou (2010). Briefly, soil was extracted by mixed
alkali solution (NaOH + Na4P2O7) and then centrifuged. The
supernatant was humic extractable substance (HE). Thirty
milliliters HE was acidified to pH 1 to separate humic acid
(HA) from humic fulvic (FA). The precipitation was HA and
FA remained in solution. HA was re-dissolved with
0.05mol L−1 NaOH.All solutions were used for concentration
analysis.

HA isolation and purification were processed using the
procedure described by International Humic Substances
Society (Kuwatsuka et al. 1992). Briefly, the soil was
decalcified with HCl, then residues were extracted by NaOH
solution at 24 h extraction, then centrifuged. The supernatant

Table 2 Effect of straw
incorporation on the various
fractions of soil humus at different
depths

Treatment HE-C HA-C FA-C PQ HA-C △LogK
(g kg−1) (g kg−1) (g kg−1) value /FA-C (HA)

S1B0 6.46 ± 0.06hij 4.13 ± 0.22efg 2.33 ± 0.26def 0.64 1.77 0.62

S2B0 6.08 ± 0.1ijk 3.66 ± 0.05 g 2.41 ± 0.10 cdef 0.60 1.52 0.58

S3B0 5.69 ± 0.17 k 3.60 ± 0.03 g 2.09 ± 0.16def 0.63 1.72 0.54

S1B1 6.58 ± 0.58hij 4.29 ± 0.15defg 2.29 ± 0.56def 0.65 1.88 0.55

S2B1 6.74 ± 0.16ghi 4.54 ± 0.26cdef 2.20 ± 0.22def 0.67 2.06 0.59

S3B1 5.94 ± 0.10jk 4.04 ± 0.08 fg 1.90 ± 0.07f 0.68 2.13 0.55

S1B2 7.09 ± 0.12efgh 4.67 ± 0.53cdef 2.42 ± 0.47cdef 0.66 1.93 0.55

S2B2 6.88 ± 0.17fgh 4.59 ± 0.05cdef 2.29 ± 0.21def 0.67 2.00 0.59

S3B2 6.42 ± 0.23hij 4.46 ± 0.31cdef 1.95 ± 0.26ef 0.70 2.29 0.56

S1B3 7.37 ± 0.06efg 4.79 ± 0.12cde 2.58 ± 0.13 cde 0.65 1.86 0.56

S2B3 7.49 ± 0.13ef 5.17 ± 0.16c 2.32 ± 0.15def 0.69 2.23 0.60

S3B3 6.58 ± 0.41hij 4.59 ± 0.54cdef 1.99 ± 0.27ef 0.70 2.30 0.56

S1B4 8.33 ± 0.13 cd 4.96 ± 0.11 cd 3.38 ± 0.09ab 0.59 1.47 0.57

S2B4 8.53 ± 0.62c 5.95 ± 0.44b 2.57 ± 0.31cde 0.70 2.32 0.62

S3B4 7.76 ± 0.06de 5.12 ± 0.16c 2.64 ± 0.10 cd 0.66 1.94 0.58

S1B5 9.74 ± 0.17ab 6.12 ± 0.72ab 3.62 ± 0.68a 0.63 1.69 0.61

S2B5 10.15 ± 1.02a 6.79 ± 0.91a 3.36 ± 0.25ab 0.67 2.02 0.64

S3B5 9.26 ± 0.35b 6.25 ± 0.16ab 3.01 ± 0.51bc 0.67 2.08 0.61

S1, S2, and S3 represent 0–15, 15–30, and 30–45 cm soil layers, respectively. B0, B1, B2, B3, B4, and B5
represent 0, 0.44, 0.88, 1.32, 2.64, and 5.28% of the straw incorporation levels, respectively. HE-C represents
humic extractable substance carbon, HA-C represents humic acid carbon and FA-C represents fulvic acid carbon.
Date are the means ± SD. Lowercase letters represent significant differences (p < 0.05) between different straw
incorporation levels in the same soil layer
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was HE. The HE solution was acidified to pH 1.0. The pre-
cipitation was HA. The received HA residue was required to
remove ash and was dialysed to eliminate excess salts, and
freeze-dried afterwards.

FTIR spectra of HAwere obtained in the 4000 to 500 cm−1

wavenumber using a Nicolet spectrophotometer on KBr pel-
lets. Fluorescence spectra in emission were obtained with a
Hitachi F4500 fluorescence spectrophotometer on water ex-
tracts of HA at a concentration of 100 mg L−1 and the pH was
adjusted to 8.0. Emission spectra were recorded over 400–
650 nm at a constant excitation wavelength of 360 nm. The
spectra semi-quantitative analyses were carried out using the
analytical software of the instrument. The peak intensities
were compared with the percentage of each peak area.

2.6 Statistical analysis

The experimental date and figures were analyzed and plotted
using Microsoft Excel 2013 and OriginPro 8.0. The signifi-
cant differences between different treatments were statistically
analyzed by SPSS 22.0. All experiments were analyzed as
randomized complete design with three replications. Straw
rates and buried depths were treated as fixed factors and a
mixed model procedure was used for analyzing the treatment
impacts on CO2, SOC, and HA properties. PQ value and HA-
C: FA-C were used as the parameters for the degree of humi-
fication (Dias et al. 2010). The PQ value was calculated as
follows: PQ = HA-C / (HA-C + FA-C)*100. The △LogK was
the hue coefficient (Kumada et al. 1967), which was the log-
arithm disparity between 400 and 600 nm absorbance of hu-
mic substance in solution.

3 Results

3.1 CO2 concentration

The CO2 concentration with different straw incorporation
levels was reported in Fig. 1. The CO2 concentration increased
with increase in straw application rate in the same layer. With
incubation time increase, CO2 concentration showed a tenden-
cy to first increase and then decrease. In the same straw appli-
cation level, the increase in CO2 concentration followed the
trend of S1<S2<S3. It was observed that CO2 concentration
increased with increase in soil depth.

�Fig. 3 Effect of straw incorporation on FTIR of HA at different depths of
soil. S1, S2, and S3 represent 0–15, 15–30, and 30–45 cm soil layers,
respectively. B0, B1, B3, and B5 represent 0, 0.44, 1.32, and 5.28% of the
straw incorporation levels, respectively.
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3.2 Soil organic carbon content

Figure 2 showed the contents of soil total organic carbon after
17 months incubation. The SOC contents increased with in-
crease in straw application level in the same soil layer, and the
treatments of B3, B4, and B5 showed significantly increase in
SOC contents compared with the control (B0). With the ex-
ception of B3 treatment, the SOC contents in the same straw
rate treatment followed the trend of S1>S2>S3. In layer S1,
S2, and S3, the SOC contents with the treatments from the B1
to B5 increased in the range of 2.11 to 55.18%, 7.86 to
57.11%, and 8.57 to 68.22% than the B0, respectively. Thus,
it could be seen that for the treatment with the same straw
application rate, the deeper the straw incorporated into soil,
the less of C loss from the straw.

3.3 Composition of soil humus

The concentrations of composition of humus during in-situ
incubation were shown in Table 2. The contents of humic
extractable substance carbon (HE-C) and humic acid carbon
(HA-C) increased with increase in straw application rate in the
same layer. As already observed that the increase of HE-C in
the treatment with same straw application level followed the
trend of S2>S3>S1. The highest relative increase in HA-C
occurred in the B5 at the layer S2 with an increase of
85.52% relative to the B0. The highest content of fulvic acid
carbon (FA-C) appeared in treatment B5 at the surface layer
(S1) and it was 59.72% higher than that in the B0.

Except for the treatments B4 and B5 in layer S1, the addi-
tion of straw increased PQ values compared with the B0
(Table 2). HA-C:FA-C ratio was altered with the increasing
rates of straw incorporation at all soil layers and the increase
followed the trend of S3>S2>S1. These results reflected the

transformation of FA to HA and the increase of HA-C fraction
with increase in soil depth.

The △LogK values with B0 treatment were decreased with
soil depth increased (Table 2). But △LogK values in other
treatments showed no consistent changes among straw appli-
cation and soil depth.

3.4 FTIR spectra analysis

The FTIR spectrum of HA for the treatments with different
straw application rates were shown in Fig. 3 and the correspond-
ing absorbing peaks were listed in Table 3. The positions of
absorbing peaks were approximately identical, among the treat-
ments. A common and intense broad band at about 3400 cm−1

usually attributed to vibrations of -NH and/or -OH groups of
either adsorbed water or silanol moieties in all spectrum; the
bands at about 2920 and 2850 cm−1 were associated with the
aliphatic C-H group stretching; the absorption peaks at about
1700 cm−1 were assigned to C = O stretching of COOH; the
bands at about 1640 cm−1 were mainly due to C = O stretching
vibration of amide group (Campitelli and Ceppi 2008; Rashad
2013). The bands at about 2920 and 2850 cm−1 vibration of HA
were more intense with straw application than no straw CK and
the intensity increased with the rate of straw application, while
the changes of vibration at 1640 cm−1 showed an opposite trend.

3.5 Fluorescence emission spectra analysis

The fluorescence emission spectra of HAwere shown in Fig. 4.
Generally, the fluorescence emission spectra of HA featured a
unique broad bandwith the maximum centered at 500 to 550 nm
wavelength, showing similar fluorescent groups of HA in differ-
ent treatments. In layer S1, the fluorescence peak of HA for
treatment B5 was blueshifted (i.e., the characteristic peak shifts

Table 3 The relative intensity of
main absorption peaks of HA
FTIR spectra

Treatment 3400 (cm−1) 2920 (cm−1) 2850 (cm−1) 1700 (cm−1) 1640 (cm−1)

S1B0 30.05 1.17 0.24 1.52 5.96

S1B1 42.14 1.20 0.25 1.50 3.78

S1B3 74.16 1.32 0.25 4.29 2.38

S1B5 95.09 2.18 0.42 1.48 2.14

S2B0 36.43 1.02 0.23 2.44 3.07

S2B1 49.32 1.04 0.24 1.69 2.21

S2B3 28.64 1.06 0.25 2.01 2.12

S2B5 44.26 1.16 0.27 2.77 1.43

S3B0 32.31 0.37 0.08 2.30 2.31

S3B1 37.03 0.71 0.13 2.32 2.12

S3B3 33.23 1.16 0.23 2.30 2.06

S3B5 27.88 1.16 0.24 1.53 1.77

S1, S2, and S3 represent 0–15, 15–30, and 30–45 cm soil layers, respectively. B0, B1, B3, and B5 represent 0,
0.44, 1.32, and 5.28% of the straw incorporation levels, respectively
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in the direction in which the wavelength decreases) in compari-
sonwith treatment B0. The similar variations of peaks position in

layer S2 and S3 were also observed. The fluorescence peaks of
HA were blueshifted for treatment B1, B3, and B5 comparing
with treatment B0, and the degree of blueshift in treatment B5
was the largest. The fluorescence intensity of HAwas greater for
the treatments amended with maize straw than the B0 (Table 4).
And observed that the fluorescence intensity of HA also en-
hanced with increase in straw application rate.

4 Discussion

Straw addition resulted in soil organic carbon increase. Similar
results had been reported by Yang et al. (2017). And the in-
creased soil organic carbon was positively related to the straw
application rate with significant increase occurred in treatment
B3, B4, and B5. These changes in soil organic carbon content
reflect the balance between carbon supplement and loss
(Sollins et al. 1996). In the short term, high amounts of straw
addition to the soil made carbon supplement greater than the
loss of soil carbon and resulted in carbon accumulation in the
tested soil. We also found that more SOC was accumulated in
the 30–45 cm soil than in the 0–15 cm soil layer for the treat-
ments with the same straw rate, which might be attributed to
differences in soil aeration (Kisselle et al. 2001) in different soil
depths. The soil aeration is higher in the topsoil than in subsoil,
so the decomposition of straw in the topsoil was faster than that
in subsoil. Lower soil aeration leads to low decomposition of
straw which results in more soil organic carbon accumulation
(Rottmann et al. 2010; Jiao et al. 2015).

Humic substances are ubiquitous compounds that have a
high molecular weight and heterogeneous structure (Wagner
et al. 2016). In this study, straw addition increased the contents
of HE-C and this result is consistent with previous study
(Huang et al. 2008). Song et al. (2014) also showed that humus
content was relatively high with the high organic manure ad-
dition. This indicates that the degradation of straw will lead to
formation of humus (Lhadi et al. 2006). Because humic sub-
stances are the main component of soil organic carbon, the
accumulation of humic substances has a great influence on soil
fertility. The results of humification degree of HA indicate that

Fig. 4 Effect of straw incorporation on emission spectra of HA at
different depths of soil. S1, S2, and S3 represent 0–15, 15–30, and 30–
45 cm soil layers, respectively. B0, B1, B3, and B5 represent 0, 0.44,
1.32, and 5.28% of the straw incorporation levels, respectively.

Table 4 The intensity of peaks of HA fluorescence emission spectra

Treatment FI Treatment FI Treatment FI

S1B0 42.66 S2B0 39.89 S3B0 39.32

S1B1 44.09 S2B1 45.67 S3B1 40.15

S1B3 46.78 S2B3 45.76 S3B3 47.81

S1B5 54.13 S2B5 51.13 S3B5 50.53

S1, S2, and S3 represent 0–15, 15–30, and 30–45 cm soil layers, respec-
tively. B0, B1, B3, and B5 represent 0, 0.44, 1.32, and 5.28% of the straw
incorporation levels, respectively. FI is the abbreviation of fluorescence
intensity
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the proportion of HA increased with increase in soil depths and
straw application rates. This was because the carbon in maize
straw was preferentially converted to the humic acid rather
than to fulvic acid (Song et al. 2017). And it also showed that
transformation of FA into HA increased (Ingelmo et al. 2012),
which increased the stability of soil organic carbon.

FTIR spectroscopy can be used to measure the transition
between molecular vibrational energy levels, which is mainly
used to reflect the characteristics of the functional groups of
humic substances in soil science (Rodríguez et al. 2016; Ait
Baddi et al. 2004; Hung et al. 2013). Straw incorporation com-
pared with non-straw CK increased the aliphatic C-H
stretching vibration of HA, which indicates that the application
of organic materials made the HA increased in aliphaticity and
weakened in aromaticity (Wu et al. 2005). Zhang et al. (2011)
considered that the changes of soil humic acid are mainly due
to the entry of HA extracted from straw into the soil.

Recently, fluorescence spectroscopy has been using to ana-
lyze structure of humic substances in many studies (Valencia
et al. 2013; Halim et al. 2013; Horst et al. 2013; Yang et al.
2016; Aftab and Hur 2017). It has been suggested that a reduc-
tion in the degree of humification may be revealed by a blueshift
of characteristic peak of fluorescence spectrum. On the contrary,
the fluorescence spectrum may be redshifted (i.e., the character-
istic peak shifts in the direction in which the wavelength in-
crease) if the degree of humification is increased (Senesi et al.
1991; Miano and Senesi 1992). The fluorescence peaks of HA
with straw incorporation showed blueshift at different degrees,
with the maximum shift in S3B5 treatment. These indicate that
the decrease in degree of humification of HA is associated with
simplification of the molecular structure of HA. Traversa et al.
(2014) showed that the substituent groups are improved with
increase in fluorescence intensity, while the lower the fluores-
cence intensity indicates that the structure of HA is prone to
complex. More hydroxyl, methoxy, and amino groups were
found in HA from the treatments amended with maize straw.
The addition of straw into the soil promotes a large number of
metabolizable organic compounds into the soil organic matter
(Bayer et al. 2002). The formation of new organic matter is rich
in aliphatic compounds and a lower proportion of aromatic
carbon, so the structure of HA also changes. Stevenson (1992)
considered that the decomposition of straw in subsoil is mainly
under the role of anaerobic microorganisms and is not conduc-
tive to the increase of HA aromatization. It is favorable for soil
organic carbon fractions containing high-aliphatic polymers to
remain in the subsoil for a long period of time, thereby increas-
ing the carbon sequestration (Lorenz and Lal 2005).

5 Conclusions

In this paper, the results are consistent with our hypothesis that
the soil organic carbon accumulation varied in soil depth and

the maximum organic carbon accumulation appeared in deep
soil (30–45 cm). The largest change of molecular structure of
humic acid was also found in 30–45 cm soil depth. Therefore,
straw addition to subsoil was more conducive to carbon seques-
tration and to quality and quantity improvement of humic acid.
These results also could be used as reference for those who are
interested in applying crop straw to deep soil. However, future
research will need to measure, at the field scales, the influence
of straw returning location on soil fertility and crop yields.
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