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Abstract
Purpose Pedotransfer functions (PTFs) have gained wide de-
velopment in recent years as approaches to establishing the
relationship between easily measurable or readily available
soil characteristics found in soil surveys and more complicat-
ed model input parameters. However, PTFs developed from
databases with limited types of soil conditions might not be
directly applicable to other soils whose conditions are differ-
ent from those used to establish PTFs. Our primary objectives
were to determine the influencing factors of saturated hydrau-
lic conductivity (Ks) in the coastal salt-affected farming area,
to identify the most appropriate one from the widely used
PTFs, and to develop new PTFs with higher accuracy and
suitability according to the influencing factors of Ks in our
experimental sites.
Materials and methods A total of 16 soil attributes including
9 physical properties and 7 chemical properties, which were
collected in typical coastal newly reclaimed farmlands of
north Jiangsu Province, China, were used as input soil data
of the PTFs. Factor analysis was employed to group soil basic
properties into influencing factors of Ks. The appropriate
PTFs were identified according to the prediction criteria, and
new PTFs were established using multiple linear regression,

modified Vereecken PTF, and artificial neural network
methods.
Results and discussion Results indicated that Ks in the soil
profile was classified as low permeability and 20–40-cm layer
(Ap2 horizon) had the lowest Ks and highest bulk density
values. With 91.05 % of variance explained, the 16 soil basic
properties were classified into five factors, i.e., soil porosity
component, water retention component, organic matter com-
ponent, soil salinity component, and unavailable water com-
ponent. Among all the selected PTFs, Ahuja PTF was identi-
fied as the most convenient method which only needed effec-
tive porosity. Vereecken PTF was suitable for a wider range of
soil textural classes. Using SA, CL, Bd, SOM, and ECe as input
soil data, the modified Vereecken (MV) PTF and artificial
neural network (ANN) PTF had better prediction performance
than the published PTFs.
Conclusions We concluded that soil salinity played an impor-
tant role in the estimation of Ks and should be considered as
input soil data. The established ANN-based PTF using the
suggested input soil data was recommended as the best ap-
proach for estimation of soil Ks in the coastal salt-affected
farming area.

Keywords Coastal . Influencing factor . Pedotransfer
function . Reclaimed farmland . Saturated hydraulic
conductivity

Abbreviations
SA Content of sand particles (%)
SI Content of silt particles (%)
CL Content of clay particles (%)
Bd Bulk density (g cm−3)
TPor Total porosity
EPor Effective porosity
θs Soil saturated water content (cm3 cm−3)
θfc Field capacity (cm3 cm−3)
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θw Wilting point (cm3 cm−3)
ECe Electrical conductivity of saturated soil paste extract

(dS m−1)
SAR Sodium adsorption ratio
SOM Soil organic matter (g kg−1)
TN Soil total nitrogen (g kg−1)
AN Available nitrogen (mg kg−1)
AP Available phosphate (mg kg−1)
AK Available potassium (mg kg−1)
Ks Saturated soil hydraulic conductivity (cm day−1)
PTFs Pedotransfer functions

1 Introduction

Reliable information about soil hydraulic properties plays an
important role in solving many soil and water management
problems related to agriculture, ecology, and environmental
issues. These properties are indispensable to describe and pre-
dict water and solute transport, as well as to model heat and
mass transport near the soil surface (Cornelis et al. 2001). One
of the key soil hydraulic properties is the saturated hydraulic
conductivity (Ks) which is an important soil physical property
for assessing infiltration rate, irrigation practice and drainage
design and in modeling the agricultural and hydrological pro-
cesses (Aimrun et al. 2004). This is particularly the case for
the coastal farming area where high soil salinity due to very
saline shallow water table is one of the most significant limi-
tations to soil water use efficiency (Yao et al. 2012).

Using representative soil samples from the study area, soil
hydraulic properties are usually measured in widely usedmea-
surement techniques, such as the Guelph permeameter in situ
method (Reynolds and Elrick 1986) and the constant head
permeameter laboratory method (Klute and Dirksen 1986).
Other frequently used in situ method included instantaneous
profile method, Wind’s evaporation method, Crust method,
sorptivity methods, and one-step outflow method (Xu and
Liu 2003). However, Ks has high spatial variability, and large
numbers of soil samples are required to characterize the hy-
draulic properties in the area of interest. For broad-scale ap-
plications, such measurements are often too cumbersome, ex-
pensive, time-consuming, and labor intensive. In addition, Ks

exhibited scale dependency, resulting in different measure-
ments of Ks with different size of soil samples at the same
location (Sobieraj et al. 2004; Fuentes and Flury 2005). Larger
size of soil samples was suggested to get reliable measurement
for soils with high spatial variability of Ks (Lai and Ren 2007).
Therefore, more attention has been attracted to the indirect
estimation of Ks, and the interest in using pedotransfer func-
tions (PTFs) to estimate the hydraulic property of the soil is
increasing (Wagner et al. 2004; Stumpp et al. 2009; Arrington
et al. 2013).

The PTFs as initially defined by Bouma and Lanen (1987)
describes functions that link more easily measurable and more
readily available soil properties such as particle size distribu-
tion, organic matter or organic carbon content, bulk density,
and porosity to soil hydraulic characteristics. In the last three
decades, a considerable number of PTFs differing in data re-
quirements and modeling principles have been proposed in
the literature, and recent reviews of the state of the art in this
field of research have been given by Wösten et al. (2001),
Pachepsky and Rawls (2004), and Shein and Arkhangel’skaya
(2006). PTFs can be obtained by various mathematical
methods. Most PTFs were derived through multiple regres-
sion methods, and Konezy-Carman equation was also applied
in the PTFs (Franzmeier 1991), but the artificial neural net-
work (ANN) approach is getting more andmore popular in the
recent decade. Statistical or functional comparison between
the ANN-based PTFs and regression-type PTFs has been re-
ported in detail in many literatures (Parasuraman et al. 2006;
Agyare et al. 2007; Motaghian and Mohammadi 2011). Also,
many sophisticated programs were developed as a convenient
way for Ks prediction as yet. Schaap et al. (2001) proposed a
computer program, Rosetta, which implemented the estima-
tion of water retention and the saturated and unsaturated
hydraulic conductivity. van Genuchten et al. (1991)
established RETC computer program to analyze the soil water
retention and hydraulic conductivity functions of unsaturated
soils. Acutis and Donatelli (2003) developed SOILPAR soft-
ware to estimate and create maps of soil hydrological param-
eters and functions. In addition to the traditionally used soil
basic properties, investigators have attempted to incorporate
new descriptors into PTFs recently, such as soil morphology
(Lin et al. 1999), multistep outflow data (Minasny et al. 2004),
maximum soil infiltration rates (Arrington et al. 2013), micro-
scopic pore geometry (Lebron et al. 1999), or terrain attributes
(Romano and Palladino 2002).

Coastal farming areas as reclaimed from mudflats in north
Jiangsu Province, eastern China, were selected in this study.
The experimental sites characterized by low soil productivity
due to high soil salinity were typical of coastal newly
reclaimed salt-affected soils in China. The traditional crop
rotation and management systems (rice/rape rotation, cotton/
barley rotation, and maize/barley rotation), representing the
major crop rotation patterns in north Jiangsu Province, have
been practiced in the experimental sites. To determine the
appropriate PTF for the estimation of soil saturated hydraulic
conductivity (Ks), a pool of 16 basic soil properties including
9 soil physical properties and 7 soil chemical properties were
selected as input soil data. Recognizing the importance of Ks

in modeling soil water flow and salt transport in our experi-
mental sites, the presented research was conducted with the
following objectives: (i) to characterize the profile distribution
and determine the influencing factors of Ks in the coastal salt-
affected farming area, (ii) to evaluate the calibration and

J Soils Sediments (2015) 15:902–916 903



prediction performance of the published PTFs and identify the
most appropriate PTFs in our experimental sites, and (iii) to
develop the local PTFs with higher accuracy and suitability
according to the influencing factors of Ks in our experimental
sites.

2 Materials and methods

2.1 Experimental site description

The experiment was carried out in the coastal salt-affected
farming area in north Jiangsu Province, China. Two typical
farms in this area reclaimed frommudflats were selected as the
experimental sites in our study. The two farms were Jinhai
Farm and Huanghai Raw Seed Growing Farm, and the two
farms spaced nearly 40 km apart. Jinhai Farm was situated in
the southeast of Dafeng City (32° 59′~33° 01′ N, 120° 49′~
120° 51′ E) and Huanghai Raw Seed Growing Farm located in
the southeast of Dongtai City, which was adjacent to Dafeng
City (32° 38′~32° 40′ N, 120° 52′~120° 54′ E). The two
farms were approximately 5 km to the coastline of China
Yellow Sea, and the topography was flat with an average
elevation of 1.0~1.5 m (Fig. 1).

Formed from the Yangtze River alluvial sediments and
marine sediments, the predominant soil in our experimental
sites is silty loam, classified as a loamy, mixed, hyperthermic,
Aquic Halaquepts according to soil taxonomy (Soil Survey
Staff 2010). Intermediate between an oceanic and continental
climate, the experimental sites are in subtropical zone and
strongly influenced by the southeast monsoon from spring to
autumn and northwest monsoon in winter. Mean annual tem-
perature is 14.7 °C, mean annual evaporation is 1417mm, and
mean annual precipitation is 1042 mm (from 2001 to 2011)
with approximately 67 % of annual rainfall occurring June
through September. Cold, dry season is from October to
March, and the hot, wet season is from April to September.

Poor soil physicochemical properties such as salinization, low
fertility, and soil compaction are known as the most significant
limitations to soil productivity in these farms, and large areas
of salt-affected lands were observed due to high surface soil
salinity as well as very saline shallow water table (Yao et al.
2009). The experimental sites cover a variety of soil salinity
conditions, and they are representatives of about 40×104 hm2

coastal salt-affected reclamation farmlands in north Jiangsu
Province, Eastern China.

2.2 Land use and management history

The Jinhai Farm consisting of 26 stripping fields was
reclaimed from mudflats in 1999 and had no documented
history of cultivation until 2001. Two crop rotation systems
including rice (Oryza sativa L.)/rape (Brassica campestris L.)
rotation and cotton (Gossypium spp.)/barley (Hordeum
vulgare L.) rotation have been practiced in this farm. The
eastern portion of the farm has been in a rice/rape rotation
(rice and rape in summer and winter, respectively) since its
reclamation. The western portion of the farm has been con-
secutively cultivated with a cotton/barley rotation (cotton in
summer and barley in winter) since 2005. This farm is char-
acterized by rain-fed in barley, cotton, and rape seasons. Con-
sidering that the river water and the shallow groundwater are
naturally saline in the coastal region, rice is irrigated with the
freshwater which is pumped from underground wells of ap-
proximately 300–350-m depth with an electrical conductivity
(EC) of 0.35 dS/m.

Huanghai Raw Seed Growing Farm was reclaimed from
mudflats in 2004 and cultivated for agriculture production
since 2006. A rice/barley rotation system was initially used
to leach soil salinity from 2006 to 2009 as the soil reclaimed
from the tidal flats contained excessive soluble salts. Like-
wise, the irrigation water used for paddy rice was pumped
from underground wells of about 350–400-m depth with an
EC of 0.47 dS/m. Due to the excessive exploitation of fresh

Fig. 1 Geographical location of
the experimental sites
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groundwater and the continuous decline of the well water
table, the amount of freshwater from these wells can no longer
meet the water requirement of the whole farm in the paddy
rice season. Thus, a rain-fed maize (Zea mays L.)/barley rota-
tion system has been applied in some fields of the farm, and
paddy rice has been irrigated with the mixed water of fresh
deep-well water and saline river water since 2009. This phe-
nomenon of blending irrigation is typical for extensive coastal
reclamation farming areas in north Jiangsu Province.

In the experimental sites, conventional soil fertility and pest
management practices are used, and paddy rice is irrigated
using flood irrigation. No organic matter inputs are made other
than crop residues. With diammonium phosphate as basal fer-
tilizer, an annual of 480 kg/ha N, 210 kg/ha P2O5, and 90 kg/
ha K2O is input to soil in the rice/rape rotation and rice/barley
rotation systems, whereas the fertilizer of 450 kg/ha N,
180 kg/ha P2O5, and 120 kg/ha K2O is added to the cotton/
barley rotation and maize/barley rotation soil. Despite the uni-
form management practices for each rotation system in these
two farms, the crop growth varies greatly, and some spots are
abandoned due to the strong spatial variation of soil
conditions.

2.3 Soil sampling

The location and magnitude of soil samples across the exper-
imental sites were determined considering soil salinity, vege-
tation canopy, and crop rotation system. A total of 124 surface
soil samples at 0–10-cm depth were collected using a hand
auger. Among these soil samples, 60 sites were collected from
Jinhai Farm in late-October 2009, and the other 64 sites were
collected from Huanghai Raw Seed Growing Farm in early-
October 2012. At each site, three bulk and nine core soil
samples were obtained at 0–10 cm for lab analysis of Ks and
other soil basic properties, and the nine replicate undisturbed
core soil samples were collected using cutting rings (volume
of 100 cm3) with each spaced 5 cm apart. Apart from this, in
order to determine soil profile characterization, six locations
were selected from Huanghai Raw Seed Growing Farm for
profile excavation. At each location, soil pit from surface to 1-
m depth was dug using a shovel, and horizonation was deter-
mined and recorded by a pedologist using standard methods
(Schoeneberger et al. 2002). The time of soil sampling and
profile excavation was just between the harvest time of
rice/cotton/maize and the sowing time of rape/barley. Figure 2
visually exhibits the information and horizonation of the six
representative soil profiles.

At each profile, three bulk and nine core soil samples were
collected at 0–20, 20–40, 40–60, 60–80, and 80–100 cm for
lab analysis of Ks and other soil basic characteristics. In total,
444 bulk and 1332 core samples were collected across the
experimental sites. All bulk soil samples were air-dried and
passed through a 2-mm sieve prior to performing analyses of

chemical and physical properties, and core soil samples were
mainly used for lab analysis of Ks and some soil physical
attributes.

2.4 Soil analysis

Understanding the relationship between soil basic properties
and saturated hydraulic conductivity (Ks) helps to establish
appropriate PTFs to estimate Ks indirectly from available soil
basic properties. In doing so, we gathered an exhaustive list of
soil chemical and physical properties which have been report-
ed to be associated with soil Ks for the predominant agroeco-
logical systems (Candemir and Gülser 2012). A pool of 16 soil
basic properties was determined according to Oosterbaan and
Nijland (1994) andMbonimpa et al. (2002). Saturated hydrau-
lic conductivity (Ks) was measured on intact soil cores by the
constant head method (Klute and Dirksen 1986). Ks and all
soil basic properties were analyzed on three replicate samples,
and the average values were used in our experiment. The
selected soil basic properties and the analytical protocols are
presented in Table 1.

2.5 Calibration and validation of published PTFs

A variety of PTFs with different mathematical concepts, pre-
dicted hydraulic properties, and input data requirements have
been developed. Physicoempirical methods by Tyler and
Wheatcraft (1989) use the concept of shape similarity between
pore and particle size distributions. The vast majority of PTFs,
however, are empirically based on linear regression equations
between hydraulic properties and soil basic properties. These
PTFs can be categorized into three main groups including
class PTFs, continuous PTFs, and neural networks (Schaap
et al. 1999). All of these PTFs use at least some information
about the particle size distribution, and considerable differ-
ences exist among PTFs in terms of the input soil data re-
quired. In our experiment, 12 sophisticated PTFs including
Cosby, Brakensiek, Ahuja, Campbell, Puckett, Saxton,
Vereecken, Rawls , CamShiozawa, Wösten1997,
Wösten1999, and Li were introduced, and the appropriateness
of these PTFs was evaluated using our dataset. The details of
these PTFs were reported in existing literatures (Tietje and
Tapkenhinrichs 1993; Wagner et al. 2001; Li et al. 2007).

In addition to the above 12 published PTFs, multiple linear
regression (MLR), modified Vereecken (MV) model, and
ANN were also adopted to establish PTFs using the same soil
dataset. A stepwise regression was performed in the MLR
using Ks as dependent variable and 16 soil basic properties
as independent variables, and the model having the highest
accuracy and least input data was determined as the optimal
PTF. MV PTF added ECe into input soil data compared with
the well-known Vereecken PTF. Therefore, five soil basic
properties including Bd, SA, SOM, ECe, and CL were used
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as input data in the MV PTF. The above five soil basic prop-
erties were also used as input soil data in the ANN PTF.

Two different procedures have been commonly used for the
validation of PTF models. The first is a traditional method
using statistical comparison between measured and predicted
Ks values. The second approach is a process-based functional
validation using the soil hydraulic parameters to predict water
flow with the software program (Simunek et al. 1998). The
first procedure was adopted in our study. In doing so, Ks and

soil basic properties at 84 sampling sites were randomly se-
lected from our total dataset as calibration dataset, and Ks and
soil basic properties at the rest 40 sampling sites were used as
validation dataset. Using the calibration dataset, the parame-
ters of above 12 sophisticated PTFs were refitted, and the
reliability of these refitted PTFs was tested based upon the
validation dataset. To assess the calibration and validation
performance of these PTFs, four criteria were considered: (i)
the mean relative error (MRE), (ii) the root mean square error

Fig. 2 Description of vegetation
type and the horizonation of
representative soil pits

Table 1 The selected soil basic properties and the analytical protocols

Factor Soil basic property Protocol Reference

Physical factor Content of sand particles, SA Bouyoucos hydrometer method Bouyoucos (1962)
Content of silt particles, SI

Content of clay particles, CL

Bulk density, Bd Core method Blake and Hartge (1986)

Total porosity, TPor Core method Marshall and Holmes (1988)

Effective porosity, EPor
a – Yu et al. (1993)

Saturated water content, θs Water saturation method Shahi (1968)

Field capacity, θfc Wilcox method Salter and Williams (1965)

Wilting point, θw
b – Wang and Schmugge (1980)

Chemical factor Electrical conductivity, ECe Saturated soil paste extract U.S. Salinity Laboratory Staff (1954)

Sodium adsorption ratio, SARe
c Saturated soil paste extract Jurinak and Suarez (1990)

Soil organic matter, SOM Modified Walkley-Black Nelson and Sommer (1982)

Total nitrogen, TN Kjeldah Bremner (1960)

Available nitrogen, AN Alkaline hydrolysis diffusion Cornforth and Walmsley (1971)

Available phosphate, AP Sodium bicarbonate Olsen method Pierzynski (2000)

Available potassium, AK Flame photometric method Motsara and Roy (2008)

a Effective porosity (EPor) is determined by TPor-θfc. where TPor is the total porosity (cm3 /cm3 ), θfc is the volumetric water content at field capacity
(cm3 /cm3 )
bWilting point (Wp) is calculated by (0.06774−0.00064×SA+0.00478×CL)×Bd, where SA is the gravimetric content of sand (%), CL is the gravimetric
content of clay (%), Bd is the bulk density (g/cm

3 )
c SARe is computed as Naþ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2þ þMg2þð Þp

=2, where Na+ , Ca2+ , Mg2+ = measured water-soluble content of Na+ , Ca2+ , and Mg2+ in saturated
soil paste extract, respectively
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(RMSE), (iii) the coefficient of determination (R2), and (iv)
Akaike’s information criterion (AIC). These criteria
(Burnham and Anderson 2004) were defined as follows:

MRE ¼ 1

n

Xn
i¼1

Pi−Mið Þ
Mi

� 100% ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Pi−Mið Þ2
vuut ð2Þ

R2 ¼

Xn
i¼1

Mi−M
� �

Pi−P
� �

Xn
i¼1

Mi−M
� �2" #0:5 Xn

i¼1

Pi−P
� �2" #0:5

2
666664

3
777775

2

ð3Þ

AIC ¼ 2pþ nln
Xn
i¼1

Pi−Mið Þ2
 !

ð4Þ

where n is the number of observations, Pi and Mi are the ith
model calibrated (estimated) andmeasured values (i=1, 2,…, n),
and �P and �M are the calibrated (estimated) and measured mean
values, respectively. p is the number of parameters used in the
PTFs. For good fitness, MRE should be close to 0 and
R2 close to 1, and RMSE and AIC parameters should be as low
as possible.

2.6 Statistical analysis

To determine the influencing factors of soil Ks, factor analysis
was used to reduce the entire dataset by grouping the 16 var-
iables (soil basic properties) with SPSS software. Principal
component analysis was used as the method of factor extrac-
tion in our study as it does not require prior estimates of the
variation in each variable (Webster and Oliver 1990). Using a
correlation matrix, principal component analysis was per-
formed on the standardized soil basic properties with each
property having a zero mean and unit variance (Riitters et al.
1995). Only factors with eigenvalues >1 were retained and
subjected to varimax rotation tomaximize correlation between
factors and measured variables. Communalities estimated the
proportion of the variance in each soil property explained by

the components, and a high communality estimate suggested
that a high portion of variance was explained by the factor.

The calibration dataset was used to refit the selected PTFs,
and this was done with the help of nonlinear fitting tool in the
environment of OriginPro 8.5. The Levenberg-Marquardt al-
gorithm based upon nonlinear least squares was used, and the
parameters in each PTF were optimized until the fitting con-
verged, i.e., the tolerance criterion (1E-9) with the maximum
iteration number of 400 was satisfied. A neural network ap-
proach was also established to estimate Ks from soil basic
properties. The detailed principle and procedure of neural net-
works are referred to Sharma et al. (2003). A back-
propagation ANN with one input layer, one hidden layer,
and one output layer was chosen in our study. The number
of hidden nodes depended on the complexity of the underly-
ing problem and was determined empirically by calibrating
neural networks with different numbers of hidden nodes
(Schaap and Leij 1998). This was done by separating the
calibration dataset (84 sampling sites) into the training dataset
(64 sampling sites) and the cross-validation dataset (20 sam-
pling sites), and calibrating the neural network on the training
dataset and subsequently testing the network on the cross-
validation dataset. The training, testing, and validation of neu-
ral network were performed using the neural network toolbox
of MATLAB 7.0.

3 Results

3.1 Profile characterization of Ks

The profile characterization of soil Ks is presented in Fig. 3
(left graph). It can be seen that Ks generally exhibited valley
distribution in the soil profile, decreasing with soil depth at 0–
40-cm layer and increasing with soil depth at 40–100-cm lay-
er. It also showed that 20–40-cm soil layer (Ap2 horizon) had
the lowest Ks value ranging between 2.75 and 6.73 cm/day. It
was interesting to find that substratum (40–100 cm) had
higher Ks values than surface layer in some soil pits such as
soil pit 3 and soil pit 4.

Severe soil compaction was observed in the profile distri-
bution of bulk density in Fig. 3 (right graph). Due to the
presence of plow pan, Ap2 horizon had the highest bulk den-
sity with an average of 1.55 g/cm3 whereas the average bulk
density at Ap1 and C horizons was 1.42 and 1.46 g/cm3,
respectively.

3.2 Descriptive statistics of soil Ks and basic properties

The descriptive statistics of soil Ks and basic properties for
calibration dataset, validation dataset, and all sampling sites
are shown in Table 2. The soil Ks ranged between 1.37 and
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54.13 cm/day with an average of 11.41 cm/day for all samples
across our experimental sites. Two textual classes were ob-
served for all soil samples, and silty loam was determined as
the predominant textual class. The average bulk density was
1.42 g/cm3 with soil porosity ranging from 0.40 to 0.55 cm3/
cm3. The effective porosity which contributed to the water
flow of saturated soil varied between 0.09 and 0.27 cm3/
cm3, and the mean effective porosity was 0.17 cm3/cm3.
Representing the water retention characteristics, θw, θfc, and
θs had mean values of 0.16, 0.29, and 0.39 cm3/cm3, respec-
tively, and this indicated that the plant available water
capacity was 0.13 cm3/cm3. When considering the saline
and alkali indices of soil, the average soil salinity was
10.03 dS/m, and SAR varied from 0.15 to 9.46 with an
average of 2.32. With regard to the soil fertility indices, the
mean SOM, TN, AN, AP, and AK were 7.82 g/kg,
0.51 g/kg, 71.95 mg/kg, 40.65 mg/kg, and 226.84 mg/kg,
respectively.

3.3 Grouping of soil basic properties

Correlation analysis among Ks and 16 soil physical and chem-
ical attributes resulted in significant correlation (P≤0.05)
among 93 of the 136 variable pairs (Table 3). This indicated
that soil basic properties can be grouped into factors based on
their correlation patterns. Ks had significant correlation with
almost soil basic properties except CL, AN, AP, and AK. High
positive correlations were observed between Ks and EPor, CL

and θw, TPor and EPor, TPor and θs, ECe and SAR, and SOM
and TN (r≥0.70). Strongest negative correlations were obtain-
ed between Bd and EPor (r≥0.90), SA and θfc (r≥0.80), SA and
SI, and Bd and θs (r≥0.70). CL, Bd, SOM, and TN had signif-
icant correlations with the largest number of other soil
properties.

Rotated component loadings and communality estimates
for all soil basic properties are shown in Table 4. The first five
PCs had eigenvalues >1 and accounted for 91.05 % of vari-
ance in measured soil properties and therefore were retained

for further interpretation. Communalities for all soil basic
properties indicated that the five factors explained >95 % of
variance in SA, SI, CL, Bd, Tpor, Epor, θs, θfc, and θw; >90 % of
variance in ECe, SAR, and SOM; >80 % of variance in TN.
However, the five components explained <70% of variance in
AN, AP, and AK (Table 4). Thus, AN, AP, and AK were
considered to be the least important soil properties due to the
lowest communality estimates.

The order by which the principal components (PCs) were
interpreted was determined by the magnitude of their eigen-
values. The first PC explained 40.02 % of the variance
(Table 4). It had high positive loadings from TPor (0.95), EPor

(0.86), and θs (0.88), and negative loading from Bd (−0.95).
PC1 was identified as the “soil porosity component” since it
mainly explained variations in characters related to soil bulk
density and porosity status. The second PC explained 20.38 %
of the variance with high positive loadings from SA (0.97) and
θs (0.88), and high negative loadings from SI (−0.88) and θfc
(−0.96). We named PC2 “water retention component” be-
cause all soil properties comprised in this component were
significantly correlated (p<0.05) with θs and θfc (Table 4).
The third PC was called “organic matter component.” It ex-
plained 13.51 % of the variance with high positive loading
from SOM (0.84), TN (0.83), and AN (0.80) and moderate
loadings from AP (0.64) and AK (0.60). These properties
were indicators of soil organic matter and were significantly
correlated (Table 4). Explaining 9.04 % of the variance, the
PC4 was termed “soil salinity component.” It had high posi-
tive loading for ECe (0.92) and SAR (0.93). Neither high
negative nor moderate negative loading was found for the
fourth PC. This showed that soil salinity was also an important
influencing factor of soil Ks. The fifth PC explained 8.10 % of
the variance and was referred to as “unavailable water
component” as it had high positive loading from θw (0.94),
and this property represented the soil water content at
which crop root could not uptake due to excessively
high soil water suction. PC5 also had high positive
loading from CL (0.88).

Fig. 3 Characterization of
saturated hydraulic conductivity
and bulk density in typical soil
pits
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3.4 Appropriateness assessment of published PTFs

Results of calibration and validation criteria of 12 selected
PTFs are presented in Table 5. According to the calibration
criteria, all the selected PTFs exhibited satisfactory calibration
performance except for Cosby, Puckett, and CamShiozawa
PTFs. This was not unexpected considering that the influenc-
ing properties of Ks were grouped into five soil factors and
only soil texture was used as input data in these PTFs. When
considering the validation criteria, the estimation performance
of each PTF varied greatly, and all the PTFs overestimated Ks

regarding to MRE parameter. Ahuja PTF generally had the
best estimation performance with the least RMSE and AIC
parameters, indicating that effective porosity could be used
as an estimation of soil Ks in our experimental sites.
Vereecken PTF also exhibited satisfactory estimation perfor-
mance, and the possible reason was that SA, CL, SOM, and Bd

representing four influencing factors of Ks were used as input
data in this PTF.

3.5 Evaluation on the established PTFs

3.5.1 Multiple linear regression

The statistics of MLR analysis suggested that the highest ac-
curacy was obtained when using EPor, SOM, and AN as pre-
dictors. Including other soil basic properties did not result in
significant improvement of Ks prediction. Refitting the equa-
tion with EPor, SOM, and AN as predictors yielded:

Ks ¼ 172:116EPor þ 1:274SOM−0:113AN−20:581 ð5Þ

The calibration and validation criteria of MLR PTF are
shown in Table 6. Apparently, this PTF had the least MRE
parameter, i.e., the least prediction bias, and this could be
ascribed to the nature of unbiased estimate of linear regression
method. With respect to prediction performance, the valida-
tion criteria of MLR PTF were similar to those of Ahuja and
Vereecken PTFs, and the prediction accuracy of MLR PTF
was also satisfactory.

3.5.2 Modified Vereecken model

With Levenberg-Marquardt algorithm, the nonlinear fitting
was employed to fit the MV PTF using the calibration dataset.
The obtained MV PTF was given by

Table 4 Rotated component loadings and communality estimates for
all soil basic properties

Soil basic property PC1 PC2 PC3 PC4 PC5 Communalities

SA 0.11 0.97 0.18 −0.09 0.03 0.990

SI −0.14 −0.88 −0.23 0.11 −0.37 0.993

CL 0.14 0.37 0.24 −0.11 0.88 0.997

Bd −0.95 −0.21 −0.10 0.17 0.11 0.996

Tpor 0.95 0.21 0.10 −0.17 −0.11 0.995

Epor 0.86 0.46 0.13 −0.17 −0.07 0.996

θs −0.42 0.88 0.05 −0.14 0.12 0.991

θfc −0.11 −0.96 −0.14 0.07 −0.10 0.971

θw −0.29 0.03 0.16 −0.01 0.94 0.996

ECe −0.24 −0.06 −0.12 0.92 −0.02 0.926

SAR −0.14 −0.08 −0.11 0.93 −0.08 0.907

SOM 0.27 0.25 0.84 −0.30 0.00 0.936

TN 0.18 0.18 0.83 −0.24 0.09 0.813

AN −0.06 0.07 0.80 −0.05 0.17 0.677

AP 0.02 0.07 0.64 −0.03 0.03 0.413

AK 0.16 0.19 0.60 0.04 0.17 0.454

Total

Eigenvalue 6.40 3.26 2.16 1.45 1.30 –

Difference 3.14 1.10 0.72 0.15 0.83 –

% of variance explained 40.02 20.38 13.51 9.04 8.10 91.05

Table 5 Accuracy of calibration
and validation of all selected
PTFs

PTFs Calibration criteria Validation criteria

MRE (%) RMSE R2 AIC MRE (%) RMSE R2 AIC

Cosby 68.874 8.818 0.261 371.70 67.645 7.718 0.147 167.48

Brakensiek 19.223 5.729 0.693 299.25 25.116 6.206 0.469 152.04

Ahuja 34.753 6.435 0.606 314.78 37.431 5.552 0.503 139.13

Campbell 41.772 6.552 0.592 321.81 43.752 5.737 0.464 145.76

Puckett 81.992 10.116 0.026 390.78 80.567 7.628 0.064 164.55

Saxton 31.980 6.382 0.613 317.38 47.250 7.509 0.333 167.29

Vereecken 38.671 6.490 0.599 322.21 39.941 5.510 0.497 144.52

Rawls 24.770 5.918 0.670 304.72 31.494 6.964 0.421 161.26

CamShiozawa 68.874 8.818 0.261 369.70 67.646 7.718 0.147 167.48

Wösten1997 25.220 5.810 0.681 301.61 35.759 7.491 0.392 167.10

Wösten1999 24.524 5.835 0.679 304.33 38.498 6.147 0.461 153.28

Li 28.870 5.968 0.663 310.13 35.732 6.112 0.455 154.82
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Ks ¼ 4:540� 10−5⋅exp 21:646−0:197⋅ln CLð Þ þ 0:414⋅ln SAð Þ−0:078⋅ln SOMð Þ− 6:982⋅Bd − 0:006⋅ECeð Þ ð6Þ

When comparing Tables 5 and 6, it can be seen that the
RMSE and AIC parameters ofMV PTFwere lower than those
of Vereecken PTF, indicating that MV PTF had better calibra-
tion performance than Vereecken PTF, and it was also the case
for prediction capability. Therefore, the established MV PTF,
in which the effect of soil salinity on Ks was considered, was
more suitable for the coastal salt-affected soil than the com-
monly used Vereecken PTF.

3.5.3 Artificial neural network

In order to prevent the “overtraining” of neural network, the
number of hidden nodes was optimized using trial and error
method. In doing so, the input layer and output layer of ANN
PTF were maintained using the same nodes, increasing the
hidden nodes from 5 to 17 resulted in variation in training
error (RMSE) and cross-validation error (Fig. 4). The training
error generally decreased with the increasing hidden nodes
whereas cross-validation error increased with hidden nodes.
From Fig. 4, when hidden nodes increased to 8, the network
had the optimal performance, i.e., the least cross-validation

error. Therefore, the nodes in input layer, hidden layer, and
output layer of ANN were fixed to 5, 8, and 1, respectively.

Using the above ANN PTF, the training dataset, cross-
validation dataset, and testing dataset were simulated and pre-
sented in Fig. 5. Table 6 also shows the calibration and vali-
dation criteria of ANN PTF. Compared with MLR and MV
PTFs, the ANN PTF had the best prediction accuracy owing
to the least MRE, RMSE, and AIC parameters and highest R2

parameter.

4 Discussion

4.1 Characteristics of Ks in different soil horizons

Saturated hydraulic conductivity (Ks) in the soil profile was
classified as low permeability according to Bhattacharyya
et al. (2008), and the lowest Ks was observed at the Ap2
horizon (20–40-cm layer). This is consistent with the finding
ofWang et al. (2011) who also found that soil Ks exhibited the
trend of decreasing at subsurface layer (20–40 cm) and

Table 6 Accuracy of calibration and validation of the established PTFs

PTFs Calibration criteria Validation criteria

MRE (%) RMSE R2 AIC MRE (%) RMSE R2 AIC

MLR 13.958 6.291 0.630 314.98 21.432 5.623 0.515 143.33

MV 36.776 6.227 0.632 313.25 40.411 5.236 0.546 141.65

ANN 13.744 5.986 0.673 310.62 19.030 4.871 0.621 136.67

Fig. 4 Training error and check error related to number of hidden nodes
in the artifical neural network Fig. 5 Scatter plots of themeasured versus calibrated/predicted Ks values
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increasing at substratum (40–100 cm) for salt-affected soils in
the coastal farming area. This phenomenon was not unexpect-
ed considering that 20–40-cm layer was the traditional plough
pan for the cultivated soil and tillage measures resulted in the
mechanical compaction at 20–40-cm layer. This is supported
by the difference of the contents of soil particles between Ap1
and Ap2 horizons in each soil pit (Fig. 2). The possible reason
for higher Ks values at substratum than surface layer (such as
soil pit 3 and soil pit 4) is that at these sites, soil surface was
barren due to high soil salinity which exceeded the common
salt tolerance level of maize, and barren soil surface generally
resulted in soil aggregate breakdown and soil compaction in
comparison with vegetation coverage condition (Engelaar
et al. 2000).

In addition to particle size distribution, bulk density was the
most widely used soil property in assessing soil hydraulic
conductivity in most literatures. Our results showed that the
profile characterization of bulk density was generally opposite
to that of Ks. This was not surprising as bulk density
representing the total porosity status was closely related to soil
permeability. Ks was reported to decrease with bulk density
for most important soil series (Wang et al. 2003). Dec et al.
(2008) found that the hydraulic properties of soils with iden-
tical texture depended on bulk density and structure. The
finding of Assouline (2006) showed that the Kozeny equation
with sole information on the bulk density could be used suc-
cessfully to predict the saturated hydraulic conductivity for
both compacted and uncompacted soils. In this study, the av-
erage Ks was generally below the measured values for silty
loam soils as reported by Fuentes et al. (2004), Fuentes and
Flury (2005), and Li et al. (2007), and this could be ascribed to
higher soil compaction and lower porosity in our experimental
sites.

4.2 Principal components of basic properties affecting soil Ks

Our finding showed that the basic soil properties of Ks could
be grouped into five factors, i.e., soil porosity, water retention
capacity, organic matter, soil salinity, and unavailable water
content. This coincided with Wang et al. (2011) who found
that soil porosity, texture, and salinity were important
influencing factors of coastal soil Ks in the similar region.
However, the conclusion was different for soil Ks at other
regions. Candemir and Gülser (2012) stated that exchangeable
Na had the highest direct effect on Ks and exchangeable Na
was one of the most important soil properties that affected Ks

directly in fine-textured alkaline soils. Li et al. (2008) showed
that soil texture and porosity had significant influences on Ks

in southwest Karst region of China. For the typical farmland in
the red soil area, soil porosity, organic matter, and soil texture
were determined as important influencing factors of Ks (Fang
et al. 2008). As expected, soil porosity, texture, and organic
matter were the most frequently used factors of soil Ks in most

existing literatures. Our study also showed that soil salinity
had adverse impact on Ks of the coastal farmland, indicating
that soil salinity played an important role in the estimation of
Ks when using PTFs. The reasons included the following: (i)
substantial exchangeable Na+ in the coastal farmland resulted
in dispersed silt and clay particles and soil pore clogging and
(ii) high soil salinity inhibited crop growth and root intersperse
which contributed to improvement of soil permeability.

The influencing factors of agricultural soil Ks vary, depend-
ing on not only the nature of soil such as soil type, texture,
porosity, pore connectivity, and organic matter, but also the
management practices used such as land use, tillage, and
irrigation water quality. Based upon a new global database
of field hydraulic conductivity, Jarvis et al. (2013) found that
topsoil Ks depended more strongly on bulk density, organic
carbon content, and land use but weakly on texture. Organic
carbon showed negative correlation with Ks because of water
repellency and Ks at arable sites was, on average, two to three
times smaller than under natural vegetation, forests, and pe-
rennial agriculture. In a recent study by Reading et al. (2012),
Ks was found to increase in a sodic clay soil in response to
gypsum applications, and a suggestion was proposed that
sodium needed to be taken into account when determining
the suitability of water quality for irrigation of sodic soils.
This showed agreement with Yasin et al. (1989) who stated
that increasing soil exchangeable sodium percentage (ESP)
resulted in a constant decrease in soil Ks and irrigation water
with high sodium adsorption ration (SAR) and residual sodi-
um carbonate (RSC) significantly reduced soil Ks.

4.3 Effect of soil type and measuring methods on the selection
of PTFs

Much attention has been paid to the comparison of PTFs by
many authors (Wagner et al. 2001; Stumpp et al. 2009), but the
conclusion is essentially the same: There is no PTF that is the
most suitable for all soils, but rather a toolbox of alternative
methods from which to choose or to conduct the method best
suited for the soil at hand. In this study, the estimation capa-
bility of Saxton and Wösten1997 PTFs were found inferior to
that of Brakensiek, Campbell, Rawls, Wösten 1999, or Li
PTFs. The explanation was that soil porosity was not
employed in the Saxton PTF, and soil properties of water
retention capacity were not used in the Wösten1997 PTF.
Generally, Ahuja and Vereecken PTFs showed the best
appropriateness for soil Ks estimation in the coastal
reclamation farming area, and Ahuja PTF was identified as
the most convenient method as only effective porosity was
needed in this PTF. This was also found by Aimrun et al.
(2004) who estimated paddy soil Ks from effective porosity
data with success. In another rigorous study, Tietje and
Tapkenhinrichs (1993) made an exhausitive comparison be-
tween the well-known PTFs and drew a conclusion that
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Vereecken PTF was considered the best and applicable for all
soil samples, even for high organic matter contents. This
summarization showed agreement with the results of our
statistical analysis. As a matter of fact, the accuracy of PTFs
varies with different soil types, scale of soil sampling,
measurement methods, as well as textural classes. According
to Tietje and Tapkenhinrichs (1993) and Wagner et al. (2001),
Rawls PTF had no advantage for predicting sandy soils
whereas Puckett PTF might be applied only in sandy soils,
and Saxton PTF generally underestimated for soils with high
organic carbon content. Earlier studies showed that
Wösten1999 and Li PTFs were more applicable in the area
of fluvo-aquic soils in Fengqiu County (Li et al. 2009). Rawls
PTF exhibited the best performance in soil Ks estimation in
the tianran wenyanqu Basin of Huang-Huai-Hai Plain (Li
et al. 2010) whereas Zhang et al. (2010) suggested Cosby
PTF as the best method for paddy soils in the lower Yangtze
River Delta. As must be noted that, in the evaluation of PTFs,
all samples must be measured using the same method, i.e.,
attention should also be paid to the homogeneity of the soil
data. Results of Tietje and Hennings (1996) showed that
Vereecken PTF derived from large measurement volume ob-
viously led to poor results when it is applied to data collected
by another method. In our study, core and bulk soil samples
were collected from the two experimental sites using the same
method, and soil samples were analyzed by the identical ap-
proaches. When compared to the result of Cosby et al. (1984)
with Tietje and Hennings (1996), it was found that the in-
volved textual classes of soil samples were also associated
with the prediction performance of PTFs.

4.4 The advantage of artificial neural network in developing
PTFs

As expected, the developed ANN PTF had the best prediction
performance than the 12 well-known PTFs andMLR andMV
PTFs. This was due to the fact that nonlinear information
between Ks and soil basic properties was used in the neural
network, whereas this information was absent in PTFs based
upon linear regressions. This resulted in better prediction
capability of neural network than linear regression provided
that the same input soil data was used. Li et al. (2010) found
that ANN PTF based upon Wösten 1997 had the best predic-
tion precision for the fluvo-aquic soil in the tianran wenyanqu
Basin. ANN-based PTFs also had better behavior in compar-
ison with published program such as Rosetta and HYPRES.
Parasuraman et al. (2006) evaluated the performance of field-
scale ANN PTFs and Rosetta and found that the field-scale
ANN PTFs performed better than Rosetta for the same
dataset, and the ANN PTF employing the boosting algorithm
resulted in better generalization by reducing both the bias and
variance. In another study byMinasny et al. (2004), the neural
network PTF using multistep outflow data reduced about

50 % prediction error when compared with predicted hydrau-
lic functions using Rosetta. Based upon the complete soil
water retention curve (SWRC) dataset, Li et al. (2007) com-
pared three sets of existing PTFs, i.e., Vereecken, Rosetta, and
HYPRES, with the developed PTF, and concluded that the
proposed PTF did a better job in estimating the soil hydraulic
parameters than the existing PTFs. In our study, Rosetta was
not employed as a reference method to take part in the statis-
tical comparison with various reasons. For one thing, only soil
sand, silt and clay content, and bulk density (SSCBD) were
used as input soil data in Rosetta considering our dataset,
while the prediction accuracy generally increased if more in-
put data are used (Schaap and Leij 1998). Thus, the ANN PTF
as derived in our study privileged Rosetta in input data. For
another, PTFs were developed on the basis of databases of a
limited number of soil samples; consequently, they might not
be directly applicable to soil conditions different than those
under which they were developed (Nemes et al. 2003). The
dataset used for constructing Rosetta was derived from soils in
temperate to subtropical climates of North America and Eu-
rope, while the dataset of our study was established on coastal
salt-affected soil which was reclaimed from mudflats with
silty loam the predominant textural class. In other words,
PTFs developed at a large scale were best suited for national
or global modeling, but might be of little use on a farm field
(Bastet et al. 1999).

5 Conclusions

In the coastal salt-affected farming area, soil Ks generally
showed valley distribution in the soil profile and 20–40-cm
soil layer (Ap2 horizon) had the lowest Ks value. Our exper-
iment sites were characterized by low saturated hydraulic con-
ductivity, coarse soil texture and soil porosity, low water re-
tention capacity, high soil salinity, and deficit in soil nutrients.
Using factor analysis, the 16 soil basic properties were
grouped into five factors with 91.05 % of variance explained.
The order of the five influencing factors was soil porosity
component, water retention component, organic matter
component, soil salinity component, and unavailable water
component. Soil salinity had adverse impact on Ks of the
coastal salt-affected farmland, and soil salinity played an im-
portant role in the estimation of Ks when using PTFs.

All the selected PTFs exhibited satisfactory calibration and
prediction performance except Cosby, Puckett, and
CamShiozawa PTFs. Among all selected PTFs, Ahuja and
Vereecken PTFs showed the best appropriateness for soil Ks

estimation in our experimental sites, and Ahuja PTF was iden-
tified as the most convenient method as only effective porosity
was needed in this PTF, and Vereecken PTF was suited for a
wider range of soil textural classes. Our established PTFs
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showed better calibration and validation performance than the
selected well-known PTFs. The MV PTF, which considered
soil salinity in input soil data, was more suitable for the coastal
salt-affected farmland. Using SA, CL, Bd, SOM, and ECe as
input soil data, the PTF based upon ANN was recommended
as the best method to estimate soil Ks in our experimental
sites.

The determination of influencing factors and appropriate
PTF for soil saturated hydraulic conductivity remains more
exploration, as agricultural soil Ks was affected by not only
the nature of soil but also the field management practices, and
to identify a universal PTF suitable for different soil types,
scale of soil sampling, measurement methods as well as tex-
tural classes is impossible. The data used in this study
belonged to only one crop season (maize/cotton) of our exper-
imental sites as cultivated with the given two cropping sys-
tems just for 3–5 years only. Therefore, further efforts were
needed to collect sufficient data and validate whether our sug-
gested PTFs would be equally useful over time and scale, and
in different management systems and land use patterns.
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