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Abstract
Purpose Biochar is considered difficult for microorganisms to
decompose, and volatile organic compounds (VOCs) sorbed
to fresh biochar may affect the survival rate of inoculants or
the structure of soil microbial communities. We tested the
hypotheses that VOCs on fresh biochar may play a vital role
in shaping the structure of soil microbial communities and
determined if they inhibited or supported the growth of
inoculants.
Materials and methods We examined the growth of Bacillus
mucilaginosus in mushroom medium-based biochar (MM-
biochar), corn stalk-based biochar (CS-biochar), and rice
straw-based biochar (RS-biochar) in comparison with peat.
The composition of VOCs before and after the incubation was
characterized by pyrolysis-gas chromatography/mass spec-
troscopy (GC-MS). The structure of a soil microbial commu-
nity incubated in biochar was examined via denaturing gradi-
ent gel electrophoresis (DGGE). Canonical correspondence
analysis (CCA) was applied to reveal the contribution of pH,
K and Na, and diversity indices from VOC fingerprints to
diversity indices in DGGE profiles.
Results and discussion In the present study, all biochars were
able to support B. mucilaginosus at population densities anal-
ogous to peat. Phenols comprise a fraction of the VOCs that
potentially could be toxic to some microbes and inhibit their
growth in the short time. The structure of the inoculated soil

microbial communities in terms of the diversity indices calcu-
lated from 16S ribosomal DNA (16S rDNA) and 18S rDNA
DGGE profiles was greatly affected by biochar. Besides, CCA
revealed the role of VOCs in shaping the structure of soil
microbial communities.
Conclusions VOCs absorbed to biochar, despite their short
life spans, could support the survival of B. mucilaginosus,
demonstrating the potential of biochars as carriers for inocu-
lants. The changes in the soil microbial communities induced
by fresh biochar may not represent the long-term “biochar
effect.” Therefore, future work needs to appreciate mecha-
nisms underlying aged biochar on the structure of soil micro-
bial communities.
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1 Introduction

Biochar refers to organic matter, such as forestry and agricul-
tural residues, pyrolyzed under oxygen deficit conditions
(Lehmann 2007). The existence of Amazonian Dark Earths
(ADEs) was recognized hundreds of years ago, yet only in the
last decade has it received broad interest (Woods and Denevan
2009). While plant residues, mammal and fish bones, ash, and
human excrement are also considered to be associatedwith the
formation of ADEs, biochar is regarded as one of the most
important components (Glaser and Birk 2012).

It has been reported that ADEs contain higher biomass and
microbial diversity in comparison with the adjacent soils (Kim
et al. 2007; Ruivo et al. 2009; O’Neill et al. 2009; Taketani
et al. 2013). Among variables, e.g., current land use, soil
texture, soil mineralogy, soil nutrient contents, or pH, biochar
is proposed as the major driver affecting the bacterial
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community composition (Grossman et al. 2010). Soil micro-
organisms can oxidize biochar thus forming functional groups
which can increase nutrient retention via ion exchange (Glaser
et al. 2002) and, in general, stabilize soil organic matter
(SOM) in ADEs (Glaser 2007). However, given to the com-
plexity of geochemical and biological processes at the large
time scale, it is still challenging to explain the “biochar effect”
on the microbial population in ADEs.

A considerable number of studies have been conducted to
examine the effect of fresh biochar on soil microbial commu-
nities (Jin 2010; Anderson et al. 2011; Chen et al. 2013a;
Watzinger et al. 2013; Ng et al. 2013; Rutigliano et al. 2014).
The structure of soil microbial communities in biochar and
biochar-amended soils showed similarities with that of ADEs
(Sun et al. 2013), but information is still insufficient to con-
clude the impact of various biochars on soil microbial com-
munities, due to the profound dissimilarities between fresh
and aged biochar (Neves et al. 2003).

Volatile organic compounds (VOCs) absorbed to fresh
biochar are very likely influencing the soil microbiologi-
cal and communities after application (Farrell et al. 2013).
We tested the hypothesis that VOCs on fresh biochar may
play a vital role in shaping the structure of soil microbial
communities. Data suggest that some sorbed organic sub-
stances on biochar comprise a fraction of the VOCs that
potentially could be toxic to some microbes and inhibit
their growth (McClellan et al. 2007; Gurtler et al. 2014),
and may shift the structure of soil microbial communities
(Graber et al. 2010). Although VOCs on biochar have
been qualified (Spokas et al. 2011; Hale et al. 2012), their
functions on the structure of soil microbial communities
are not well clarified.

An additional use of biochar may be as carrier for soil
inoculants owing to its porosity and relative high nutrient
content. Although peat and vermiculate have been shown
suitable for growth of inoculants (Brockwell 1977), they are
not abundant in some areas and unearthing them brings about
detrimental environmental effects (Herrmann and Lesueur
2013). Biochar is prepared from abundant raw materials,
sterilized during pyrolysis, and has the capability of adsorbing
substrates needed by inoculants (Pietikäinen et al. 2000).
Charcoal is made under similar process as biochar and ac-
quires identical properties, having been suggested as well
carriers for inoculants (Pietikäinen et al. 2000), but incorpo-
ration of it into soils is too expensive. Agricultural residuals
have been promoted as feedstocks for biochar preparation,
because of their widespread sources (Chen et al. 2013b). It has
been reported that biochar could support growth of inoculants
(Saranya et al. 2011), yet the role of VOCs on the survival of
the inoculants is still unclear. We hypothesized that VOCs
absorbed to the fresh biochar could either inhibit or support
the growth of inoculants, depending on the composition and/
or abundance of the VOCs.

To test our hypotheses, we inoculated Bacillus
mucilaginosus onto three alkaline biochars with similar nutri-
ent contents and examined the changes in VOCs on the fresh
biochar during the inoculation period. In addition, we incu-
bated a soil suspension with fresh biochar and assessed the
structure of the soil microbial communities using denaturing
gradient gel electrophoresis (DGGE). Pyrolysis-gas
chromatography/mass spectroscopy has been suggested as a
valid tool for detection and identification of VOCs derived
from soil, food, compost, biowaste, etc. (Insam and Seewald
2010) and was applied to determine the fingerprints of VOCs
in fresh biochar. Thereafter, the potential influence of physi-
cochemical properties and VOCs absorbed to fresh biochar on
the structure of soil microbial communities was determined by
canonical correspondence analysis (CCA).

2 Materials and methods

2.1 Biochar characterization

The feedstocks used for biochar preparation were corn stalk,
mushroom medium (residues left after mushroom harvest),
and rice straw. Slow pyrolysis was carried out in a traditional
biochar kiln (Jinhefu Ltd., China) at atmospheric pressure for
24 h. The feedstocks at the bottom of the kiln were burned to
initiate the pyrolysis process and maintained at 450 °C for
12 h, respectively. We ground, sieved (2-mm mesh size), and
mixed samples (biochar and peat) prior to the analysis of
physical and chemical properties. Total C, N, S, and O were
determined by Elementar Vario max Analyzer (Vario EL/
micro cube, Elementar, Germany). Available N, Olsen P, and
extractable K were analyzed according to soil agricultural
chemistry analysis (Bao 1999). Ash content was determined
according to GB/T 12496.4-1999, http://down.foodmate.net/
standard/sort/3/5367.html. Volatile matter was determined
according to GB/T 2001–91, http://www.51zbz.net/
biaozhun/61958.html. The micronutrients were analyzed by
inductively coupled plasma-atomic emission spectroscopy
(ICP-AES) (AA-7000, Shimazdu, Japan). The pH was deter-
mined in a soil and water suspension (ratio of 1:10) using by a
compound glass electrode (PHS-4CT, KangYi Instrument Co.
, Ltd., China). Surface areas were determined by the Brunauer,
Emmett, and Teller (BET) (V-Sorb 4800P, Gold Spectrum
Technology Co., Ltd., China) method, and prior to BET
analysis, the samples were degassed for 2 h at 105 °C. The
water-soluble carbon (WSC) was determined using a TOC
analyzer (3100, Shimazdu, Japan). Prior to the analysis, sam-
ples were stirred with distilled water (ratio of 1:20) for 24 h at
room temperature, centrifuged at 10,000 rpm for 10 min, and
filtrated through a 0.45-mm glass fiber. Also, from this extract,
the water-soluble carbohydrates were measured by the
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anthrone method and water-soluble phenols by the Folin
method (Kuwatsova and Shindo 1973).

2.2 Analysis of volatile organic compounds

The composition of VOCs on the biochar was assessed
using pyrolysis-gas chromatography/mass spectroscopy
(GC-MS) (7890A, Agilent Inc., USA). Under high pyrol-
ysis temperatures, secondary rearrangements may occur;
therefore, it is difficult to distinguish whether the VOCs
are breakdown products or originate from the raw material
(Kaal and Rumpel 2009). Thus, we set the pyrolytic tem-
perature at 100 °C to reduce secondary rearrangements.
First, samples were pulse-pyrolyzed under temperatures
starting from 40 to 100 °C at a rate of 20 °C s−1 in quartz
tubes on a Pyroprobe 5200 (CDS Agilent Inc., USA).
When reaching the target temperature, it was kept for
15 s in order to detect products of pyrolysis processing.
Then, pyrolized samples were transferred to a gas chro-
matograph at 280 °C for further separation by passaging
through a heated, fused silica capillary column (30 m×
0.25 mm). The GC oven temperature was increased from
40 °C for 2 min to 295 °C for 30 min at a rate of
8 °C min−1. Mass spectra were obtained from 50 to
1,000 m z−1 at a scan rate of 2,337.1 amu s−1. Peaks were
iden t i f i ed us ing the Automated Mass Spec t ra l
Deconvolution and Identification System (AMDIS V
2.65) and the National Institute of Standards and Technol-
ogy (NIST) mass spectral library (Grandy et al. 2008).

2.3 Inoculation of carriers with B. mucilaginosus

Carriers were ground, sieved, and heated at 60 °C for 10 h.
Peat was transferred into 250-ml Erlenmeyer flasks and
autoclaved at 121 °C for 30 min. Finally, 100 g of the carrier
medium was blended with 3 g of powder of B. mucilaginosus
(a spore-forming plant growth promoting bacterium, pur-
chased from Baoding Valley Biotechnology Co., Ltd., China)
and incubated in 250-ml Erlenmeyer flasks under 28 °C. The
water content was kept at 40 % of water holding capacity
(WHC) by regular weighting and adding sterile water accord-
ing to evaporation loss.

The population of B. mucilaginosuswas enumerated by the
serial dilution plate method. Briefly, 10 g of sample suspen-
sions was treated at 80 °C for 10 min prior to plating to reduce
interference of non-spore-forming bacteria. The suspension
was diluted from 10−8 to 10−11 and plated on petri plates
containing broth medium with four replicates for each treat-
ment. The cultures were incubated under 28 °C, and thereafter,
the number of the inoculant colony-forming units (CFUs) was
counted.

2.4 Setup of microcosms

Soils were sampled from a paddy field in Shenyang Agricul-
tural University, Rice Research Institute, with sterile trowels
and placed into sterile plastic bags, before being transported to
the laboratory. The soil was diluted using sterile water at ratio
1:10 (w/w), and a small amount of sterile glass beads was
added into the mixture. After vigorously shaking and filtering,
equal amounts of the bacterial suspension from the soil were
sprayed onto dried, sterile mushroom medium biochar (MM-
biochar), corn stalk biochar (CS-biochar), rice straw biochar
(RS-biochar), and control soil (sterile indigenous soil). The
water content of all materials was adjusted to 40 % of WHC.
Biochar carriers and the soil inoculated with the bacterial
suspension were transferred into 250-ml Erlenmeyer flasks
and incubated under 28 °C for 30 days.

2.5 DGGE procedures

Structures of bacterial and fungal communities in the soil
suspension-inoculated biochar and indigenous soil were ex-
amined by DGGE. Whole-community DNA was extracted
from 0.5-g samples using a Fast DNA® Spin Kit (Omega
BioTek, USA) according to the manufacturer’s protocol. The
extracted DNA solutions were stored at −20 °C prior to
polymerase chain reaction (PCR). Primers used in PCR am-
plification of 16S ribosomal DNA (16S rDNA) gene se-
quences are reported in Table 1. The PCR-DGGE profiles
were generated using a D-Code system (Bio-Rad Laborato-
ries, Inc.). The 8 % DGGE polyacrylamide gels (37.5:1,
acrylamide/bisacrylamide) were prepared using a 45 to 70 %
gradient (100 % denaturant contains 7 M urea and 40 %
formamide) for separation of 16S rDNA fragments. As for
separation of 18S rDNA fragments, the 10 % DGGE

Table 1 Primers used in this study for characterization of bacterial and
fungal domains based on 16S rDNA and 18S rDNA, respectively

Primer name Sequence (5′−3′) Reference

16S rDNA

338Fa ACGGGGGGACTCCTACGGGAG
GCA

Muyzer et al.
(1993)

534R ATTACCGCGGCTGCTGG

18S rDNA

ITS-2 GCTGCGTTCTTCATCGATGC-3 Gardes and Bruns
(1993)

ITS-1-F CTTGGTCATTTAGAGGAAGTAA

ITS4a TCCTCCGCTTATTGATATGC White et al. (1990)

ITS-F ACGGGGGGCTTGGTCATTTAG
AGGAAGTAA

a GC-clamp (CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGC
ACGGGGGG) was attached to the 5′-end of the primer
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polyacrylamide gels were prepared with gradients ranging
from 15 to 40 %. The DGGE was performed in TAE buffer
at 60 °C and constant voltage of 60 V for 13 h. DGGE profiles
were analyzed using Quantity One software (ver. 4.6.2). After
background subtraction, frames and lanes were constructed on
the DGGE profile, and Gauss Trace Qty was used to calculate
band number, band position, and band intensity for each lane.
The diversity of microbial communities was assessed in terms
of richness S (band number) and Shannon-Wiener index as
expressed by the equation H=−∑ pi ln pi S, where pi=ni/N,
with ni being the intensity of each band of a lane and N the
sum of all band intensities in each lane. Cluster analysis was
applied to represent the similarity of lanes in DGGE profiles,
considering the report of Gauss Trace Qty.

2.6 Statistical analysis

A one-way ANOVA was used to compare the water-soluble
carbon, carbohydrates, and water-soluble phenols and indexes
representing the diversity of DGGE profiles and VOC finger-
prints on biochar. Statistical analyses were conducted by
Tukey’s t test at the 5 % level with SPSS 11.5 (SPSS for
Windows, Version 11.5, USA). The differences between
values at P>0.05 were considered not significantly different.
A binary (1/0) matrix was conducted taking into account the
presence or absence of individual substance in the fingerprints
of VOCs on biochar. The matrix was further analyzed similar
to the fingerprints in DGGE: richness S′ (VOC number) and
Shannon-Wiener index H′. CCAwas carried out to assess the
influence of selected physicochemical properties and VOCs
absorbed to biochar on the structure of soil microbial
communities.

3 Results

3.1 Physical and chemical properties

The mean particle diameter of MM-biochar (104.0 nm) was
similar to that of peat (94.6 nm) and larger than that of CS-
biochar (40.3 nm) and RS-biochar (54.2 nm). Moreover, the
index of surface area and total porosity volume in RS-biochar
was lower than that in CS-biochar, MM-biochar, and even in
peat (Table 2).

The CS-biochar contained considerably more C
(749.3 mg g−1) than RS-biochar (566.1 mg g−1), MM-
biochar (410.0 mg g−1), and peat (224.2 mg g−1) (Table 3).
In addition, MM-biochar had threefold more S than CS-
biochar and RS-biochar. MM-biochar had more ash and vol-
atile matter than CS-biochar and RS-biochar. As for macro-
nutrients and micronutrients, most of them exhibited similar
abundance in all biochars tested, but MM-biochar contained
more S, Mg, and Ca, CS-biochar had more K, and RS-biochar
had more Ni.

3.2 Water-soluble organic compounds

Prior to the inoculation of B. mucilaginosus, water-soluble
carbon concentrations differed markedly between all mate-
rials, in order of RS-biochar (2,100 μg g−1) < peat
(3,800 μg g−1) < MM-biochar (5,200 μg g−1) < CC-biochar
(7,700 μg g−1). After the 20-week incubation, the content of
water-soluble carbon declined significantly in all materials
(P≤0.05, Fig. 1). Before the inoculation, the amount of car-
bohydrates was also similar in CS-biochar, MM-biochar, and
RS-biochar (Fig. 2). The incubation of B. mucilaginosus re-
sulted in decreases in carbohydrates in MM-biochar, and in
CS-biochar and peat, the value was relatively stable, whereas
in RS-biochar, the value increased fourfold (Fig. 2). Prior to
the incubation test, the amount of water-soluble phenol was
lower in peat than in biochar. At the end of the incubation
experiment, the amount of water-soluble phenol had de-
creased in biochar treatments but increased statistically signif-
icant in peat (P≤0.05, Fig. 3).

3.3 Compositions of VOCs absorbed to biochar

At a pyrolysis temperature of 100 °C, more VOCs were
detected in CS-biochar as compared to RS-biochar and MM-
biochar (Fig. 4). The identified compounds corresponding to
the pyrograms are shown in Fig. 5. It was also notable that
most phenols were detected in CC-biochar, while 3-methyl-
phenol and phenol were observed in MM-biochar and RS-
biochar, respectively.

Overall, 41 peaks occurred in CS-biochar, 20 in MM-
biochar, and 25 in RS-biochar (Fig. 6). Peaks detected in
chromatographic profiles were submitted to AMDIS and
NISTsearch. Among these substances, eight compounds were
shared by CS-biochar, MM-biochar, and RS-biochar:

Table 2 Particle size and specific
surface area (BET) of materials

Standard errors are in parenthe-
ses, n=3

Parameter Unit CS-biochar MM-biochar RS-biochar Peat

Mean diameter nm 40.3 (0.3) 104.0 (3.5) 54.2 (0.6) 94.6 (0.9)

Surface area m2 g−1 23.4 (0.2) 11.3 (0.3) 8.9 (0.2) 16.0 (0.2)

Total porosity volume g cm−3 0.25 (0.02) 0.24 (0.01) 0.12 (0.1) 0.32 (0.2)
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digitoxin, aldosterone, vitamin A aldehyde, 1-nonadecene, 1-
tetradecanol, prednisolone acetate, dehydrocholic acid, and
cortisone.

3.4 Survival of B. mucilaginosus on different biochars

Survival rate of the B. mucilaginosus in biochar and peat
during the incubation period is shown in Fig. 7. Recovery of
inoculated cells in all carriers occurred at week 2. After a 4-
week incubation period, the number of CFUs detected from
RS-biochar was higher than in other materials and lowest in
the CS-biochar (P≤0.05). B. mucilaginosus survival declined
in carriers from week 5 to 13, where it reached levels in the
order of about log1010 cfu g−1 in CS-biochar. At the final
sampling time, the abundance of B. mucilaginosus in all

Table 3 Chemical properties of CS-biochar, MM-biochar, and RS-
biochar and peat

Parameter Unit CS-biochar MM-biochar RS-biochar Peat

TC mg g−1 749.3 410.0 566.1 224.2

TN mg g−1 13.4 14.4 13.6 13.6

C/N – 55.9 28.5 41.6 16.5

TS mg g−1 5.9 16.5 5.7 1.9

TO mg g−1 128.1 202.5 112.9 –

Ash mg g−1 155.7 336.6 210.6

VM mg g−1 219.4 332.1 164.5

Avai.N mg kg−1 0.75 0.38 0.22 0.55

Ols.P mg kg−1 2.11 0.19 0.98 0.062

Extrac.K mg g−1 13.4 4.01 8.12 0.77

pH(1:10 Water) – 9.2 7.9 7.9 –

Na mg g−1 0.25 0.45 2.87 –

Mg mg g−1 12.53 42.10 10.36 –

Al mg g−1 2.01 4.99 2.31 –

Si mg g−1 2.07 1.38 0.58 –

K mg g−1 13.41 4.01 8.12 –

Ca mg g−1 5.80 5.87 4.98 –

Fe mg g−1 1.14 3.46 1.84 –

Ba mg g−1 0.06 0.35 0.096 –

Pb mg g−1 0.0002 0.009 0.003 –

Cr mg g−1 0.012 0.011 0.11 –

Mn mg g−1 0.15 0.55 1.54 –

Ni mg g−1 0.007 0.008 0.097 –

Cu mg g−1 0.023 0.031 0.015 –

Zn mg g−1 0.05 0.09 0.12 –

B mg g−1 0.02 0.05 0.04 –

TC total carbon, TN total nitrogen, TS total sulfur, TO total oxygen, VM
volatile matter, Avai.N available nitrogen, Ols.P available phosphorus,
Extrac.K extractable potassium

Fig. 1 Water-soluble carbon (WSC) in biochar and peat before and after
the incubation of Bacillus mucilaginosus. Statistically significant differ-
ences by Tukey’s t test (P≤0.05) are denoted by different lowercase
letters. Values are mean (n=4) ± S.E. (bars). MM-biochar, CS-biochar,
and RS-biochar represent mushroom medium-based biochar, corn stalk-
based biochar, and rice straw-based biochar, respectively

Fig. 2 Carbohydrate in biochar and peat before and after the incubation
of Bacillus mucilaginosus. Statistically significant differences by Tukey’s
t test (P≤0.05) are denoted by different lowercase letters. Values are mean
(n=3) ± S.E. (bars). MM-biochar, CS-biochar, and RS-biochar represent
mushroom medium-based biochar, corn stalk-based biochar, and rice
straw-based biochar, respectively

Fig. 3 Water-soluble phenol in biochar and peat before and after the
incubation of Bacillus mucilaginosus. Statistically significant differences
by Tukey’s t test (P≤0.05) are denoted by different lowercase letters.
Values are mean (n=3) ± S.E. (bars). MM-biochar, CS-biochar, and RS-
biochar represent mushroom medium-based biochar, corn stalk-based
biochar, and rice straw-based biochar, respectively
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materials was lower than that in the first week: CS-biochar
exhibited similar numbers of cells to MM-biochar and peat,

whereas that in RS-biochar was the lowest, less than
log108.8 cfu g−1 (P≤0.05).

Fig. 4 Chromatograms of CS-biochar, MM-biochar, and RS-biochar
analyzed at 100 °C with retention time from 0 to 25 min. Numbers
correspond to pyrolysis products (retention time from 0 to 5min) depicted
in Fig. 5.A,B, andC indicate chromatographic profiles of materials prior

to the incubation ofBacillus mucilaginosus; a, b, and c show profiles after
the incubation. MM-biochar, CS-biochar, and RS-biochar represent
mushroom medium-based biochar, corn stalk-based biochar, and rice
straw-based biochar, respectively

Fig. 5 Selection of pyrolysis products (retention time from 0 to 5 min)
observed in CS-biochar, MM-biochar, and RS-biochar. Compound
numbers refer to the peaks in the spectra of Fig. 4. MM-biochar, CS-

biochar, and RS-biochar represent mushroom medium-based biochar,
corn stalk-based biochar, and rice straw-based biochar, respectively
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3.5 Structure of microbial communities

The 16S rDNA profiles generated by PCR-DGGE revealed
that microbial communities in RS-biochar, MM-biochar, and
CS-biochar clustered similarly. Moreover, RS-biochar and
MM-biochar exhibited even higher degree of similarity
(Fig. 8). In contrast, with the 18S rDNA profiles in soil, RS-
biochar and MM-biochar grouped together while CS-biochar
showed a low degree of similarity (Fig. 9).

Table 4 contains diversity data derived from 16S rDNA and
18S rDNAprofiles in different treatments. Richness estimates,
based on band numbers, were higher in CS-biochar, consid-
ering the 16S rDNA profiles, than in MM-biochar and RS-

biochar, whereas the band number derived from 18S rDNA
profiles in CS-biochar was less than that in MM-biochar or
RS-biochar. The Shannon-Wiener index from 16S rDNA
profiles was lower in CS-biochar than in MM-biochar and
RS-biochar, but that was higher from 18S rDNA profiles in
CS-biochar than in MM-biochar and RS-biochar.

3.6 Canonical correspondence analysis

Table 4 also contains the data representing the diversity of
VOC fingerprints in biochar. In general, the richness S′ (VOC
number) and Shannon-Wiener index H′ were in the following
order: CS-biochar > RS-biochar > MM-biochar.

Chemical properties (pH, Na, and K) were markedly dif-
ferent among the three biochars and were potential variables
influencing the structure of soil microbial communities. Ca-
nonical correspondence analysis (CCA) was conducted
among biochar chemical properties (pH, abundance of Na
and K), Shannon-Weiner index (H) and richness (S) in DGGE

RS-biochar MM-biochar CS-biochar
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Fig. 6 Comparisons of VOC
fingerprints in fresh RS-biochar,
MM-biochar, and CS-biochar
detected by pyrolysis-gas
chromatography/mass
spectroscopy (GC-MS) (retention
time from 0 to 25 min). Presence
and not presence of a substance
are recorded as 0 and 1,
respectively. MM-biochar, CS-
biochar, and RS-biochar represent
mushroom medium-based
biochar, corn stalk-based biochar,
and rice straw-based biochar,
respectively

Fig. 7 Survival of Bacillus mucilaginosus in biochar compared to peat
during a 20-week incubation period. Values are mean (n=4) ± S.E. (bars).
Statistically significant differences by Tukey’s t test (P≤0.05) are denoted
by different lowercase letters. MM-biochar, CS-biochar, and RS-biochar
represent mushroom medium-based biochar, corn stalk-based biochar,
and rice straw-based biochar, respectively

Fig. 8 Dendrograms of 16S rDNADGGEprofiles in the soil suspension-
inoculated soil (indigenous soil), RS-biochar, MM-biochar, and CS-bio-
char. MM-biochar, CS-biochar, and RS-biochar represent mushroom
medium-based biochar, corn stalk-based biochar, and rice straw-based
biochar, respectively
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profiles (both 16S and 18S), and Shannon-Weiner index (H′)
and richness (S′) in the VOC fingerprints. The total variation
can be explained by two axes: 79.8 % in axis 1 and 20.2 % in
axis 2 (Fig. 10).

The index of S (16S) (1.14) was best correlated with
axis 1, and H (16S) (1.44) and H (18S) (3.62) were
profoundly correlated with axis 2. It is regarded that
indices are significantly influenced when their values
exceed 1. Hence, S (16S), H (16S), and H (18S) were
significantly affected variables. The dominant driver on S
(16S) was Na; meanwhile, pH, S′, H′, and K were dom-
inant drivers on H (16S) and H (18S).

4 Discussion

In the present study, all biochars were able to support
B. mucilaginosus at population densities analogous to peat,
indicating the potential of biochar as carriers for inoculants.
Prayogo et al. (2013) also observed that biochar addition
increased abundance of Gram-negative bacteria and
actinomycete by phospholipid fatty acid analysis. In
addition, Watzinger et al. (2013) observed the incorporation
of biochar into actinomycetal PLFA 10Me18:0 and Gram-
negative bacterial PLFAs (16:1ω7c, 16:1ω5c, 18:1ω7c) and
Me16:0 & i17:1ω8 and i17:0 in a 5-week trial.

Without soil incorporation, only the original properties of
biochar should affect the growth of the inoculant, as opposed
to environmental influences such as adsorption of organic
compounds from soils. The mean particle diameter might
affect O2 availability, but their differences are inconsistent
with the changes of B. mucilaginosus numbers in biochar,
e.g., mean particle diameter inMM-biochar is about two times
as much as that in CS-biochar and RS-biochar, but there was
no corresponding changes in abundance of B. mucilaginosus.
Available inorganic nutrients in biochar are also likely to
affect the growth of the inoculant. However, CS-biochar only
supported larger population densities of B. mucilaginosus at
the final incubation time, despite the higher content of avail-
able N, Olsen P, and extractable K, which implies that avail-
able inorganic nutrients were not early limiting factors on the
survival of the inoculant (Fig. 7).

The sharp decline in WSC in biochar and peat not only
indicates the consumption of carbon by B. mucilaginosus but
also explains the decrease in inoculant numbers. The result
was in line with the report that biochar application stimulated
soil microbial activity for only short periods (Rutigliano et al.
2014). Luo et al. (2012) recognized that pyrolysis tempera-
tures influenced WSC in biochar, but our study also empha-
sizes the influence of the raw materials on this parameter.
Even under the same pyrolysis condition, CS-biochar, RS-
biochar, and MM-biochar exhibited differed carbon composi-
tion (ash and volatile matter), which may imply different
pyrolysis degree among these biochars. It is reasonable that
biochar contained fewer carbohydrates in comparison with
peat because of the pyrolyzed process. However, the value
of carbohydrates in RS-biochar increased during the incuba-
tion, which may imply the decomposition of organic matter
insufficiently pyrolyzed in the traditional kiln. Likewise, it has
been reported that a fraction of carbohydrates were detectable
in a fast pyrolysis biochar (Bruun et al. 2012).

In the first 13 weeks of the incubation period, the CFUs of
B. mucilaginosus obtained from CS-biochar were lower than
that from RS-biochar, which seems contradictory to the WSC
concentrations. This phenomenon might be explained by the

Fig. 9 Dendrograms of 18S rDNADGGEprofiles in the soil suspension-
inoculated soil (indigenous soil), RS-biochar, MM-biochar, and CS-bio-
char. MM-biochar, CS-biochar, and RS-biochar represent mushroom
medium-based biochar, corn stalk-based biochar, and rice straw-based
biochar, respectively

Table 4 Diversity indices estimated from DGGE profiles derived from the structure of soil microbial communities in the microcosms after 30 days of
incubation and VOC fingerprints in biochar

Treatment 16S-S 16S-H 18S-S 18S-H GC-MS-S′ GC-MS-H′

CS-biochar 38a (2) 2.9b (0.2) 31b (1) 3.8a (0.2) 41a (3) 3.7a (0.2)

MM-biochar 28b (1) 3.1a (0.1) 39a (2) 3.6b (0.3) 20b (1) 3.0c (0.1)

RS-biochar 26b (2) 3.1a (0.2) 39a (3) 3.2c (0.2) 25b (2) 3.2b (0.3)

Different superscript letters indicate significant differences between treatments (one-way ANOVA, LSD test, P<0.05). Standard errors are in
parentheses, n=3

16S-S richness of 16S rDNA profiles, 16S-H Shannon-Wiener index in 16S rDNA profiles, 18S-S richness of 18S rDNA profiles, 18S-H Shannon-
Wiener index in 18S rDNA profiles, GC-MS-S′ richness of VOCs fingerprints, GC-MS-H′ Shannon-Wiener index in VOCs fingerprints, MM-biochar
mushroom medium-based biochar, CS-biochar corn stalk-based biochar, RS-biochar rice straw-based biochar
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phenols (e.g., phenol and 3-methyl-phenol) detected in CS-
biochar, as their potential toxicity (Fritze et al. 1998; Villar
et al. 1997) could inhibit the growth of the inoculant. Similar-
ly, it was reported that some fast pyrolysis and slow pyrolysis
biochar could inactivate enterohemorrhagic Escherichia coli
O157:H7 in soil (Gurtler et al. 2014). This hypothesis was
further supported by the observation that when VOCs includ-
ing phenols in CS-biochar were consumed by the inoculant
during the incubation, the abundance of B. mucilaginosus in
CS-biochar was higher than that in RS-biochar. Phenols (e.g.,
2-methyl-phenol and phenol) found in MM-biochar and RS-
biochar might be in low abundance and did not exhibit obvi-
ous suppressive effects on the inoculant.

As biochar was selected as the sole medium for the incu-
bation of soil suspension, the original properties of biochar
itself should be considered as influencing the structure of soil
microbial communities, irrespective of the complex interac-
tions between soil and biochar. The structure of the inoculated
soil microbial communities was greatly affected by biochar, in
terms of changes in the diversity indices calculated from 16S
rDNA and 18S rDNA DGGE profiles. As the most profound
differences between biochar were pH, concentrations of Na
and K, and fingerprints of VOCs, these factors were selected
as potential variables influencing the structure of soil
microbial communities and subjected to the CCA. CCA
revealed the contributions of VOCs, pH, and Na as well as
K on the microbial diversity indices, which supports our
second hypothesis that VOCs play a vital role in shaping the
structure of soil microbial communities. Besides, Ng et al.

(2013) found a tight relationship between composition of
carbon and microbial community structure. Thereafter,
Farrell et al. (2013) also noticed a significant change in mi-
crobial community induced by 2 13C-labeled biochars, where-
in Gram-positive bacteria utilized a considerable proportion of
the biologically available fraction of biochar in a short period.

5 Conclusions

The overall data suggest that VOCs absorbed to biochar,
despite their short life spans, could support the survival of
B. mucilaginosus, demonstrating the potential of biochars as
carriers for inoculants. Phenols comprise a fraction of the
VOCs that potentially could be toxic to some microbes and
inhibit their growth in the short time. CCA helped to find the
role of VOCs absorbed to biochar in shaping the structure of
soil microbial communities. The changes in the soil microbial
communities induced by fresh biochar may not represent the
long-term biochar effect as VOCs absorbed to biochar are
likely metabolized by microorganisms over a very short peri-
od. Therefore, future work needs to appreciate mechanisms
underlying aged biochar on the structure of soil microbial
communities.
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