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Abstract
Purpose Climate change is likely to increase both intensity
and frequency of drought stress. The responses of soil respi-
ration (R s) and its components (root respiration, R r; mycor-
rhizal respiration, Rm; and heterotrophic respiration, Rh) to
drought stress can be different. This work aims to review the
recent and current literature about the variations in R s during
the period of drought stress, to explore potential coupling
processes and mechanisms between R s and driving factors in
the context of global climate change.
Results and discussion The sensitivity of soil respiration and
its components to drought stress depended on the ecosystems
and seasonality. Drought stress depressedR s in mesic and xeric
ecosystems, while it stimulated R s in hydric ecosystems. The
reductions in supply and availability of substrate decreased
both auto- and heterotrophic respirations, leading to the tem-
poral decoupling of root and mycorrhizal respiration from
canopy photosynthesis as well as C allocation. Drought stress
also reduced the diffusion of soluble C substrate, and activities
of extracellular enzymes, consequently, limited microbial ac-
tivity and reduced soil organic matter decomposition. Drought

stress altered Q10 values and broke the coupling between
temperature and soil respiration. Under drought stress condi-
tions, Rm is generally less sensitive to temperature than R r and
Rh. Elevated CO2 concentration alleviated the negative effect
of drought stress on soil respiration, principally due to the
promotion of plant C assimilation subsequently, which in-
creased substrate supply for respiration in both roots and soil
microorganisms. Additionally, rewetting stimulated soil respi-
ration dramatically in most cases, except for soil that experi-
enced extreme drought stress periods. The legacy of drought
stress can also regulate the response of soil respiration rate to
rewetting events in terrestrial ecosystems through changing
abiotic drivers and microbial community structure.
Conclusions and perspectives There is increasing evidence that
drought stress can result in the decoupling of the above- and
belowground processes, which are associated with soil respira-
tion. However, studies on the variation in rates of soil respiration
and its components under different intensities and frequencies of
drought stress over the ecosystems should be reinforced.
Meanwhile, molecular phylogenetics and functional genomics
should be applied to link microbial ecology to the process of Rs.
In addition, we should quantify the relationship between soil
respiration and global change parameters (such as warming and
elevated [CO2]) under drought stress. Models simulating the
rates of soil respiration and its components under global climate
change and drought stress should also be developed.

Keywords Drought stress . Global climate change .

Heterotrophic respiration .Mycorrhizal respiration . Root
respiration

1 Introduction

Water is the most important matter for plant growth and
productivity development for terrestrial ecosystems in the
world (Prasolova et al. 2000, 2001; Xu and Chen 2006; Xu
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et al. 2000). Therefore, water availability and drought stress are
intimately linkedwith the terrestrial carbon (C) cycling (van der
Molen et al. 2011). Global climate change is likely to increase
drought stress in many terrestrial ecosystems, which could alter
the global patterns of organic matter production and decompo-
sition (Feyen and Dankers 2009; Xu et al. 2009). Drought
stress is expected to influence the C cycling more strongly in
the future (Knorr et al. 2007). Ecosystem respiration is one of
the largest gross fluxes in the global C cycle and integrates
quite different processes of plant and microbial functions
(Trumbore 2006; Casals et al. 2011). Soil CO2 emission, com-
bined plant–root (R r), and heterotrophic (Rh) and mycorrhizal
respiration (Rm) exceed anthropogenic CO2 emissions by about
10 times (Hanson et al. 2000; Kuzyakov 2006). Because auto-
and heterotrophic activity belowground is largely controlled by
substrate availability, soil respiration is strongly linked to plant
metabolism, photosynthesis, microbes, extracellular enzymes,
and litterfall (Ryan and Law 2005). Therefore, the coupling of
the biological processes of above- and belowground regulates
the response of R s to drought stress.

Climate-change scenarios indicate that many areas of the
world will have much variation in precipitation patterns, with
more frequent extreme rainfall events and longer drought
stress periods for tropical and subtropical regions (Alley
2007; Allan and Soden 2008). Recently, many experiments
have focused on the research meteorological drought stress
affecting the soil CO2 emission across the different biomes.
These studies suggested that drought stress could alter the
relationship between soil CO2 efflux and its (environmental
and biological) driving factors (Lavigen et al. 2004; Ruehr
et al. 2009; van der Molen et al. 2011; Walter et al. 2011; Ford
et al. 2012; Selsted et al. 2012; Signarbieux and Feller 2012).
However, global climate models predict increased tempera-
tures, and CO2 concentration would interact with changes in
precipitation patterns to affect R s. In humid environments,
increased temperatures may enhance R s by stimulating micro-
bial activity, whereas in dry soils, they coincide with or even
contribute to dryer conditions, resulting in an apparent nega-
tive R s response to temperature (Wan et al. 2007). Elevated
CO2 concentration and extended drought stress showed a
positive interaction, and elevated [CO2] can reduce the effect
of drought stress on R s. Thus, the questions are how drought
stress is coupled with soil respiration and how increased
temperature and CO2 concentration regulate the relationship
between drought stress and soil CO2 efflux. Here, we review
the state of understanding of the relationship between drought
stress and the soil respiration, and make some suggestions for
further study in the context of global climate change. The
paper is organized around a few aspects relevant to drought
stress and the soil respiration and its components (Fig. 1).
These include the following: (1) How does drought stress
directly and indirectly influence soil respiration-observed re-
sults? (2) What are the mechanisms for the responses of soil

respiration to drought stress? (3) What is the effect of drought
stress on soil respiration in the context of climate change?

2 How drought stress influence soil respiration-observed
results

2.1 The direct effect of drought stress on soil respiration
and its components

In this paper, the drought stress is defined as precipitation
deficiency deviated from normal conditions with respect to a
percentage of normal rainfall (Joos et al. 2009; Brilli et al.
2011; Signarbieux and Feller 2012) and a period of more than
some particular number of days with precipitation less than
some specified small amount (Walter et al. 2011; Bloor and
Bardgett 2012). We reviewed the studies of effects of soil
water availability on R s, to which drought stress applied.
According to C pools recognized as sources of CO2 efflux,
agents of CO2 production, and locations of CO2 production,
Kuzyakov (2006) suggested that the five sources are the main
contributors to total soil CO2 efflux: (1) basal respiration
derived from decomposition of soil organic matter (SOM),
(2) priming effect induced microbial decomposition of SOM,
(3) microbial decomposition of dead plant remains, (4)
rhizomicrobial respiration produced by microbial decomposi-
tion of rhizodeposits of living roots, and (5) root respiration.
Because it was difficult to identify the process of items 2–4, in
this study, we partition R s into autotrophic respiration (Ra)
including root respiration (R r) and mycorrhizal respiration
(Rm) and heterotrophic respiration (Rh) including items 1–4.

Components of soil respiration followed the different sea-
sonal trends but all were affected by drought stress (Rey et al.
2002; Risk et al. 2012). It is stated that drought stress can
reduce R s ratio in the mesic and xeric ecosystems (Borken
et al. 2006; Joos et al. 2009) (Fig. 2a), while it can stimulate R s

in the hydric ecosystem (Savage and Davidson 2001; Knorr
et al. 2007; Sowerby et al. 2008) (Fig. 2b). For example, soil
respiration may decline by 25–50% in response to modest
water stress (minimumΨs of −0.6 to −0.2MPa) in a balsam fir
ecosystem (Lavigen et al. 2004). The degree of R s reduced
depends on community composition (Talmon et al. 2011;
Breulmann et al. 2012), species richness (Correâ Dias et al.
2010), and the intensity and frequency of drought stress.

Since components of soil respiration have the potential to
respond quite differently to climatological controls, microbial
community composition, and climate change, the impacts of
drought stress on R r, Rh, and Rm are distinctive in different
ecosystems (Fig. 2). The autotrophic component of soil CO2

efflux is dominant and mainly from maintenance respiration
of root, whereas the heterotrophic respiration derived from
microbial respiration is minimized or even ceased during the
drought stress period (Casals et al. 2011; Bulter et al. 2012).
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Overall, R h is more sensitive to drought stress than R a

(Fig. 2a). At the initial stage of drought stress, Rh begins to
decline at the upper soil layers, whereas R r remains stable and
thus increases its relative contribution to total soil efflux
(Unger et al. 2010). However, an extreme drought stress
causes greater reductions in the heterotrophic component of
soil respiration compared with the rhizospheric component
(Scott-Denton et al. 2006). Some studies suggested that the
microbial respiration is more strongly affected than root res-
piration by intensive and long-term drought stress
events(Scott-Denton et al. 2006; Williams 2007; Suseela
et al. 2012), while other researchers found that root respiration
was more sensitive than microbial respiration to water stress
(Lavigen et al. 2004; Carbone et al. 2011). The reasons for
these conflicting experimental results may contribute to that
were run at the different ecosystems and different temporal
measuring scale. Because a thinner film of water coats the soil
particles, diffusion of labile substrates is slowed and the
activity of exoenzymes needed for the decomposition of or-
ganic matter in drier soils is reduced (Suseela et al. 2012).
Therefore, the mycorrhizal respiration rate decreases during a
period of drought stress and is more sensitive to drought stress
than Rh (Fenn et al. 2010). In hydric ecosystems, R s has been
observed to increase as water tables drop and peat begins to
dry out (Brown 1998; Alm et al. 1999; Aurela et al. 2001).
Drying raised air-filled porosity in the soil and increase Rh by
stimulating the microbial activity. However, root associated
respiration (Ra) was concentrated in the uppermost peat layer
and was insensitive to drought stress compared to Rh (Knorr
et al. 2008) (Fig. 2b).

The responses of components of soil respiration to drought
stress intensity are different. Suseela et al. (2012) found Rh
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Fig. 1 Conceptual framework outlining the distinctions among direct
effects of soil water availability (SWA) on soil respiration in situ under
climate change conditions (solid line), the effects of SWA on soil respi-
ration that occur via changes in microbial activity, community composi-
tion and extracellular enzymes dynamics and the indirect effects of

climate on soil microorganisms (dotted lines), and shifts in relationship
between the aboveground and belowground processes. The interaction of
global change drivers (atmospheric N deposition, elevated atmospheric
CO2, and warming) and SWA affects indirectly on the soil respiration
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Fig. 2 Hypothetical variation in soil respiration (Rs) and its components
(root respiration, R r; mycorrhizal respiration, Rm; and heterotrophic res-
piration,Rh along drought stress gradients in a mesic and xeric ecosystem
and b a hydric ecosystem. The vertically dashed lines in the top panel
means the Rh approximate 0 when Ψs≈−14 MPa
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decreased sharply when volumetric soil moisture dropped
below 15% or exceeded 26%, but R h increased more
gradually when soil moisture rose from the lower thresh-
old. In mineral soil, microbial respiration is near zero
when Ψs≈−14 MPa (Manzoni et al. 2012). The responses
ofR r, Rm, and Rh to the time of drought stress and duration are
inconsistent (Lavigen et al. 2004; Carbone et al. 2011;
Gomez-Casanovas et al. 2012). Therefore, it is urgent to
quantify the variation in rates of soil respiration and its com-
ponents under different intensity and frequency of drought
stress in different terrestrial ecosystems. In addition, the effect
of drought stress, especially extreme drought stress, on soil
respiration can persist for 1–9 years. However, recent studies
have always focused on 1–3 years. Therefore, long-term and
continuous measurements are also necessary.

2.2 Drought stress indirect affects through the coupling
of temperature and soil respiration

Respiration of bothmicrobial communities and plant roots can
be sensitive to variations in soil temperature. The sensitivity of
soil respiration to soil water content and soil temperature may
be a function of the proportions of auto- and heterotrophic
components of soil respiration at any given time (Gomez-
Casanovas et al. 2012). Exponential relationships, especially
the Q10—the increase in respiration rates with a 10 °C in-
crease in temperature—have been commonly used to estimate
R s rates with the temperature (Epron et al. 1999; Buchmann
2000; Rey et al. 2002). The coupling of temperature and soil
respiration would be broken by drought stress since drought
stress reduced the diffusion of soluble C substrate and the
extracellular enzymes, consequently, limited the microbial
activity (Manzoni et al. 2012). Soil–water deficit substantially
reduced R s sensitivity to temperature, resulting in a lowerQ10

(Sampson et al. 2007; Jassal et al. 2008; Manzoni et al. 2012;
Rey et al. 2002). The responses of temperature sensitivity of
its components of soil respiration to drought stress are differ-
ent, depending on the specific controlling factors. R r is largely
associated with the physiological response of root to drought
stress. The seasonal variation in root growth with temperature
may explain the difference of Q10 of R r (Boone et al. 1998;
Rey et al. 2002). The growth and death of roots are very
sensitive to drought stress, depending on plant functional
types. C4 plants required the lower root biomass than C3 plants
under the same water stress and have lower Q10 of root-
respiration as well than C3 during drought stress periods
(Zhou et al. 2012). Moisture limitation can suppress microbial
activity regardless of temperature, which should decrease the
temperature sensitivity of Rh (Davidson and Janssens 2006).
The influence of drought stress on response of Rh to temper-
ature depends on seasonal dynamics and soil properties
(Craine and Gelderman 2011).The sensitivity to temperature
of Rm under drought stress conditions is not as significant as

those of R r and Rh. The variation inQ10 of Rm depends on the
presence of mycorrhizal and rhizospheric respiration sources,
as well as on plant development (Moyano et al. 2007; Fenn
et al. 2010).

3 What are the mechanisms for the responses of soil
respiration to drought stress?

3.1 Direct effect of drought stress through soil
microorganisms and extracellular enzymes on soil respiration

Soil organic matter decomposition ultimately contributes very
significantly to soil CO2 efflux and thus to global CO2 emis-
sions (Bond-Lamberty et al. 2004). The role of microbial
population in how SOM decomposition responds to drought
stress with different intensities and durations could be of
paramount importance. The relative contributions of the mi-
crobial functional groups, such as fungi and bacteria, to SOM
decomposition are different, and these groups directly influ-
ence terrestrial C cycling. The factors controlling ecological
aspects of the soil microbial community directly limit the
SOM decomposition. Drought stress not only limits physio-
logical performance, diffusion of microbes, and the diffusion
of nutrients to microbes in the soil pore space but also submits
the microbial community to an important adaptive force.
Furthermore, the limited substrate supply under drought stress
reduces the activity of microbes and diminishes R s (Bardgett
et al. 2005; Suseela et al. 2012). Apart from the effect of
drought stress on R s through limiting microbial activity, the
change of microbial community composition also may influ-
ence R s. The response of Rh to water availability change
depends on the relative importance of fungi in the decomposer
community. As the soil dries, conditions shift from favorable
to soil fauna and bacteria to more favorable to fungi and
actinomycetes (Freckman 1986), and the microbial commu-
nity structure may become dominated by drought stress-
tolerant species (Williams and Hallsworth 2009; Wallenstein
and HE 2011; Manzoni et al. 2012). Shifting from microbial
communities to fungal dominant communities improves the C
stability of the physical environment and generates a more
protected and stable C (Bardgett et al. 2005; Manzoni et al.
2012). Alternatively, Chowdhury et al. (2011) found that
drought stress did not significantly affect the microbial com-
munity abundance (bacteria and fungi), suggesting that large
differences in soil respiration were due to modulation of the
activity per cell. In addition, mobility of microbes can be
limited by drought stress due to the lack of soil water. The
SOM decomposition rate of mineral soils containing the bulk
of organic matter is limited by microbes’ ability to access due
to drought stress (John et al. 2005).

Extracellular enzymes are the “proximate agents of organic
matter decomposition,” and its activity is generally used to
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infer shifts in microbial demand for C (Henry 2012).
Microbial extracellular enzyme production is related to mi-
crobial activity as well as soil physico-chemical properties
(Sowerby et al. 2005). While an ecosystem encounters
drought stress, two steps are required for microbes to process
the material wrapped by a thinner film of water coats—first a
physical step of aggregate disruption, and then possibly a
second step in which exoenzymes break up the polymers
(Navarro-García et al. 2011). Thus, the slowed diffusion of
labile substrates and the reducing activity of extracellular
enzymes would limit the decomposition of SOM. During the
period of drought stress, the activity of enzymes associated
with C cycling, such as xylanse, β-cellobiosidase, and β-
glucosidase, would reduce and thus slow the decomposition
of litters (Kardol et al. 2010; Sanaullah et al. 2011). Drought
stress also may affect the production of extracellular polymer-
ic materials, which bridge between microbes and their sub-
strates. It allowsmicrobes to survive in dry soils and can either
promote (Chenu and Roberson 1996) or constrain C diffusion
to microbes (Holden et al. 1997). The activity of enzymes
under drought stress conditions is also affected by plant suc-
cessional stages in which the composition and activity of
microbial communities change and evolve as a consequence
of changes in the physico-chemical status of soils. Less en-
zyme activities and soil respiration reduction were observed in
soils with mature plant covered than in degraded soils under
drought stress (Fioretto et al. 2009). However, Freeman et al.
(1996) found the elevated enzyme activities without an asso-
ciated increase in microbial respiratory activity in a peatland
ecosystem, suggesting that drought stress conditions influence
peatland mineralization rates through a direct stimulation of
existing enzymes, rather than through a generalized stimula-
tion of microbial metabolism. Although these studies of in situ
microbial communities can partially account for the mecha-
nisms in physiological and community ecology of soil respi-
ration under drought stress, molecular phylogenetics and func-
tional genomics should be applied to link microbial ecology to
the process of R s. Combinations of new molecular methodol-
ogy and genomics may link microbial phylogeny with func-
tion in R s studies and provide significant insights into plant–
microbe interactions in the R s.

3.2 The regulation of plant growth and composition
and belowground C allocation to soil respiration
under drought stress

Seasonal variations in soil respiration and its auto- and het-
erotrophic components have often been accounted for by
changes in soil temperature and moisture (Davidson and
Holbrook 2009; Phillips et al. 2011; Taneva and Gonzalez-
Meler 2011). However, evidence from recent studies sug-
gested that recent and current plant photosynthesis influences
soil respiration and its components at different time scales in

both forests and grasslands (Rey et al. 2002; Ruehr et al. 2009;
Flanagan 2009; Fenn et al. 2010; Kuzyakov and Gavrichkova
2010; Moyano et al. 2012). Because the responses of the
components of soil respiration to photosynthesis are different,
the effect of drought stress on soil respiration through reduced
plant growth, productivity and variation in vegetation compo-
sition would be distinctive. The response of Rm to photosyn-
thetic activity is more sensitive than R r and Rh (Moyano et al.
2007). Photosynthesis supplies C substrate for root metabo-
lism and growth, and a decrease in substrate supply can
decrease R r within days (Bowling et al. 2002; Bardgett et al.
2005; Ruehr et al. 2009). Under drought stress condition, low-
productivity grassland ecosystem has lower decomposition
rate of root litters, influencing the microbial communities, as
well as the ratio between fungal and bacterial biomass and
patterns of soil enzyme activity (Breulmann et al. 2012).
During drought stress periods, photosynthesis declines and
stored nonstructural carbohydrates are used to maintain living
tissues so that R r is temporarily decoupled from the canopy
photosynthesis (Högberg et al. 2001).

Apart from the reduced coupling between canopy photo-
synthesis and the belowground process, the life types of
plants, vegetation cover, and structure and community com-
position also influence the response of soil respiration to
drought stress. Soil respiration rate decreases from wet to
dry seasons in the shallow-rooted ecosystem, whereas deep-
rooted forests maintain substantial soil respiration during the
dry seasons (Davidson et al. 2000). Talmon et al. (2011)
suggested that drought stress decreased the rates of soil respi-
ration not only by lowering biological activity but also by
drastically reducing shrub cover and in heterogeneous ecosys-
tems, such as Mediterranean and deserts shrublands. Thus,
there would be a major impact on R s by feedbacks through
change in vegetation structure. Long-term drought stress may
affect soil respiration by altering the community composition,
particularly the presence of legume species, which affect soil
organic C (SOC) dynamics and below-ground microbial pro-
cesses, especially via roots. However, the regulating role of
plant diversity in the response of R s to drought stress is still
poorly understood. In general, higher plant diversity with
higher productivity may partly counteract the impact of
drought stress (Craine et al. 2001). The reduction of the N
concentration of organic matter in more diverse plant commu-
nity may negatively affect both Ra and Rh (Correâ Dias et al.
2010). Therefore, how changes in plant community diversity
can affect soil respiration needs to be studied. In addition,
drought stress also has effects on soil respiration through
feedback influence of soil nitrogen (N) pools since the
microbial processes that regulate soil N availability are
sensitive to short-term variations in soil moisture. The
increased duration and intensity of drought stress are usu-
ally linked to decreasing N mineralization and inorganic N
fluxes (Borken and Matzner 2009).
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In general, drought stress leads to an increase in C alloca-
tion to roots, although the magnitude and duration of drought
stress responses differ among the studies (Gilgen and
Buchmann 2009; St. Clair et al. 2009; Jentsch et al. 2011).
However, some studies found that drought stress may de-
crease C flow (that is, C assimilate by photosynthesis, and
carbon input into soil by litter and root excretion, and
decomposed by microbes) from the roots to the soil compart-
ments. Symbiotic fungi and many free-living microorganisms
depend on the C transfers from roots, and microbial CO2

production is consequently reduced (Palta and Gregory
1997; Gorissen et al. 2004). In addition, about half of the soil
CO2 efflux is thought to originate from recent (i.e., several
days old) photosynthates (Högberg et al. 2008) and is rapidly
transferred specifically to mycorrhizal fungi and other decom-
posers. However, drought stress decreases C assimilation and
increases the residence time of recently assimilated C in leaf
biomass, and thereby prolonging the time course of the recent
C allocation from the plants to the soil (Högberg et al. 2008;
Ruehr et al. 2009). Therefore, R s probably have a temporary
decoupling with C allocation under drought stress conditions.

3.3 Substrate supply and litters affect soil respiration

Microbial-mediated decomposition of SOM ultimately makes
a considerable contribution to soil respiration, which is typi-
cally the main source of CO2 arising from terrestrial ecosys-
tems (Yuste et al. 2011). The effect of drought stress on the
rates of SOM respiration and the sensitivity to temperature has
been discussed above. Here, we focus on the issue about how
drought stress indirectly influences soil respiration through
shaping the supply and availability of substrate. Although
drought stress can alter R r because of reduced photosynthates
supply (Domec and Gartner 2003; Carbone et al. 2011;
Gomez-Casanovas et al. 2012), it is not known to what extent
this substrate for microbial respiration is derived from younger
soil organic C, such as dead and/or older labile SOC free from
the physical breakup of soil aggregates. In general, with water
contents between desiccation stress (usually<−1.5 MPa
matric potential) and field capacity (about −0.1 MPa matric
potential), variation in drought stress is thought to affect
microbial respiration primarily through reducing the diffusion
of organic solutes (Grant and Rochette 1994; Sowerby et al.
2005; Davidson and Janssens 2006). As substrate availability
largely depends on soil water content, this would explain why
drought stress dampened the increase in respiration at higher
temperatures. In the case of microbial respiration, substrate
levels decreased during the drought stress periods as litters
from the plants declined. The much weaker response or more
resistance to drought stress of rhizospheric respiration is also
likely related to their dependence on substrate supply. Among
components of R s, the mostly affected one by substrate supply
under drought stress conditions is Rm, which exhibited a

strong relationship with the photosynthetic activity of the
previous day (Bardgett et al. 2005; Ryan and Law 2005;
Unger et al. 2010, 2012; Heinemeyer et al. 2012).

Litter decomposition not only supplied the substrates for
microbial activity but also emitted CO2 to the atmosphere.
Drought stress slowed leaf litter C and N decomposition by
more than 50% compared to regular weather conditions,
mainly by strongly decreasing the decomposition rate con-
stants and also depending on litter quality (Sanaullah et al.
2012). The CO2 derived from the litter decomposition and
contributed approximately 3–4% of the total CO2 efflux dur-
ing drought stress periods may decline by 74%, indicating that
drought stress would have a stronger effect on the CO2 release
from litter than on the belowground-derived CO2 efflux (i.e.,
SOM and root respiration) (Joos et al. 2009; van Straaten et al.
2010). Theis et al. (2007) found in an alpine grassland that
during the drought stress period the CO2 efflux from litters
and top soil horizons were close to zero due to the desiccation
of these layers. Soil respiration was obviously originating
from the deeper soil horizons with different temperature and
moisture regimes. However, recent radiocarbon data sug-
gested that respiration of young C substrates, such as those
respired by living roots, would be less affected by drought
stress than the microbial decomposition of older substrates in
the litter layer in the forests (Borken et al. 2006) and grassland
ecosystems (Xiang et al. 2008). In addition, plant litter quality
also controls litter decomposition, apart from water availabil-
ity. How the influence of the interaction of drought stress and
quality on plant litter decomposition contributes to the R s is
not well known. During the period of drought stress, some
fluctuations in soil respiration occurred independently of mi-
crobial growth and abiotic interactions, such as desorption in
combination with solvation status and conformational chang-
es of enzymes (Alarcón-Gutiérrez et al. 2010).

4 Effect of drought stress on soil respiration in the context
of climate change

4.1 The effect of the interaction of elevated temperature, CO2

concentration, and drought stress on soil respiration

Soil respiration and gross primary productivity (GPP) are the
most important flux between the atmosphere and terrestrial
ecosystems in terms of C quantities (Schimel 1995;
Schlesinger and Andrews 2000). Much evidence suggested
that temperature (Davidson and Janssens 2006; Aanderud
et al. 2013), soil water content (Davidson et al. 1998;
Metcalfe et al. 2011), and GPP (Davidson and Holbrook
2009; Janssene et al. 2001; Martin et al. 2012) are three
common drivers for respiration. As atmospheric [CO2] con-
tinues to rise due to fossil fuel combustion and land use
change, global mean surface temperature is projected to

104 J Soils Sediments (2014) 14:99–109



concurrently increase by 1.1–6.4 °C towards the end of this
century (Solomon et al. 2007). Increased temperature may
directly accelerate Rh and Ra by stimulating the activities of
soil microbes and plant roots (Rustad et al. 2001; Melillo et al.
2002) and indirectly stimulate Rh by stimulating N minerali-
zation, primary production, litter production, and therefore
substrate and N availability (Stromgren and Linder 2002;
Pendall et al. 2004). Recent model simulation suggested the
magnified Ra responses to temperature increasing with the
depressed Rh responses across the whole range of soil tem-
perature anomaly (0–8 °C) under extended drought stress
conditions (Shen et al. 2009). In general, under drought stress,
warming can cause further drying of the ecosystem and hence
act to further reduce R s (Selsted et al. 2012). However, the
study manipulated on a temperate spruce suggested that Rh

and Ra were affected to the same extent by soil drought stress
and warming, and if summer drought stress become more
server in the future, warming reduced C loses will likely to
offset by reduced soil efflux during summer drought stress
(Schindlbacher et al. 2012).

Elevated CO2 often accelerates R s and R a through direct
stimulation on photosynthetic activity (Nowak et al. 2004;
Sarah Bachman et al. 2010), root growth, litter production,
and rhizospheric deposition (Zak et al. 2000; Norby and Luo
2004) or indirect impacts on litter chemistry, and microbial
community composition (Pendall et al. 2004; Wan et al. 2007;
Pregitzer et al. 2008) and enzyme activity (Kandeler et al.
2006). Importantly, an elevated CO2 environment may also
increase plant water use efficiency and thus soil water contents
due to the reduction in stomatal conductance and alleviate the
impact of drought stress (Dermody et al. 2007; Leuzinger and
Körner 2010). Elevated CO2 may reduce the impact of sum-
mer drought stress on R s, depending on seasonal variation
(Selsted et al. 2012). However, the studies about interactive
effects of multiple factors on R s and its components under the
scenarios of upcoming drought stress are lacking, especially
the studies about underlying mechanisms. Therefore, further-
more work is needed to establish the comprehensive research
and evaluate the integrated impact of multiple factors on soil
respiration under drought stress in different ecosystems.

4.2 The impact of drought stress legacy on soil respiration

The legacy of drought stress can regulate the responses of soil
respiration rates to rewetting events in terrestrial ecosystems
through changes in abiotic drivers and in microbial commu-
nity structure (Gordon et al. 2008; Bapiri et al. 2010; Evans
andWallenstein 2012; Göransson et al. 2013). Upon rewetting
dry soils, within minutes, the respiration rates increase to a
magnitude of 10–20-fold that in the continually moist soil.
Wood et al. (2001) attributed this drastic response of R s during
rewetting to the stress response of microbes to suddenly
increase in moisture and soil water potential: Microbes must

expend energy to regulate osmotic pressure to their microen-
vironment and release solutes before osmotic pressure bursts
cells. However, after reaching peak respiration rates, the res-
piration rate in continuous moist soils then remain at rates
higher than those in the drought stress-treated soils
(Göransson et al. 2013). The soil respiration rates would
change less in response to dry-rewetting pulses in the experi-
enced extreme drought stress patterns, due to the adaptation of
soil microbial communities, than those that experienced am-
bient rainfall events (Evans and Wallenstein 2012). However,
these studies was operated generally with a coupled field-
laboratory experiment and persisted in short term. It is un-
known how the drought stress history with long-term modifi-
cations of the timing and intensity of drought stress events
affect soil respiration after rewetting events through altering
microbial community composition and function. We also do
not understand whether microbial adaptation to precipitation
regimes can affect soil respiration. In general, long-term or
severe drought stress may cause the extensive root mortality.
Root mortality reduces mycorrhizal fungal abundance by
severing their access to root C (Högberg et al. 2001;
Landesman and Dighton 2011) and the quantity of root exu-
dates (Clarholm 1981), which can suppress microbial growth
following rainfall, resulting in declines of Rh. However, we
have no direct evidence to prove that root respiration will
change less in the experienced drought stress in response to
rewetting events than that experienced ambient rainfall events.
During the peak drought stress, the plants with mycorrhizas
had greatest resistance to drought stress (Davies et al. 1993;
Hughes et al. 2008). Therefore, we assume that the soil
respiration with mycorrhizas will change less in the experi-
enced drought stress in response to rewetting events than that
experienced ambient rainfall events.

5 Conclusions

There are a lot of evidence that drought stress, characterized
by the severity, duration, and frequency, are expected to
influence the C cycling more strongly in the future. Soil
respiration is one of the most important biological processes
in C cycling. Drought stress reduces rates of soil respiration in
mesic and xeric ecosystems through decoupling between the
above- and belowground processes and increases soil respira-
tion in hydric ecosystem through stimulating soil microbial
activity. However, intensity and frequency, duration of
drought stress impacts on the soil respiration are not well
understood, particularly in terms of the synergetic controlling
of driver factors. In addition, how the responses of R r, Rm, and
Rh to drought stress are also not well understood, due to the
difficulty of partitioning the components of soil respiration.
Therefore, further work should focus on how the responses of
soil respiration and its components to different drought stress
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scenarios and how the controlling factors of soil respiration
function on the same temporal scale. The next challenge is to
establish the relationship between soil respiration and global
change parameters (such as warming and elevated [CO2]
under drought stress. It is worth pointing out that the models
of simulating the rates of soil respiration and its components
under global climate change and drought stress should be
developed.
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