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Abstract
Purpose The aims of this study were to isolate an alkaliphilic
humus-reducing bacterium, investigate the fastest microbial
reduction of humus analog as affected by different cultivation,
and examine its ability for iron(III) oxide reduction and or-
ganochlorine pollutants (OCPs) degradation.
Materials and methods A strain of pure culture, designated
as HN01, was isolated from cassava dreg compost using
anaerobic enrichment procedure with glucose as the electron
donor and anthraquinone-2,6-disulphonate (AQDS) as the
sole terminal electron acceptor. The isolate strain was iden-
tified using phenotypic and phylogenetic analysis. Iron(III)
oxides and OCPs were chosen as potential electron accep-
tors. Strict anaerobic techniques and sterile conditions were
applied throughout the incubation experiments, purged with
O2-free N2 for 15 min. The concentration of reduced AQDS
and Fe(II) was then quantified using a UV–vis spectropho-
tometer. The concentration of OCPs was analyzed by gas
chromatography with a micro-electron capture detector. Cell
number was determined by direct plate counting on aerobic
Luria–Bertani medium agar medium at pH 9.

Results and discussion (1) Strain HN01 was identified as
Kocuria rosea, and the AQDS reduction by HN01 was
observed in NaCl concentrations below 12 % (w/v) (opti-
mum, 10 %) and pH ranges of 6.0–10.0 (optimum, 9.0) with
sucrose as electron donor at 30 °C; (2) glucose, sucrose,
methanol, ethanol, glycerol, and acetate were the favorable
electron donors for AQDS reduction by strain HN01; (3) the
strain had the ability of reducing iron(III) oxides in the
presence of sucrose at pH 9.0 and its Fe(III)-reducing
capacity ranked as goethite (α-FeOOH) > lepidocrocite
(γ-FeOOH) > haematite(α-Fe2O3); and (4) the strain could
effectively dechlorinate p,p′-DDT (1,1,1-trichloro-2,2-
bis(4-chlorophenyl) ethane), and the dechlorination rate
reached 71.3 %.
Conclusions This is the first report of a strain of K. rosea
capable of reducing AQDS, iron (III) oxides, and p,p′-DDT,
which extends the diversity of the alkaliphilic and
halotolerant humus/Fe(III)-reducing bacterium associated
with dechlorination. The strain may have the potential to
be used for bioremediation of an anoxic alkaline wastewater
or site contaminated with OCPs.
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Reductive transformation

1 Introduction

The decay of soil and sedimentary organic matter yields
organic compounds with a high molecular weight, termed
humic substances (humus) (Stevenson 1994). Humus can
serve as the terminal electron acceptor for microbial respi-
ration coupling with organic compound oxidation, and this
biochemical process driven by microbes has been recog-
nized as the main pathway for humus reduction in soils
and sedimentary environments (Gralnick and Newman
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2007; Lovley et al. 1996; Roden et al. 2010; Scott et al.
1998). The microbe-reduced humus can transfer electrons to
insoluble minerals and refractory organics, such as iron(III)
oxides (Liu et al. 2007; Wolf et al. 2009), azo dyes (Hong et
al. 2007; Rodrigues da Silva et al. 2012), nitroaromatic
compounds (Bhushan et al. 2006), and chlorinated organic
contaminants (Cao et al. 2012; Wang et al. 2009). Therefore,
there is a growing interest in humic-reducing microorgan-
isms (HRMs) and humus-mediated reduction of extracellu-
lar substrates in recent years (Lovley et al. 1996; Gralnick
and Newman 2007; Roden et al. 2010; Wu et al. 2012).

It is well recognized that HRMs are widespread in nature;
more than a hundred HRMs have been isolated from a broad
diversity of environments, mainly with circumneutral pH
(Lovley et al. 2004; Wu et al. 2009). However, there are
few reports on alkaliphilic HRM and the process that it
can mediate substrate transformation under alkaline con-
ditions. Only relatively recently have researchers turned
their attention to alkaliphilic HRM, and several alkaliphilic
humus-reducing bacteria were isolated, including Alkaliphilus
peptidofermentans, Bacillus pseudofirmus, Corynebacterium
humireducens, Natronincola ferrireducens, and Natronincola
peptidovoranshave (Ma et al. 2012; Wu et al. 2011; Zhilina et
al. 2009a, b).

The solubility of humus is strongly pH dependent, and a
high pH would increase the fraction of dissolved humus that
is accessible to bacteria. However, in alkaline environments,
iron species are generally insoluble, solid-phase minerals;
humus-mediated reduction of iron(III) oxides will become
significantly higher compared with circumneutral pH levels.
The mineralogy and geochemistry of alkaline systems are
complex and cannot be simply deduced from those studies
conducted under near or below neutral pH conditions. For
instance, Fe(III) reduction had not been recognized to occur
beyond a pH of 9.0 before alkaliphilic bacteria capable of
Fe(III) reduction was isolated from alkaline environments
(Gorlenko et al. 2004; Ma et al. 2012; Ye et al. 2004).
Therefore, the finding of alkaliphilic HRM is helpful in
thoroughly understanding the mechanisms of electron trans-
ferring between cells and extracellular electron acceptors.
Moreover, these strains might play an important role in
organic matter oxidation, element biogeochemical cycles,
and pollutant detoxification in alkaline environments
(Hobbiea et al. 2012; Wu et al. 2012).

We conducted a study on an isolate from a cassava dreg
composting reactor that was continuously reacting for
35 days and in mesophilic and maturation phase of pH
8.5–9.0 to determine the isolate's possible humus-reducing
activity, optimum humus reduction conditions, and alterna-
tive electron acceptors for its anaerobic metabolism. The
humus analog anthraquinone-2,6-disulfonate (AQDS) was
used in the enrichment and reduction experiments. The
specific objectives of this study were to: (1) characterize

and identify the new isolate, alkaliphilic strain HN01; (2)
determine its humus-reducing activity and optimum re-
ducing conditions; (3) explore its potential capacity of
reducing iron(III) oxides (goethite (α-FeOOH), lepidocrocite
(γ-FeOOH) or hematite(α-Fe2O3)) and degrading organo-
chlorine pollutants (OCPs) under alkaline conditions. To our
knowledge, this is a new research on describing the capacity
of Kocuria rosea to reduce humus, Fe(III), and OCPs.

2 Materials and methods

2.1 Chemicals

α-FeOOH was synthesized according to the procedures of Li
et al. (2008). Preparation of γ-FeOOH and α-Fe2O3 followed
the method described by Li et al. (2007a). The hexane of high-
performance liquid chromatography grade and the anhydrous
sodium sulfate of analytical grade were purchased from
Guangzhou Chemical Reagent Co. (China). AQDS of
98.6 % purity was purchased from Sigma-Aldrich (Tokyo,
Japan). γ-Hexachlorohexanes (γ-HCH; 98.2 %), 1,1-(2,2,2-
trichloroethylidene)bis[4-chloro-benzene] (p,p′-DDT;
98.6 %), and 1-chloro-4-[2,2,2-trichloro-1-(2-chlorophenyl)
ethyl]benzene (o,p′-DDT; 98.6 %) of analytical grade were
obtained from Accu Stangard (New Haven, USA). A mixture
of standard solution containing p,p′-DDT, p,p′-DDE, p,p′-
DDD, o,p′-DDT, o,p′-DDE, and o,p′-DDD, with 10.0 mgl−1

per compound was purchased from Labor Dr. Ehrenstorfer,
Germany. All of the chemicals were used as received, without
further purification.

2.2 Enrichment and isolation

According to previous studies, quinones serve as electron-
accepting moieties when microorganisms transfer electrons
to humus, and AQDS has been used extensively as a humus
analog in studies on humus for microbial respiration
(Lovley et al. 1996; Scott et al. 1998). Thus, we selected
AQDS to replace humus in the enrichment and reduction
experiments. The inoculum source for enrichment was the
cassava dreg compost in mesophilic and maturation phase of
pH 8.5–9.0. Primary enrichments were initiated in anaerobic
culture serum bottles (purged with O2-free N2 for 15 min,
sealed with a butyl-rubber stopper and aluminum cap)
containing mineral salts medium (MSM) added with
5 mmoll−1 sucrose (electron donor) and 0.5 mmoll−1 AQDS
(electron acceptor). The preparation of MSM was performed
according to Wu et al. (2011). The bottles were cultured at
30 °C in the dark. Positive enrichments for AQDS reduction
were qualitatively determined by the color change of the
aqueous solution from transparent to red. The primary en-
richments were then successively transferred to fresh

424 J Soils Sediments (2014) 14:423–431



medium three times. Finally, the mixed solutions were seri-
ally diluted and plated onto aerobic Luria–Bertani medium
(LB medium: peptone, 10 gl−1; NaCl, 10 gl−1; yeast extract,
5 gl−1; pH 9.0). Afterwards, distinct colonies were picked
and streaked three times on agar plates, and each colony was
tested for AQDS reduction in sterilized anaerobic medium.
The single colony of interest was stored in a glycerol tube at
−20 °C.

2.3 Phenotypic and 16S rRNA analysis

The motility of cells was tested by the hanging drop method.
Physiological–biochemical characteristics were determined by
the standard methods (Buchanan and Gibbons 1974). The salt
tolerance of strain HN01 was determined on LB medium (pH
9.0) by varying NaCl concentrations from 0 to 15% (w/v). The
16S rRNA gene of the isolate was amplified by PCR as
described in Li et al. (2007b). The obtained sequences were
then aligned with related 16S rRNA sequences fromGenBank
data libraries (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the
Ribosomal Database Project (http://rdp.cme.msu.edu/
seqmatch). Corresponding nucleotide sequences of represen-
tatives of the genus Kocuria were aligned using the program
CLUSTAL X (Thompson et al. 1997). The phylogenetic tree
was constructed with the software packageMEGAversion 4.0
using the maximum-parsimony and neighbor-joining method
according to Kimura 2-parameter model and bootstrap analy-
ses based on 1,000 replicates.

2.4 Batch anaerobic incubation experiments

All reduction and degradation experiments were conducted
in 25.2-ml serum bottles under anaerobic and sterile condi-
tions (Wu et al. 2011), performed in three sets, and all the
bottles were incubated in the dark. Resting cell suspension
of HN01 was used throughout the experiments. The suspen-
sion was aerobically prepared in LB medium at 30 °C and
then harvested at late log phase by centrifugation (8,000×g
at 4 °C for 10 min). Pellets were then washed twice and
resuspended in sterile fresh MSM to an optical density of
about 1.5 (λ=600 nm).

To test the pH range for AQDS reduction, each bottle
containing 20 ml MSM with 1 ml cell suspension, 0.5 mmol
l−1 AQDS, and 5 mmoll−1 sucrose was adjusted to pH 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, or 11.0. The pH was maintained
using 20-mmoll−1 phosphate buffer (for pH 5.0, 6.0, 7.0,
8.0) or carbonate buffer (for pH 9.0, 10.0, 11.0) (Wu et al.
2011). The medium without cells served as the control set.

For testing the effect of NaCl% (m/v) on AQDS reduction
by HN01, mixed cultures containing AQDS (1 mmoll−1),
cell suspension (1 ml), sucrose (5 mmoll−1), and carbonate
buffer (20 mmoll−1; pH 9.0) were supplied with NaCl%
(m/v) of 0.5, 1, 2, 3, 5, 7, 10, 12, 15, or 20 %.

To investigate the effect of alternative electron donors on
AQDS reduction, seven possible organic substrates were
tested, including acetate, pyruvate, glycerol, methanol, eth-
anol, glucose, and sucrose, with pH 9.0 and without NaCl%.
The medium without cells served as the control set.

Under favorable conditions (i.e., pH, NaCl%, and elec-
tron donor) for AQDS (1 mmoll−1) microbial reduction by
strain HN01, we investigated the cell growth coupling with
AQDS reduction by the variation of active cell numbers.

The ability of strain HN01 to use different electron ac-
ceptors was studied in the serum bottles containing 1 ml cell
suspension, 20 ml MSM, 5 mmoll−1 of sucrose (electron
donor), carbonate buffer (20 mmoll−1; pH 9.0), and one of
the following substrates as an electron acceptor: 5 mmoll−1

of Fe(III) oxides (α-FeOOH, γ-FeOOH, or α-Fe2O3) and
1 mgl−1 of organochlorine pollutants (γ-HCH, o,p′-DDT, or
p,p′-DDT). Two control assays were performed under the
same conditions: an abiotic set without bacterial cells and a
biotic set without the addition of sucrose.

2.5 Chemical analysis

Triplicate bottles were used for chemical analysis at each
sampling interval. The concentration of the reduced AQDS
(AH2QDS) was quantified with a UV–vis spectrophotome-
ter (UV-3600, Japan) at a wavelength of 386 nm (pH 5.0–
6.0 sets) or 408 nm (pH 7.0–11.0 sets), which was due to the
different AH2QDS UV–vis spectra at different pH levels
(Liu et al. 2007; Wu et al. 2012). The total Fe(II), including
dissolved and sorbed Fe(II), was quantified photometrically
at 510 nm after being extracted using 0.5 moll−1 HCl for
1.5 h and reaction with 1,10-phenanthroline. Dissolved
Fe(II) was determined by removing the mineral and sorbed
Fe(II) from the aqueous phase using a 0.22-mm syringe
filter and then assaying the filtrate by colorimetric method
(Li et al. 2010).

For analysis of organochlorine compounds (γ-HCH, o,p′-
DDT, p,p′-DDT, and their intermediates), the sample bottles
were immediately added with 20 ml hexane, and the mix-
tures were extracted using the ultrasonic bath as described in
Cao et al. (2010). The quantification of the organochlorine
compounds was carried out with an Agilent 6890
GC/mECD gas chromatograph and AT7693 auto sampler.
The separation was performed on a fused silica capillary
column (Aligent 1909/J-413; 30 m×320 μm×0.25 μm).
The carrier gas was the high pure N2 (99.999 %) with a
flow of 1.0 mlmin−1 and the make-up gas at 60 mlmin−1.
The injector and detector temperatures were 250 and 300 °C,
respectively. The GC oven temperature was programmed as
follows: initial temperature of 100 °C held for 1 min, in-
creased to 160 °C at a rate of 100 °Cmin−1, then increased
to 270 °C at a rate of 10 °Cmin−1. Samples (1 μl) were
injected in splitless mode. GC peaks were identified by
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accurate assignment of retention times for each standard;
quantitative calculation was conducted with the external
standard method. The organic chlorine compounds were
quantitatively determined by comparing the area under
each peak with the area under the standard peak. The
resulting correlation coefficients for the calibration curves
of the compounds were all greater than 0.995. The detec-
tion limits of quantification of target compound ranged
from 0.01 to 0.04 μgl−1.

3 Results

3.1 Identification of the strain

The vegetative cells of isolated strain HN01 were coccus,
0.5–0.7 μm in diameter. The cells occurred singly or in
pairs, were nonmotile, and stained Gram positive in both
the exponential and stationary growth phases. After 48-h
incubation on an LB agar plate, the colonies were uniformly
round, 0.5–1.0 mm in diameter, red, wet, and with a distinct
smooth morphology.

The optimum growth temperature for the strain ranged
from 15 to 30 °C, and no growth was observed at 45 and
below 5 °C. Microbial growth was observed between pH 6.0
and 10.0, and the optimum pH was 8.5–9.0. The strain can
survive at NaCl concentrations of 0–12 % (optimum, 0–
7 %), but not in 13 % NaCl. Strain HN01 had more similar
characteristics with K. rosea ATCC 186T compared with
other closely related species, was oxidase-positive and gel-
atin negative, and produced acid from glucose and fructose,
but not from glycerol and lactose. No activity was detected
for nitrate reduction, lysine decarboxylase, and arginine
dihydrolase (Table 1). In terms of overall phenotype char-
acteristics, the isolate should resemble Kocuria. Further-
more, chemotaxonomic characteristics of the strain and the
topology of the 16S-rRNA-based phylogenetic tree (Fig. 1)
clearly indicated that the nearest phylogenetic neighbors
(sequence similarity values ranged from 96.0 to 99.7 %) of
strain HN01 were members of the genus Kocuria. The strain
had the highest similarity of 99.6 % with K. rosea D40
(JN192402). Consequently, the strain was identified as K.
rosea strain HN01, which was deposited in the China Gen-
eral Microbiological Culture Collection Center (CGMCC
no. 5810).

3.2 AQDS reduction

Here, we investigated the optimal cultivating conditions for
AQDS reduction by the isolate HN01 and if it can grow
during anaerobic metabolism. The color change of the cul-
ture liquid from transparent to yellow or red was a good
indicator for AQDS reduction.

The AQDS reduction by HN01 using sucrose as the
electron donor varied at different pH levels (Fig. 2). After
5 days of incubation, as the color of the solution changed,
the AH2QDS concentrations in the treatments of AQDS +
HN01 + sucrose at pH 7.0, 8.0, 9.0, and 10.0 increased to
0.10, 0.15, 0.18, and 0.13 mmoll−1, respectively. In contrast,
only less than 0.038 mmoll−1 AH2QDS was formed in the
treatments at pH 5.0, 6.0, and 11.0, respectively. The reduc-
tion in the abiotic control without cells was negligible (data
not shown). The results indicated that the pH ranges for
AQDS reduction by strain HN01 were within 7.0–10.0, and
the optimum pH was 9.0. To the best of our knowledge, only
few alkaliphilic bacteria capable of reducing humus and
quinone have been reported. The identification of strain
HN01 expands the species that can rapidly reduce AQDS
at high pH levels.

Additionally, the reduction of AQDS was studied at
various increasing NaCl% (v/w) of the cultivation medium
(i.e., from 0.5, 1, 2, 3, 5, 7, 10, 12, 15, and 20 %). We found
that the concentration of AH2QDS was increased with the
increasing of NaCl% content from 0 to 12 %. However, the
reduction content was decreased while the NaCl level great-
er than 12 %, and no reduction was measured at the 20 %
NaCl level (Fig. 3). These results showed that: NaCl% was
also a main factor influencing the reduction of AQDS by
strain HN01, and the optimum NaCl concentrations for
AQDS reduction were between 7 and 12 %.

Seven types of organic substrates were tested as the
alternative electron donors for AQDS reduction. As shown
in Fig. 4, the production of AH2QDS increased with time in
the incubations with acetate, glycerol, methanol, ethanol,

Table 1 Characteristics that can be used to differentiate strain HN01
from type strains of closely related species

Characteristic 1 2 3 4 5

Catalase activity + − + ND +

Oxidase activity + + + − −

Hydrolysis of gelatin − − − ND −

Nitrate reduction + + + − +

Lysine decarboxylase − − − ND +

Arginine dihydrolase − − + ND ND

Carbon source utilization

Citrate utility − − − ND ND

Glucose + + + − +

Fructose + + + ND +

Glycerol − − + ND +

Lactose − − + − +

Aesculin + − − − ND

1 K. rosea HN01, 2 K. rosea ATCC 186T (data from Reddy et al.
2003), 3 K. polaris CMS76orT (Reddy et al. 2003), 4 K. aegyptia
YIM70003 (Zhou et al. 2008), 5 K. flava HO-9041T (Zhou et al.
2008), + positive, − negative, ND not determined
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glucose, and sucrose, while no AH2QDS was detected
in the incubations with pyruvate. The concentration of
produced AH2QDS ranked as an order of glucose >
sucrose > ethanol > methanol > glycerol > acetate. In
the biotic (HN01 + AQDS) and abiotic (AQDS + organic
substrates) controls, nearly no AH2QDS was detected
(data not shown). These results indicated that glucose,
sucrose, ethanol, methanol, glycerol, and acetate could
serve as favorable electron donors for AQDS reduction
by strain HN01, and the reduction rate depended on the
type of organic substrates. Organic substrate such as
pyruvate was not available as an electron donor with
respect to AQDS reduction.

In the sucrose-fed incubation (pH 9.0; NaCl, 10 %),
significant microbial growth and AQDS reduction were
observed over 5 days. From Table 2, there was no obvious
increase in active cell number of HN01 in both AQDS +
HN01 + sucrose and HN01 + sucrose treatments, which
indicated that HN01 cannot ferment sucrose and conserve

energy to support microbial growth coupling AQDS
reduction.

3.3 Iron(III) oxides reduction

The Fe(III)-reducing activity of strain HN01 was ex-
plored with three types of iron(III) oxides: α-FeOOH,
γ-FeOOH, and α-Fe2O3. After 25 days (Fig. 5), no
Fe(II) was formed in the abiotic control without active
cells, and less than 0.06 mmoll−1 of Fe(II) was ob-
served in the two biotic controls (without sucrose and
with dead cells). In contrast, the total Fe(II) concentra-
tion in the active tests using α-FeOOH, γ-FeOOH, or
α-Fe2O3 as the electron acceptor reached 0.16, 0.087,
and 0.066 mmoll−1, respectively. The results suggested
that (1) Fe(III) reduction by HN01 was a biological
process because it required both active cells and su-
crose, (2) all the three types of iron(III) oxides can be
reduced by the strain with sucrose as the electron donor,
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and (3) the reduction rate of α-FeOOH was the highest,
followed by γ-FeOOH and α-Fe2O3.

3.4 p,p′-DDT biodegradation

Figure 6 shows the anaerobic degradation of three types of
organochlorine pollutants by strain HN01 with sucrose as
the electron donor at pH 9.0. After 25-day incubation, the
concentration of p,p′-DDT in the controls lacking sucrose
(biotic control) or active cells (abiotic control) remained
almost unchanged, demonstrating that p,p′-DDT was persis-
tent in the absence of microbial activity of HN01, and the
chemical reduction of p,p′-DDT by sucrose was negligible.
In contrast, p,p′-DDT was significantly degraded in the
active treatments, and the degradation rate reached 71.3 %.
These results indicated the overall success of the biodegra-
dation process of p,p'-DDT by HN01. However, as there
was no decrease of γ-HCH and o,p'-DDT in all related
treatments, it was suggested that strain HN01 cannot

perform γ-HCH/o,p′-DDT transformation involving anaer-
obic metabolism.

It was reported that DDT firstly degrades to DDD (an-
aerobic biotransformation product) or DDE (Cao et al.
2012). The GC analysis during the incubation period
showed no p,p′-DDE was detected, while a variable amount
of p,p′-DDD was quantified as 0.34 mgl−1 at 10 days, and
the concentration decreased to 0.21 mgl−1 at the end of
incubation (Fig. 7). This indicated that p,p′-DDT was firstly
dechlorinated to p,p′-DDD but not p,p′-DDE in the treat-
ments of p,p′-DDT + HN01 + sucrose. The total priority
pollutants (p,p′-DDTs; i.e., p,p′-DDT, p,p′-DDE, and p,p′-
DDD) decreased more than 60 % after 25 days of incuba-
tion, suggesting the overall success of the bio-dechlorination
process of p,p′-DDT by HN01.

4 Discussion

Microorganism-mediated electron transfer between electron
donors inside the cells and extracellular substances has been
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methanol (Meth), ethanol (Eth), and glycerol (Gly). The experiments
were conducted in the medium not added with NaCl and at pH 9.0, and
were performed under anaerobic conditions at 30 °C in the dark. Error
bars represent standard deviation of the mean (n=3)

Table 2 Active cell numbers in the AQDS + sucrose + HN01 treatments during a 5-day incubation period; biotic sets without AQDS served as
control. The initial concentration of AQDS and cells were 1.0 mmoll−1 and 1.8×107cellsml−1

Incubation period (days) AQDS + sucrose + HN01 Sucrose + HN01

AH2QDS (mmoll−1) Cell number (107 cells ml−1) Cell number (107 cells ml−1)

0 0.026±0.004 1.80±0.009 1.79±0.010

1 0.131±0.029 1.54±0.009 1.54±0.006

2 0.381±0.019 1.38±0.009 1.38±0.005

3 0.509±0.015 1.33±0.011 1.33±0.008

4 0.558±0.026 1.21±0.002 1.22±0.005

5 0.679±0.022 1.16±0.005 1.16±0.004

Values are means of three experiments ± standard deviation
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recognized as a significant biochemical process in anoxic
soils or sediments (Lovley et al. 1996, 2004; Hernandez and
Newman 2001; Jiang and Kappler 2008). Various sub-
stances, including minerals, electrodes, humus, soluble met-
al ions, and organic pollutants, can serve as the terminal
electron acceptor for microbial anaerobic metabolism
(Gralnick and Newman 2007). To date, the subject of extra-
cellular reduction in neutral environments has been most
thoroughly explored through studies concerning the reduc-
tion of humus and iron minerals. Only relatively recently,
however, have researchers turned their attention to
alkaliphilic humus/Fe(III)-reducing microorganisms and re-
lated process under alkaline conditions, and only a few
strains have been isolated from natural or artificial alkaline
environments (Hobbiea et al. 2012; Zhilina et al. 2009ab).

According to Ulukanli and Diğrak (2002), alkaline-
adapted microorganisms can be classified into two groups,

alkaliphiles and alkalitolerants, the former requiring actually
alkaline media for growth and the optimum growth above
pH9; the latter can grow at pH values more than 9 or 10 but
the optimum pH at around 7 or less. Strain HN01 could get
growth at pH of 6–10 and obtain optimum growth at pH 9;
thus, it was classified as alkaliphiles. Less than five
alkaliphilic strains (alkaliphiles) capable of reducing extra-
cellular substances have been reported, and the strains in-
clude A. peptidofermentans (Zhilina et al. 2009a),
Anaerobranca californiensis (Gorlenko et al. 2004), B.
pseudofirmus (Ma et al. 2012), Bacillus sp (Pollock et al.
2007), Corynebacterium humicreducens (Wu et al. 2011).

Among the factors influencing the microbial reduction of
humus or Fe(III), types of electron donors are considered to
be one of the most important factors (Lovley et al. 2004; Ma
et al. 2011). Organic acids and sugars are usually used to
study the microbial reduction of humus. Among them, ace-
tate is the most important electron donor in many sedimen-
tary environments (Lovley et al. 2004), but only partial
humus-reducing bacteria can utilize it, while sugars might
be the most effective electron donors according to our recent
studies (Ma et al. 2012; Wu et al. 2011). For example, Ma et
al. (2012) tested the effect of electron donors on AQDS
reduction by B. pseudofirmus MC02, and the experimental
results showed that the extent to which the AQDS reduction
varied as a sequence of glucose > sucrose > lactate >
glycerol > citrate, and acetate could not be utilized for
AQDS reduction by the strain. The concentration of pro-
duced AH2QDS by C. humireducens ranked as an order of
sucrose > acetate > lactate > ethanol > formate, and citrate,
propionate, and glycerol were not available electron donors
with respect to AQDS reduction (Wu et al. 2011). Seven
possible organic substrates could serve as alternative electron
donors for AQDS reduction by K. rosea HN01 in this study
with a sequent effect in the order of glucose > sucrose >
ethanol > methanol > glycerol > acetate, and pyruvate was
not associated with AQDS reduction. The physical and chem-
ical characteristics of Fe(III) are the main factors which influ-
ence Fe(III) reduction rate by Fe(III)-reducing microbes (Liu
et al. 2001; Roden and Zachara 1996; Wu et al. 2010). Con-
sistent with the previous reports, the reduction of iron(III)
oxides by K. rosea HN01 was consistent with their surface
area and crystalline property, ranking as α-FeOOH > γ-
FeOOH > α-Fe2O3; Among these Fe(III), α-Fe2O3 reduction
proceeded with the most difficulty, probably due to its
smallest surface area (29.4 m2g−1); α-FeOOH and γ-
FeOOH are with similar surface areas (120.93 and
115.44 m2g−1), whereas α-FeOOH's crystal size (41.9 nm)
is extremely larger than γ-FeOOH (13.7 nm), and this is likely
the reason for the different Fe(III) microbial reduction rates.

The newly isolated strain HN01 belonged to the genus
Kocuria, which is taxonomically dissected from the genus
Micrococcus to accommodate phylogenetically distinct
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actinobacteria (Stackebrandt et al. 1995) and composed of
18 species: K. rosea (the type species), Kocuria aegyptia,
Kocuria atrinae, Kocuria carniphila, Kocuria flava,
Kocuria gwangalliensis, Kocuria halotolerans, Kocuria
himachalensis, Kocuria koreensis, Kocuria kristinae,
Kocuria marina, Kocuria palustris, Kocuria polaris,
Kocuria rhizophila, Kocuria salsiccia, Kocuria sediminis,
Kocuria turfanensis, and Kocuria varians (Bala et al. 2012;
Li et al. 2006; Liu 2011). Among them, there are more than
five strains capable of growing under alkaline and saline
conditions, including K. aegyptia, K. atrinae, K. flava, K.
turfanensis (Zhou et al. 2008), K. halotolerans (Tang et al.
2009), K. koreensis (Park et al. 2010), K. marina, K. polaris,
and K. sediminis (Bala et al. 2012). Compared with these
alkaline-adapted microorganisms, K. rosea has much more
potential applications in the field of environment protection.
As a strain of environmental origin, K. rosea has been
reported to be capable of decolorization of malachite green,
azo, triphenylmethane, and industrial dyes (Parshetti et al.
2006, 2010) and also active in feather degradation (Coello
and Vidal 2002). In our study, we found the new anaerobic
metabolism of K. rosea, which was capable of effectively
reducing extracellular soluble substrates (AQDS; p,p′-DDT)
and insoluble iron(III) oxides under extreme alkaline condi-
tions. The reducing pathway was proposed as: electrons
transferred from organic substrates to extracellular sub-
strates by a series of electron carriers inside the cells; in this
biochemical process, extracellular substrates (AQDS,
iron(III) oxides, p,p′-DDT), as the terminal electron accep-
tors, were reductive transformed or degraded into reducible
form, coupling with the oxidation of organic substrates,
which served as the electron donor.

5 Conclusions

A novel halotolerant, alkaliphilic humus-reducing bacteri-
um, designated as HN01, was isolated from a cassava dreg
composting reactor in mesophilic and maturation phase of
pH 8.5–9.0. The strain was a Gram-positive, facultatively
anaerobic, nonfermentative, nonmotile, coccus-shaped bac-
terium and was identified as K. rosea HN01 according to
phylogenetic analysis based on 16S rRNA gene sequences.
The AQDS reduction by strain HN01 was observed at NaCl
concentrations below 12 % (w/v) (optimum, 10 %) and pH
levels of 6.0–10.0 (optimum, 9.0) with sucrose as electron
donor at 30 °C. Glucose, sucrose, methanol, ethanol, glyc-
erol, or acetate could also serve as favorable electron donors
for AQDS reduction. Coupling with sucrose as the electron
donor, the strain could effectively transfer electrons from
active cells to extracellular iron(III) oxides and p,p′-DDT.
This was the first report that a strain of the Kocuria genus
was involved in AQDS/Fe(III) reduction and p,p′-DDT

dechlorination under anaerobic alkaline conditions. Such
findings explore the new environmental functions of the
Kocuria genus and also provide opportunity for the devel-
opment of bioremediation of alkaline wastewater and other
organic-contaminated environments containing humus.
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