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Abstract
Purpose Methane-oxidizing bacteria (methanotrophs) bio-
logically consume and consequently affect the concentration
of atmospheric methane (CH4), the second most prominent
greenhouse gas, and therefore play critical roles in the
mitigation of global warming effect. Long-term fertilization
often affects the methanotrophic community and CH4 oxi-
dation in various soils. Here, the immediate effects of nitro-
gen (N), phosphorus (P), and potassium (K) amendments on
the CH4 oxidation activity and methanotrophic community
structure were evaluated.
Materials and methods Paddy soil samples were collected
from the Taoyuan Experimental Station of the Chinese
Academy of Sciences in central Hunan Province of China.
A laboratory-based incubation experiment was conducted to
investigate the immediate effects of N, P, and K amend-
ments on the methanotrophs in soil. The CH4 oxidation rates
and methanotrophic activities were determined by measuring
the dynamic changes of CH4 concentration in the incubation
system. The methanotrophic abundance and community
changes in all of the seven treatments with and without

nutrients addition were studied using real-time PCR and de-
naturing gradient gel electrophoresis, respectively.
Results and discussion All of the N, P, and K treatments
significantly decreased the CH4 oxidation activities. Com-
pared with the control, the P and K amendments significant-
ly increased the methanotrophic population size, but the N
treatments have no effect on the methanotrophic abundance.
A negative correlation was found between methanotrophic
activity and methanotrophic abundance. We suggested that
methanotrophic activity may not be inferred through the
pmoA gene copies, especially in the short-term simulation
experiments. Investigation of the methanotrophic population
size and diversity is not enough to evaluate the soil CH4 sink
accurately.
Conclusions We concluded that the additions of N, P, and K
reduce the activity but enhance the abundance of methano-
trophs in a Chinese paddy soil through a short-term incuba-
tion experiment. Additionally, we found that the CH4

oxidation activity could be completely inhibited by Cl−

toxicity. Our results implied that caution should be exercised
in the types and amounts of fertilizers, especially KCl in
agricultural systems to control the instantaneous increase in
CH4 emission from the field.

Keywords Chloride toxicity . Fertilizer . Methane
oxidation . Methanotrophs . Nutrient element . pmoA .

Real-time PCR

1 Introduction

Soils are an important sink in the global budget of atmo-
spheric methane (CH4), which is the second most prominent
greenhouse gas, contributing roughly 20 % to the observed
global warming (IPCC 2007). Methane-oxidizing bacteria
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(methanotrophs), which are ubiquitous in various soils
(Bodelier et al. 2000; Reay and Nedwell 2004; Zhou et al.
2008a, b; Kolb 2009; Zhang et al. 2010; Semrau 2011; Lü et
al. 2012; Zheng et al. 2012), can consume CH4 with oxygen
to produce CO2 for energy generation, and they utilize the
CH4 carbon for generating new biomass (Conrad and Donald
2007). Methanotrophs are obligate aerobes and are classified
into two groups (types I and II) differing in physiology,
phylogeny, morphology, and biochemistry characteristics
(Hanson and Hanson 1996). Given their critical roles in buff-
ering the global warming effect, a growing body of research is
targeting the methanotrophic community structure, their CH4

oxidation activity, and their responses to environmental fac-
tors (LeMer and Roger 2001; Dumont et al. 2006; Kolb 2009;
Bodelier 2011; Zheng et al. 2012).

The ecological distribution, diversity, and CH4 oxidation
activity of methanotrophs are affected by soil characteris-
tics, such as pH, temperature, moisture, and land use (King
1997; Börjesson et al. 1998; Knief et al. 2003; Horz et al.
2005; Mohanty et al. 2007; Menyailo et al. 2008; Singh et
al. 2010; Zheng et al. 2012). Chemical fertilizers have been
intensively used globally to meet the growing food demands
because of continued population growth (Snyder et al.
2009). However, the use of fertilizers in agricultural systems
often negatively affects the potential of soils to act as a CH4

sink, which leads to elevated CH4 concentrations in the
atmosphere (Seghers et al. 2005).

As a major nutrient element controlling biological pro-
ductivity in terrestrial systems, nitrogen (N) also has an
important function in CH4 oxidation. However, there is still
no consistent point of view concerning methanotrophic
communities under N fertilizer applications. The main-
stream viewpoint presents that N application is inhibitory
(Steudler et al. 1989; Hütsch et al. 1994; Reay and Nedwell
2004), whereas other studies reported stimulatory effects
(Bodelier et al. 2000; Yang et al. 2011) and no effects on
methanotrophs (Dunfield et al. 1995; Dan et al. 2001). On
the other hand, phosphorus (P) fertilizers were suggested to
have an apparent effect on microbial composition and bio-
mass (He et al. 2008; Liu et al. 2012), as well as on CH4

production and oxidation activity (Lu et al. 1999; Conrad
and Klose 2005). Furthermore, potassium (K) amendment
seems to stimulate the methanotroph population in rice field
soil (Babu et al. 2006).

A clear distinction was found between the short- and
long-term effects of fertilization (Hütsch 2001). For in-
stance, the short-term application of N fertilizers results in
an immediate inhibition of CH4 consumption because of
competition for methane monoxygenase (MMO) (Schimel
2000). In the long-term application, however, N fertilizers
alter the methanotrophic composition, resulting in inhibited
CH4 oxidation (Hütsch 2001; Seghers et al. 2005). Many
studies have determined the effect of long-term fertilization

on methanotrophs in field conditions (Seghers et al. 2003,
2005; Gulledge et al. 2004; Zheng et al. 2008). However,
few reports have assessed the short-term effects of fertiliza-
tion on methanotrophic activity or community (Jang et al.
2011), especially investigations on methanotrophic activity
and communities under short-term nutrient additions.

In the present study, we determined the CH4 oxidation
activity of a Chinese paddy soil to the immediate addition of
N, P, and K through a short-term, laboratory-based incuba-
tion experiment. The community structure of methanotrophs
in the soil incubated was also studied using real-time PCR
and denaturing gradient gel electrophoresis (DGGE). The
objectives were to detect and compare the immediate effects
of N, P, and K amendments on CH4 oxidation activity and
methanotrophic community structure in a short-time incu-
bation system.

2 Materials and methods

2.1 Experimental soil

Soil samples (0–20 cm in depth) were collected from a
nonfertilized plot in a long-term fertilization experimental
field at the Taoyuan Experimental Station (28°55′ N, 111°
26′ E) of the Chinese Academy of Sciences in central Hunan
Province of China. The description of the station is available
in Zheng et al. (2008). Soil was sieved through a 2-mm
mesh to remove fine roots and large organic debris and was
stored at 4 °C prior to the incubation experiment. The
selected soil characteristics are listed in Table 1.

2.2 Methane oxidation

The soil incubation experiment was conducted according to
the method described by Zheng et al. (2012). Briefly, 22 g of
fresh soil (equivalent to 20 g dry weight) was transferred
into a 250-mL culture serum bottle. An empty bottle (no soil
added) served as blank to measure the gas tightness of
bottles. Then, 3 mL of aqueous N [as (NH4)2SO4 and urea],

Table 1 Selected phys-
icochemical properties
of the tested soil

aThe data of pH, soil
organic matter, total ni-
trogen, available phos-
phorus, and potassium
were reported previous-
ly (Zheng et al. 2008)

Item Value

pH (H2O) 4.94a

Clay content (%) 30.5

Silt content (%) 53.5

Sand content (%) 16.0

Soil organic matter (g/kg) 29.2

Total nitrogen (g/kg) 3.53

Available phosphorus (mg/kg) 19.1

Available potassium (mg/kg) 47.1
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P (as NaH2PO4 and KH2PO4), and K (as KCl and K2SO4)
was uniformly added into the corresponding bottles using a
10-mL syringe, and the chemicals and soil samples in bottles
were carefully mixed by hand. After addition of solutions, the
amounts of the N, P, and K were 150, 220, and 332 mg/kg dry
weight, respectively (fertilizer levels were widely adopted in
practical agriculture) (Table S1, Electronic supplementary
material). Sterilized water (3 mL) was applied as the zero
nutrient control. Each treatment contained 21 culture serum
bottles for 7 sampling times. The bottles were sealed with
thick butyl rubber stoppers and covered with aluminum caps.
All bottles were supplemented with CH4 at an initial concen-
tration of approximately 11 μLL−1 (ppm) and incubated at
25 °C in the dark. After incubated for 0, 24 (12 for P treat-
ments and its control, the same as below), 48 (36), 96 (60),
144 (108), 240 (204), and 336 (324)h, three culture serum
bottles for each treatment were randomly taken out and used
for analyzing the CH4 concentrations, respectively.

The CH4 concentration was determined by extracting
1 mL of gas samples from each bottle and measured using
a gas chromatograph (Agilent 6820, Agilent Technologies)
equipped with a flame ionization detector. The carrier gas
for the chromatograph was N2 (30 mLmin−1), and the in-
jector, oven, and detector temperatures were 100, 80, and
180 °C, respectively. The flame gases, including H2 and
compressed air, were introduced at 20 and 30 mLmin−1,
respectively. At the end of incubation, the soil samples at
336 (324)h were collected for DNA extraction and subse-
quent real-time PCR analysis.

2.3 DNA extraction

Soil DNA was extracted using the FastDNA® Spin Kit for
Soil according to the manufacturer’s instructions. The con-
centration and quality of the extracted DNA were analyzed
through spectroscopic analysis (NanoDrop Technologies).
The DNA samples were diluted 10-, 100-, and 1,000-fold
to test the possible inhibitory effects of humic substances via
PCR. Consequently, the 10-fold diluted DNA samples (i.e.,
10–20 ngμL−1) were selected as templates.

2.4 Real-time PCR

Methanotrophic abundance was analyzed based on the copy
numbers of pmoA gene, which encode subunits of particu-
late methane monooxygenase, using real-time PCR, which
was performed on an iCycler iQ5 thermocycler (Bio-
Rad). Specific primer pairs A189 and mb661 (Costello
and Lidstrom 1999; Holmes et al. 1999) were used to amplify
the methanotrophic pmoA gene fragments. Amplification was
performed using SYBR® Premix Ex Taq™, as described by
the suppliers (TaKaRa). The detailed real-time PCR assay was
performed through the protocols described by Zheng et al.

(2010). All PCR assays were performed at least in triplicate.
Data analysis was carried out using iCycler software (version
1.0.1384.0 CR).

2.5 Denaturing gradient gel electrophoresis

The extracted DNA was used as templates to produce PCR
products for subsequent DGGE. The primers A189-gc and
mb661 were selected to amplify the methanotrophic pmoA
gene fragment. The composition of the PCR mixtures and
the touchdown thermocycling conditions were described
previously (Zheng et al. 2008). The PCR products were
loaded onto 6 % (w/v) polyacrylamide gel (37.5:1, acrylam-
ide/bisacrylamide) with a denaturing gradient of 40–60 %,
where 100 % denaturant contains 7 M urea and 40 % (v/v)
formamide. Electrophoresis was conducted at 60 °C, start-
ing at 150 V for 10 min and then at 120 V for 6 h. The gel
was then stained for 30 min in SYBR green gold nucleic
acid gel stain (1:10,000) and photographed with a GBOX/
HR-E-M (Gene Company Limited, Syngene, UK).

2.6 Statistical analyses

The CH4 consumption was plotted using SigmaPlot soft-
ware (version 10.0). Statistical and correlation analyses
were carried out using SPSS software (version 15.0). One-
way ANOVA was used to determine significant differences
in potential CH4 oxidation rates and pmoA gene copy numb-
ers among the seven treatments at the P<0.05 level.

3 Results and discussion

A clear reduction in head-space CH4 concentration was
found in the treatments containing soil during the 2-week
incubation (Fig. 1). Overall, CH4 was consumed faster in the
controls than in the nutrient amendments irrespective of N,
P, and K. More CH4 (83.6 %) was oxidized in the controls
and the NaH2PO4 treatment (82.9 %) than in any of the
other treatments (5.4–74.6 %). The highest methane oxida-
tion rate (MOR) was found in the control, followed by the
treatments of NaH2PO4 and KH2PO4 during the first 144 h.
Then, the MORs in all of the treatments decreased (Fig. 2),
although the MORs in the treatments of (NH4)2SO4 and urea
increased gradually during the 96th to 144th hour (see
Fig. 2). Overall, the addition of N, P, and K inhibited the
potential CH4 oxidation activity to different extents (Fig. S1,
Electronic supplementary material).

3.1 Effect of nitrogen

For the N treatments, a significant inhibition of CH4 con-
sumption in acidic rice field soil was observed in the two N
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treatments, (NH4)2SO4 and urea. Similarly, an immediate
reduction in CH4 oxidation rate of acidic grassland soil by
adding (NH4)2SO4 was reported previously (Tlustos et al.
1998). N is typically considered an inhibiting factor of
CH4 consumption in soils (Bodelier and Laanbroek 2004;
Aronson and Helliker 2010). The competitive inhibitor of
MMO and the toxicity of intermediates and end products

(i.e., hydroxylamine and nitrite) were together attributed to
decreased CH4 oxidation activity (Schnell and King 1995;
Hütsch 2001). However, Yang et al. (2011) reported that an
appropriate amount of NH4

+ addition can enhance the CH4

oxidation in the landfill cover soil due to the NH4
+/CH4

ratio (< 0.1). Apparently, much higher NH4
+/CH4 ratio

(about 760) may result in the inhibition of CH4 oxidation
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in this study. In addition, compared with the urea treatment,
(NH4)2SO4 showed stronger inhibition of CH4 oxidation.
Similarly, in the rice microcosm, the CH4 oxidation rates
were much lower in the NH4

+ than that in the urea treatment
(Shrestha et al. 2010). Collectively, our results indicated that
the additions of N fertilizers inhibited CH4 consumption in
acidic rice soil.

3.2 Effect of phosphorus

As a major limiting nutrient for plant growth, P fertilizers
are used in intensive agricultural systems to overcome soil P
deficiency and thus achieve higher global food production
(Richardson et al. 2011). In the current study, the amend-
ments of P also negatively affected CH4 oxidation, although
the inhibited strength was lower than the N amendments
caused. This result differs from the study by Conrad and
Klose (2005), in which P fertilization stimulated the poten-
tial methanotrophic activity in the rhizosphere. Given that
the effects of P application on lower CH4 emission in paddy
soil were potentially ascribed to plants and/or rhizosphere
(Lu et al. 1999; Rath et al. 2005), however, P additions
negatively affecting CH4 oxidation in this study could be
interpreted as follows. Without planting rice in our incuba-
tion experiment, we cannot detect the effect of the rhizo-
sphere on P assimilation and the subsequent stimulation of
CH4 consumption because the rhizosphere induces a spatial
pattern in the distribution of methanotrophs and is a poten-
tial microsite of intense CH4 oxidation (Dubey and Singh
2000).

3.3 Effect of potassium

Approximately 57 % decrease in CH4 occurred before 240 h
of incubation in the K2SO4 treatment, whereas a small
amount of CH4 (0.6 μLL−1) was oxidized until the end of
incubation. However, nearly no change in CH4 concentra-
tion was found in the KCl treatment. Compared with the
control, the applications of K showed inhibitory effect on
CH4 oxidation. In a field study, Conrad and Klose (2005)
pointed out that the net effect of potassium phosphate on
stimulated CH4 emission is mainly from CH4 production
and ventilation rather than CH4 oxidation. However, another
field study found that K amendment effectively reduces CH4

emission from flooded soil partly by stimulating the meth-
anotrophic bacterial population (Babu et al. 2006). The
difference between these field studies and the current results
possibly resulted from the consideration on the function of
plant and its rhizosphere effect (Lee et al. 2011). Another
possible explanation for this discrepancy could be that the
soil water conditions (e.g., flood or drainage) in the field is
distinctly different from the soil incubation conditions in the
laboratory because increased CH4 oxidation activity was

recently demonstrated from continuous flooding to drainage
(Ma and Lu 2011).

3.4 Effect of chloride

Interestingly, CH4 consumption was completely inhibited
with the addition of KCl. Given that the same K concen-
trations were applied in both K2SO4 and KCl treatments, an
additional incubation experiment was then conducted to
verify the effect of Cl−. As predicted, similar result was
observed when adding the same concentration of chloride
as NaCl (see Fig. 1). We thus suggest that Cl− inhibited
microbial CH4 oxidation during soil incubation. The toxicity
of chemical (e.g., halogenated hydrocarbons) on methano-
trophs expressing particulate MMO (pMMO) was also ex-
amined previously (Han et al. 1999). Additionally, CH4

oxidation could also be inhibited by organic acids and
ethanol either through organic compound toxicity or their
preferred utilization (Wieczorek et al. 2011). The current
results suggest that the main microbial CH4 oxidation was
inhibited by Cl− toxicity. However, the methanotrophic
community composition would change; some methano-
trophs would adapt to the Cl− stress and become as domi-
nant groups. This could be interpreted that different groups
have different physiological responses and environmental
adaptations to chemicals (Nyerges and Stein 2009).

Indeed, the community structure of methanotrophs was
changed under KCl amendment, as well as other treatments
(Fig. S2, Electronic supplementary material), as indicated
by specific DGGE bands (i.e., marked from B-1 to B-10),
which would be immediately induced by the N, P, K, and
Cl− amendments. Cluster analyses also showed that the
differences in methanotrophic community patterns resulted
from the nutrient addition treatments because the changes
could be distinguished between treatments (Fig. S3, Elec-
tronic supplementary material). However, we cannot identi-
fy which methanotroph(s) changed during the treatments
because the subsequent DGGE sequencing experiments
failed.

3.5 Methanotrophic abundance under N, P, and K
amendments

In the current study, real-time PCR was used to quantify the
methanotrophic pmoA gene copies in the soil samples col-
lected after a 2-week incubation. As shown in Fig. 3, the
highest abundance of methanotrophs was found in the KCl
treatment (8.9×107 copies per gram of soil), followed by
K2SO4 (7.6×107), NaH2PO4 (6.0×107), and KH2PO4

5.4×107) treatments. The methanotroph abundance found
in all four treatments was significantly higher than that in the
control (2.8×107). Firstly, no significant difference was ob-
served between the two N treatments [(NH4)2SO4 and urea;
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3.5×107 and 3.1×107, respectively] and the control. This
result is in agreement with another report, which demonstrated
that methanotroph abundance was not affected by N applica-
tion (animal urine) in six grazed grassland soils (Di et al.
2011). Given that the CH4 oxidation in the N treatments
differed from the control, the results could be explained based
on physiological responses, and perhaps environmental adap-
tations, of methanotrophs, which may have N-specific species
(Nyerges and Stein 2009).

Moreover, in contrast to a previous study, which showed
that P was not a key factor controlling the abundance of
methanotrophs in paddy soil under long-term fertilization
regimes (Zheng et al. 2008), the P treatments applied in the
current study resulted in clearly enhanced methanotrophic
abundance than the control. It is possible that the effect of P
amendments on the growth or metabolism of methanotrophs
was more direct and intensive during the short-term incuba-
tion process than their long-term effects in the field plots.
However, further research is needed to clarify the short-term
stimulation of methanotrophs with P addition.

Unexpectedly, significantly higher abundances were
detected in the KCl and K2SO4 treatments than those in
the control. This result was consistent with another study,
in which K fertilizer application seemed to lead to increased
methanotrophic abundance in paddy field soil (Zheng et al.
2008). Particularly in the present study, a negative correla-
tion was found between methanotrophic activity and meth-
anotroph abundance (n021, P<0.01, Fig. 4). It was likely
that acute chemical-induced stresses changed the ratio of
type I to type II methanotrophs and thus resulted in converse
shifts in activities and abundance. Future studies are neces-
sary to determine how type I and II methanotrophs adapted
to the immediate nutrient and/or chemical stresses. Hence,
we suggest that methanotrophic activity cannot be solely
inferred through the gene copy numbers of methanotrophs,
especially in the short-term simulation experiments. Inves-
tigating the size and diversity of the methanotrophic com-
munity is not enough to evaluate the soil CH4 sink
accurately. The overall CH4 oxidation activity should be
taken into consideration.
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4 Conclusions

In the present study, we compared the immediate effects of
N, P, and K on the CH4 oxidation and methanotrophic
community structure in a Chinese paddy soil through the
short-term incubation experiment without planting. N, P,
and K amendments clearly reduced the CH4 oxidation ac-
tivities. Compared with N and K, the P treatments showed a
relatively weak inhibitory effect on the CH4 oxidation. In
addition, the P and K treatments significantly increase meth-
anotrophic abundance, but the N treatment minimally affect-
ed the methanotrophic population size. We further found
that CH4 consumption could be completely inhibited by
Cl− toxicity. This study revealed that the fertilization could
cause immediately negative effects on CH4 consumption
and thus potentially enhanced the CH4 emission from paddy
soil. Given the same fertilization level, we suggest that
increasing the times of fertilization and decreasing the
amounts of fertilizers might avoid the acutely negative effect
on the CH4 oxidation activity. Additionally, as the current
results imply, caution should also be exercised in the appli-
cation of KCl fertilizer in agricultural systems to control the
increase in CH4 emission from the rice field.
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