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Abstract
Purpose Geogenic soil enrichment and anthropogenic pollu-
tion by potentially toxic trace elements (PTEs) are two pro-
cesses acting together. Although it is often difficult, it is
necessary to separate the two processes for risk assessment
and understanding the environmental implications. The aim of
this study was to analyse the soil concentrations of various
PTEs in a southern Italy area in order to: (1) determine their
different correlation structure to isolate sources of variation
acting at different spatial scales and (2) to define potential
anomalies based on the correlation structure.
Materials and methods In the urban and peri-urban area of
Cosenza-Rende, 149 topsoil samples were collected (0.10 m)
and analysed for different elements by X-ray fluorescence
spectrometry. Principal component analysis and factorial krig-
ing analysis were used to map the spatial distribution of PTEs
in topsoil and to identify the main factors influencing their
spatial variability.
Results and discussion Two groups of PTEs were identified:
the first group included As, Pb and Zn; and the second one

Al, Co, Cr, Fe, La, Nb, Ni, Ti and V. The first group was
related to anthropogenic causes, while the second one was
more related to parent rock composition. The regionalized
factors at different scales of variability allowed to aggregate
and summarize the joint variability in the PTEs and consider
the probable causes of soil pollution.
Conclusions The study allowed analysing and quantifying
the sources (environmental or anthropogenic) of variation of
PTEs acting at different spatial scale and defining the spatial
anomalies based on the correlation structure associated at
the different spatial scales.

Keywords Factorial kriging analysis . Pollution . Principal
component analysis . Urban and peri-urban soil

1 Introduction

Natural concentrations of potentially toxic trace elements
(PTEs) in soils mainly depend on the chemistry of the parent
materials from which the soils are derived (Mirsal 2008;
Hooda 2010;Wang et al. 2011). Anthropic activity may greatly
increase the PTEs’ concentrations in the environment, and the
amount of anthropogenic pollutants released often exceeds
contributions due to natural sources; as a matter of the fact,
concentrations found in urban and peri-urban soil are, there-
fore, likely to be much higher than those found in soil from
rural areas (Markus and McBratney 1996; Mirsal 2008).
Sources of PTEs related to human activities in urban and peri-
urban soils are traffic emissions, industrial discharges and
urban development processes (Lado et al. 2008; Mahanta and
Bhattacharyya 2011; Mirsal 2008; Norra et al. 2001;
Odewande and Abimbola 2008). Among these sources, vehic-
ular emissions are widely understood to be a significant and
increasing source of soil and environmental pollution (Liu et
al. 2009). Among pollutants, heavy metals have been the
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subject of particular attention because of their long-standing
toxicity, especially when exceeding specific thresholds
(Coşkun et al. 2006).

Environmental monitoring of soil is of great immediate
concern because of its effect on ecosystem (Schröder et al.
2004). It is mainly aimed to detect zones with both high
concentrations of PTEs and relevant spatial extension in
order to identify the geochemical anomalies of the territory
(Wackernagel 2003) and the potential threat they represent to
the ecosystem. Thus, it is necessary to distinguish if the high
environmental concentrations of PTEs may be explained by
the natural geochemical background levels or by the anthro-
pogenic pollution (Cicchella et al. 2008).

Geostatistics (Matheron 1973) provides a valuable tool to
study the spatial distribution of PTEs. It takes into account
the spatial autocorrelation of data to create mathematical
models to explain the spatial correlation of variables by
variograms, which try to relate the data variance between
two locations to their separation distance. The variogram is
a model of spatial dependence and enables the estimation of
the variable at unsampled locations by using an interpola-
tion technique, known as kriging, which provides the ‘best’,
unbiased, linear estimate of a regionalized variable in an
unsampled location, where ‘best’ is defined in a least-
squares sense (Chilès and Delfiner 1999). Geostatistical
techniques are commonly used to generate soil maps and
have been described in many texts (Chilès and Delfiner
1999; Goovaerts 1997; Webster and Oliver 2007; among
many others).

Principal component analysis (PCA) is an appropriate
method for both analysing large sets of correlated multivar-
iate data and identifying the relation among the variates and
then clustering (Wackernagel 2003; Webster 2001) when
several attributes are determined on each soil sample. PCA
allows to obtain several components, such as linear combi-
nations of original PTEs. Some of these can then be used for
studying a specific group of variables, providing informa-
tion on the association of elements which is geochemically
more significant than the study of individual variables
(Jimenez-Espinosa et al. 1993). Many examples have al-
ready indicated the suitability of PCA applications in studies
on soil science (Borůvka et al. 2005; Carroll and Oliver
2005; Sánchez-Marañón et al. 2011; Visconti et al. 2009;
among many others). PCA does not take into account any
spatial correlation that may exist between variables values,
and to overcome these shortcomings, Matheron (1982) pro-
posed a geostatistical method known as factorial kriging
analysis (FKA), which allows to distinguish the correlation
structure of the multivariate data at different spatial scale
and yields a set of regionalized factors summarizing the
main features of the data at each spatial scale (Goovaerts
1997). There are examples of geostatistical applications in
studies on soil concentration of PTEs (Atteia et al. 1994;

Brus et al. 2002; Goovaerts and Webster 1994; Goovaerts et
al. 1997; Juang et al. 2001; Lin et al. 2002; McGrath et al.
2004; Queiroz et al. 2008; Reis et al. 2007; Sollitto et al.
2010; Webster et al. 1994). To cite a few from the many in
urban and peri-urban soil: Markus and McBratney (1996)
investigated the occurrence and the spatial distribution of
Pb, Zn, Cu and Cd in the topsoil of an inner-city part district
area of Sydney (Australia); Cattle et al. (2002) evaluated
different kriging methods for assessing the spatial distribu-
tion of lead contamination in urban soil and delineating
between contaminated and uncontamined soil; Saby et al.
(2006) used a geostatistical approach for lead assessment in
soil around Paris to distinguish Pb due to widespread pol-
lution from geochemical background; Shi et al. (2008) iden-
tified the source of metals in urban soils and roadside in
Shanghai through geostatistical and multivariate statistical
analysis, Zawadzki and Fabijańczyk (2008) analysed the
spatial distribution of lead content in urban soils using ordinary
kriging and sequential Gaussian simulation; Zheng et al.
(2008) identified the spatial variability and the main sources
of heavy metals in Beijing soils by conducting multivariate
statistical analyses including geostatistical analysis assisted
with GIS tools; Alary and Demeougeot-Renard (2010) applied
factorial kriging analysis to Cd and Zn concentrations in riv-
erbed sediments to decompose the two variables into compo-
nents of different spatial scales and map them separately; and
Maas et al. (2010) used a multivariate geostatistical approach
to identify the source of pollution in urban, suburban and
agricultural soils in Annaba (Algeria).

The aim of this study was to analyse the soil concentra-
tions of various PTEs in the urban and peri-urban area of
Cosenza-Rende in order to: (1) determine their different
correlation structure to isolate and display sources of varia-
tion acting at different spatial scales and to (2) define po-
tential spatial anomalies based on the correlation structure
associated at the different spatial scales.

2 Materials and methods

2.1 Case study

The study area, covering the Cosenza and Rende municipal-
ities’ territory, is located in southern Italy (Calabria region;
Fig. 1). Geologically (Fig. 2), the study area corresponds to a
tectonic depression extending over 92 km2 characterized by
a tick succession of Pliocenic sediments made up of light
brown and red sands and gravels, blue gray silty clays and
silt interlayers; sediments overlap a Palaeozoic intrusive–
metamorphic complex formed by paragneiss, biotite schists,
gray phyllitic schists with quartz, chlorite and muscovite
which, in some cases, are in the process of weathering (Le
Pera et al. 2001).
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Figure 3 shows the soil map (after ARSSA 2003) based
on the World Reference Base for Soil Resources (FAO
1998). Soils ranged between fluvisols, luvisols, cambisols,
vertisols, calcisols, arenosols, leptosols, umbrisols and
phaeozems. Properties, dynamics and functions of the stud-
ied soils are highly variable. Their average values were:
17.59 % for clay content, 56.50 % for sand content, 6.84
for pH, 2.86 % for organic matter, 0.25 mScm−1 for electrical
conductivity, 16.14 meq 100 g−1 for CEC and 1.24 gcm−3 for
bulk density.

From a geomorphologic point of view, the study area is
characterized by a flat part, including the urban area, sur-
rounded by hills. The area is characterized by high popula-
tion (more than 100,000 inhabitants with a density of about
1.900 inhabitants per km2) and heavy traffic, and there is a
little industrial activity. Moreover, it includes parks, gardens
and agricultural activity in the peri-urban areas.

2.2 Soil sampling and analytical methods

Samples were collected at 149 locations (see Fig. 1) chosen
from topsoil in gardens, parks, flower beds and agricultural
fields. At each location, topsoil samples (0–0.10 m depth
from the surface) were taken from five locations at the
corners and at the centre of a square with a side 20 m in
length with a hand auger and combined to form a bulked
sample. In addition, two duplicate pairs from every ten
locations were collected and split in the laboratory to give
replicates.

All samples of soil were dried, disaggregated, sieved
through a 2-mm mesh sieve, and portions of these soil
samples were ground in a mechanical agate grinder until
fine particles were obtained. The total concentrations of
PTEs were determined in each sample by X-ray fluores-
cence spectroscopy (XRF) by using a XRF spectrometer
Philips PW 1480. The determinations included aluminium
(Al), arsenic (As), barium (Ba), cobalt (Co), chromium (Cr),
iron (Fe), lanthanum (La), niobium (Nb), nickel (Ni), lead
(Pb), titanium (Ti), vanadium (V), yttrium (Y) and zinc (Zn).

The analytical quality control procedures undertaken to
assess the precision and accuracy of the laboratory determi-
nations were performed using certified international refer-
ence materials AGV-1, BCR-1, BR, DR-N, GA, GSP-1,
NIM-G and analysis duplicates. The errors of the estimate

Fig. 1 Study area and sampling locations

Fig. 2 Geology of the study
area
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for the measured elements were determined by the relative
standard deviation (<5 %) based on three replicates of one
sample randomly chosen.

2.3 Principal component analysis

Principal component analysis (PCA) was introduced by Karl
Pearson (1901), and it is the widely used method of multi-
variate data analysis owing to the simplicity of its algebra
and to its straightforward interpretation (Wackernagel
2003). PCA consists in (1) transforming a set of variables
Zi (i01, …, N ) linearly correlated into uncorrelated princi-
pal components (PCs) Yp ( p01, …, N) which partition
optimally the total variance, and (2) ordering the PCs by
decreasing explained variance. PCs are nothing more than
the eigenvectors of a variance–covariance matrix or a corre-
lation matrix (Davis 2002), and each PC extracts a maximal
share of the total variance. The correlation cij between the
original variables and a pair of principal components can be
shown in a graphic display called circle of correlations. The
correlation cij was computed using the following equation:

cij ¼ aij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lj σ2

i=
� �q

ð1Þ

where aij is the ith element of the j th eigenvector, λj is the j
th

eigenvalue and σ2
i is the variance of the i th original

variable. The coordinates of the variables are obtained
using the values of correlation of the PTEs with the first
(ordinate axe) and the second (coordinate axe) principal
component. The intention underlying the use of PCA in
geochemical exploration has generally been to separate

the associations inherent in the structure of the correla-
tion matrix into a number of groups of elements that
together account for the greater part in the original data
(Jimenez-Espinosa et al. 1993).

2.4 Factorial kriging analysis

FKA is a geostatistical method developed by Matheron
(1982). The theory underlying FKA (Goovaerts 1992;
Goovaerts and Webster 1994; Wackernagel 2003) consists
of decomposing the set of original second-order random
stationary variables Zi xað Þ; i ¼ 1; . . . ; N ; a ¼ 1; . . . ; nf g
into a set of reciprocally orthogonal regionalized factors

Yu
p ðxÞ; p ¼ 1; . . . ; N ; u ¼ 1; . . . ; S

n o
where S is the

number of spatial scales, through transformation coefficients

auip, combining the spatial with the multivariate decomposition:

Zi xað Þ ¼
XS
u¼1

XN
p¼1

auipY
u
p ðxÞ ð2Þ

The basic steps of FKA include: (1) modelling the cor-
egionalization of the set of variables using the linear model
of coregionalization (LMC), (2) analysing the correlation
structure between the variables, by applying PCA at each
spatial scale, to obtain independent factors which synthesize
the multivariate information and (3) estimating the values of
these specific factors at each characteristic scale using cok-
riging and mapping them.

LMC was developed by Journel and Huijbregts (1978)
and considers all the studied variables as the result of the

Fig. 3 Soil map of the study area
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same independent physical processes, acting at different
spatial scales u. The N(N+1)/2 simple and cross variograms
of the N variables are modelled by a linear combination of S
standardized variograms to unit sill gu (h). Using the matrix
notation, LMC can be written as:

ΓðhÞ ¼
XNS

u¼1

Bugu hð Þ ð3Þ

where Γ hð Þ ¼ g ij hð Þ� �
is a symmetric matrix of order N×N,

whose diagonal and non-diagonal elements represent simple

and cross variograms for lag h; Bu ¼ buij

h i
is called core-

gionalization matrix, and it is a symmetrical semi-definite
matrix of order N×N with real elements buij at a specific

spatial scale u. The model is authorized if the functions gu

(h) are authorized variogram models. In LMC, the spatial
behaviour of the variable is assumed to result from super-
imposition of different independent processes working on
different spatial scales. These processes may affect the behav-
iour of experimental semivariograms, which can be modelled
by a set of functions gu (h). Fitting of LMC is performed by
weighed least-squares approximation under the constraint of
positive semi-definiteness of the Bu, using an algorithm devel-
oped by Lajaunie andBéhaxètéguy (1989). The best model was
chosen, as suggested by Goulard and Voltz (1992), by
comparing the goodness of fit for several combinations of
functions of gu (h) with different ranges in terms of the
weighted sum of squares.

Variogrammodelling is sensitive to marked departures from
normality because a few exceptionally large values may con-
tribute to a high number of large squared differences (Webster
and Oliver 2007). To produce the maps of PTEs, we used
multi-Gaussian cokriging (Goovaerts 1997; Verly 1983;
Wackernagel 2003). In the multi-Gaussian approach, regard-
less of the shape of the sample histogram, the data are trans-
formed into a Gaussian-shaped variable (Y) with zero mean
and unit variance by Gaussian anamorphosis using an expan-
sion into Hermite polynomials Hi (Y) (Chilès and Delfiner
1999). The transformed data are estimated at all unsampled
locations using ordinary cokriging. Finally, the estimates are
transformed back to the raw data through the mathematical
model calculated in Gaussian anamorphosis.

Table 1 Basic statistics of potential toxic trace elements in milligrams per kilogram of soil

Min Max Mean Median Lower quartile Upper quartile St. Dev. Skewness (−) Kurtosis (−) Exp. χ2 (−)

Al 11.19 23.79 15.89 15.38 13.65 17.48 2.80 0.69 0.04 17.18

As 3.00 22.00 7.48 7.00 5.00 9.00 3.03 1.53 3.47 292.54

Ba 335.00 2,000.00 603.05 592.00 530.00 643.00 153.08 5.36 46.74 39.93

Co 6.00 40.00 17.05 16.00 13.00 20.00 5.91 1.21 2.02 80.48

Cr 46.00 309.00 90.54 86.00 73.00 103.00 31.90 2.90 15.44 38.11

Fe 3.11 10.58 5.47 5.13 4.42 6.16 1.47 1.03 1.01 19.68

La 13.00 80.00 37.71 37.00 31.00 42.00 11.24 0.92 1.91 32.88

Nb 6.00 35.00 14.49 14.00 11.00 15.00 5.13 1.67 3.87 166.20

Ni 18.00 82.00 34.67 33.00 28.00 40.00 9.93 1.16 2.95 31.40

Pb 8.00 708.00 63.67 31.00 20.00 69.00 85.00 3.89 22.56 328.73

Ti 0.45 1.18 0.73 0.71 0.61 0.83 0.15 0.47 0.20 26.77

V 54.00 239.00 107.36 102.00 87.00 123.00 30.89 1.28 2.46 25.77

Y 0.00 55.00 24.99 26.00 19.00 30.00 8.15 0.35 1.08 21.46

Zn 38.00 871.00 166.73 127.00 93.00 189.00 130.53 2.68 8.70 102.01

Table 2 First five eigenvectors from the PCA of the standardized
elements data

PC1 PC2 PC3 PC4 PC5

Al 0.331 −0.014 0.129 0.160 0.296

As −0.044 0.508 0.189 −0.431 0.063

Ba 0.125 0.369 −0.148 0.591 −0.240

Co 0.351 −0.025 −0.179 −0.079 0.063

Cr 0.299 0.052 −0.334 −0.314 −0.073

Fe 0.353 0.038 −0.148 0.102 0.196

La 0.253 0.083 0.541 0.046 −0.328

Nb 0.259 0.123 0.514 −0.171 −0.245

Ni 0.281 0.015 −0.362 −0.374 −0.384

Pb −0.094 0.518 0.004 −0.196 0.522

Ti 0.326 0.087 0.064 0.256 0.332

V 0.359 −0.021 −0.091 −0.042 0.064

Y 0.285 −0.197 0.132 −0.016 0.107

Zn −0.024 0.514 −0.208 0.217 −0.302

E.V. 7.219 2.477 1.228 0.958 0.559

%V. 51.60 17.70 8.80 6.80 4.00

Cumulative % 51.60 69.30 78.10 84.90 88.90

Eigenvalues (E.V.) and percentage of explained variance (%V.) are also
reported
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Regionalized principal component analysis consists in
decomposing each coregionalization matrix Bu into eigen-
values and eigenvectors matrices (Wackernagel 2003):

Bu ¼ QuΛ uQuT ¼ Qu
ffiffiffiffiffiffiffi
Λ u

p� �
Qu

ffiffiffiffiffiffiffi
Λ u

p� �T
¼ AuAuT ð4Þ

whereQu is the matrix of eigenvectors andΛu is the diagonal

matrix of eigenvalues for each spatial scale u;Au ¼ Qu
ffiffiffiffiffiffiffi
Λ u

p
is the matrix of order N×N of the transformation coefficients
auip . The transformation coefficients auip in the matrix Au

correspond to the covariances between the original variables
Zi (x) and the regionalized factors Y u

p ðxÞ. The behaviour and
relationships among variables at different spatial scales can
be illustrated by mapping the regionalized factors Yu

p ðxÞ
estimated by cokriging (Wackernagel 2003).

All statistical and geostatistical analyses were performed
by using the software package ISATIS®, release 2011.

3 Results and discussion

The descriptive statistics for the 14 PTE data are presented in
Table 1. Comparing values for mean, median and skewness, it
can be seen that the distributions of variables vary from
normal (e.g. Al and Fe) to very positively skewed (e.g. Zn,
Pb and Ba; see Table 1). The distributions of PTEs departed

significantly from the Gaussian distribution as also shown by
the χ2 test for normality: only for Al and Fe the hypothesis
that the data were normally distributed was accepted at the
0.10 and 0.05 probability levels because the experimental χ2

values (see Table 1) were less than the theoretical χ2 values of
c20:10 ¼ 21:06 and c20:05 ¼ 23:69, respectively. For subsequent
analyses, the PTE data were transformed to normality and
standardized to zero mean and unit variance using a Gaussian
anamorphosis by an expansion of Hermite polynomials re-
stricted to the first 30 terms (Wackernagel 2003).

A summary of the results of PCA is presented in Table 2,
where the elements of the PCs (loadings) for each variable in
relation to the first five principal components are given as well
as the eigenvalues of the PCs, and the percentages of
explained variance for each of the components are also
reported. The first two components account for almost 70 %
of the total variance, and the third for an additional 9 %. The
first four components are sufficient to explain the information
contained in the correlation matrix because the fifth compo-
nent has a variance percentage lower than what would be
explained by each individual variable (1/14≈0.07). The con-
tribution of Al, Co, Cr, Fe, La, Nb, Ni, Ti, V and Y to PC1
ranges between 0.253 and 0.359 (see Table 2), which means
that no variate makes a predominant contribution to that
component. As, Pb and Zn make a similar contribution to
PC2 with values ranging between 0.508 and 0.518 (see
Table 2).

Fig. 4 Correlation circle of
PTEs
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The first two associate components were converted to
the correlation between the original variables and the
principal components by Eq. (1), then they were plotted
in the unit circle in the plane of the first two principal
components (Fig. 4). The circle of correlations showed
the proximity of the PTEs inside the unit circle, and it
was useful to evaluate their associations. The inspection
of the plane of the first two principal components (see

Fig. 2) revealed two groups of PTEs. A group showed a
positive correlation with the second principal component
and included Pb, Zn and As, while a second group of
nine PTEs (Al, Co, Cr, Fe, La, Nb, Ni, Ti and V)
showed a positive correlation with the first component.
Ba and Y were isolated, and they were discarded. Then,
the two groups of PTEs were analysed separately by
factorial kriging analysis.

Fig. 5 LMC for the first group of PTEs (As, Pb and Zn). The experimental values are the plotted points, and the solid lines are of the model of
coregionalization. The dash-dotted lines are the hull of perfect correlation, and the dashed lines are the experimental variances
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3.1 Group I: As, Pb and Zn

The variographic analysis was carried out for the three ele-
ments (As, Pb and Zn) of the first group, and no anisotropy
was evident in the maps of the two-dimensional variograms
(not shown) to a maximum lag distance of 6,000 m. A nested
isotropic LMC (Fig. 5) was fitted to the experimental vario-
grams which included three basic structures: a nugget effect,
an exponential model (Webster and Oliver 2007) with a prac-
tical range of 2,000 m and a spherical model (Webster and
Oliver 2007) with a range of 8,000 m.

The appropriateness of the LMC used compared to alter-
native models was evaluated by cross-validation. The mean
error and the variance of standardized errors for the selected
model were close to 0 and 1: the mean error varied between
0.01 and 0.02, while the variance of standardized errors
varied between 0.98 and 1.06.

The Gaussian values of the three PTEs belonging to ‘group
I’ were interpolated by using multi-Gaussian cokriging at the
nodes of a 25×25-m grid. Then, the estimates were back
transformed to the row data through the mathematical model
calculated in the Gaussian anamorphosis. Figure 6 shows only
the maps of lead and zinc concentrations.

Table 3 reports the decomposition in the regionalized factors
of variance–covariance matrices of LMC at each spatial scale.
The loadings [coefficients of transformation of Eq. (2)] for each
variable in relation to the regionalized factors are given as well
as the eigenvalues and the percentage of explained variance for
each of the regionalized factors. The sum of the eigenvalues at
each spatial scale gives an estimate of the variance at that scale.
The nugget was about 37 % of total variance (3.27), while the
contribution of the shorter range component (2,000 m) of
variation to the total variance was 37 %, and the contribution
of the longer range component (8,000 m) was 26%.Moreover,

the matrix of eigenvectors (regionalized factors) contains use-
ful information only if some meaning can be attached to the
principal components. The elements of an eigenvector repre-
sent the contribution of the original variate to that regionalized
factor. An element of an eigenvector with a value near 1 means
that the original variate makes a large contribution to that
regionalized factor. Conversely, if an element of an eigenvector
is near 0 the contribution to that regionalized factor is small.
Therefore, by examining the eigenvectors it may be possible to
give the regionalized factors a physical interpretation. Howev-
er, as the regionalized factors are only mathematical constructs,
with no direct physical meaning, interpretation is by no means
assured. As a result, the regionalized factors producing eigen-
values greater than 1 were retained because when an eigenval-
ue is lower than 1, the associated factor has less explanatory
value than any single PTE as its variance is inferior to the unit
variance of each PTE. Only the first regionalized factor

Fig. 6 Maps of lead and zinc concentrations

Table 3 Decomposition of the coregionalization matrix in the region-
alized factors (group I)

G As G Pb G Zn E.V. %V.

Nugget effect

Factor 1 0.7242 0.6881 0.0452 0.9201 76.64

Factor 2 0.6525 −0.7050 0.2779 0.2805 23.36

Exponential model (practical range02,000 m)

Factor 1 0.3162 0.5298 0.7870 1.1320 92.7

Factor 2 0.9053 −0.4164 −0.0834 0.0891 7.3

Spherical model (range08,000 m)

Factor 1 −0.0716 0.5500 0.8321 0.5863 68.89

Factor 2 0.9952 0.0951 0.0228 0.2647 31.11

The eigenvalues (E.V.) and the corresponding percentages of explained
variance (%V.) for each spatial scale are also reported
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corresponding at short range (2,000 m) was considered for the
final analysis, accounting for about 93 % of the variability at
that spatial scale. The first regionalized factor at shorter range
was interpolated by using ordinary cokriging and a 25×25-m
grid (Fig. 7a). The first regionalized factor at short range, as a
new variable, allows to aggregate and summarize the joint
variability in the first group of PTEs (As, Pb and Zn) and to
draw conclusions about the probable causes of soil pollution.
The loading values for the first regionalized factor at short
range (see Table 3) indicated the Zn as the variable most
influencing the first regionalized factor at shorter range, fol-
lowed by Pb and As. The contribution of the shorter range
component (2,000 m) of variation (37 %) to the total variance
was probably related to anthropogenic causes. The spatial
distribution of the first regionalized factor at shorter range
(see Fig. 7a) shows abrupt changes of values and a clear
correspondence with the sources of pollution such as the main
roads and urban areas (Fig. 8). Therefore, variation at shorter
scale is related to the local traffic flow and high density hous-
ing. This result is confirmed by the maps of lead and zinc
concentration (see Fig. 6) in which the higher values were
located in an urbanized zone with a high density of road
network (see Fig. 8). In this zone, the values of lead concen-
tration were higher than those reported in literature ranging
between 17 and 29 mg kg−1 (Wedepohl 1995; Ure and Berrow
1982). The same considerations are applicable to As and Zn
because their concentration values were higher than those
reported in literature for the average upper continental crust
values (Wedepohl 1995).

3.2 Group II: Al, Co, Cr, Fe, La, Nb, Ni, Ti and V

For the elements of the second group, the variographic
analysis was carried out, and no anisotropy was evident in

the maps of the two-dimensional variograms (not shown) to
a maximum lag distance of 6,000 m. A nested isotropic
LMC (not shown) was fitted to the experimental variograms
which included three basic structures: a nugget effect, an
exponential model (Webster and Oliver 2007) with a practical
range of 2,000 m and a spherical model (Webster and Oliver
2007) with a range of 8,000 m.

The appropriateness of the LMC used compared to alter-
native models was evaluated by cross-validation. The mean
error and the variance of standardized errors for the selected
model were close to 0 and 1: the mean error varied between

Fig. 7 Maps of the first regionalized factors at short range a and at long range b

Fig. 8 Road network map of the study area
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−0.01 and 0.01, while the variance of standardized errors
varied between 0.96 and 1.10.

The Gaussian values of the PTEs belonging to ‘group II’
were interpolated by using multi-Gaussian cokriging at the
nodes of a 25×25-m grid. Then, the estimates were back
transformed to the row data through the mathematical model
calculated in the Gaussian anamorphosis. Figure 9 shows
only the maps of cobalt and chromium concentrations.

Table 4 reports the decomposition in the regionalized fac-
tors of variance–covariance matrices of LMC at each spatial
scale. The loadings [coefficients of transformation of Eq. (2)]
for each variable in relation to the regionalized factors are
given as well as the eigenvalues and the percentage of
explained variance for each factor. The nugget was roughly
53 % of total variance (8.86), while the contribution of the
shorter range component (2,000 m) to the total variance was

Fig. 9 Maps of cobalt and chromium concentrations

Table 4 Decomposition of the coregionalization matrix in the regionalized factors (group II)

G Al G Co G Cr G Fe G La G Nb G Ni G Ti G V E. V. %V.

Nugget effect

Factor 1 0.285 0.331 0.307 0.311 0.393 0.408 0.309 0.270 0.359 3.510 74.26

Factor 2 0.040 −0.215 −0.454 −0.184 0.599 0.432 −0.382 0.043 −0.136 0.603 12.76

Factor 3 −0.379 −0.271 0.357 −0.304 0.493 −0.121 0.458 −0.304 −0.060 0.247 5.23

Factor 4 0.100 −0.043 0.096 0.021 0.391 −0.716 −0.294 0.448 0.163 0.142 3.00

Factor 5 −0.669 −0.182 0.335 0.257 −0.113 0.272 −0.293 0.408 −0.051 0.107 2.27

Factor 6 0.012 −0.668 −0.296 0.351 −0.085 −0.025 0.203 −0.049 0.539 0.055 1.15

Factor 7 0.329 −0.242 0.559 −0.198 −0.081 0.140 −0.506 −0.347 0.282 0.037 0.78

Factor 8 0.002 −0.063 −0.053 −0.736 −0.242 0.147 0.182 0.488 0.316 0.026 0.55

Exponential model (practical range02,000 m)

Factor 1 0.558 −0.145 −0.288 0.029 0.188 −0.164 −0.686 0.221 −0.053 0.344 67.65

Factor 2 −0.323 0.456 −0.454 −0.017 0.316 −0.440 −0.112 −0.420 −0.019 0.141 27.78

Factor 3 0.351 0.092 −0.434 0.204 −0.222 −0.290 0.580 0.285 −0.297 0.017 3.41

Factor 4 0.065 −0.371 −0.415 0.172 −0.183 0.050 0.109 −0.263 0.734 0.006 1.17

Spherical model (range08,000 m)

Factor 1 0.347 0.371 0.362 0.386 0.201 0.265 0.268 0.367 0.382 3.171 87.42

Factor 2 0.476 −0.160 −0.229 0.006 0.266 0.202 −0.635 0.351 −0.238 0.312 8.59

Factor 3 −0.462 −0.411 0.392 0.256 −0.146 −0.173 −0.177 0.562 −0.028 0.086 2.37

Factor 4 −0.344 0.131 0.043 −0.590 −0.075 0.628 −0.126 0.198 0.243 0.049 1.34

Factor 5 0.059 −0.157 0.515 0.154 −0.020 0.159 −0.486 −0.592 0.265 0.010 0.28

The eigenvalues (E.V.) and the corresponding percentages of explained variance (%V.) for each spatial scale are also reported
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6 %, and the contribution of the longer range component
(8,000 m) was 41 %. Only the regionalized factors producing
eigenvalues greater than 1 were retained. The regionalized
factor corresponding to the nugget effect was omitted because
this is more affected by measurement error and variation at a
scale smaller than 700 m (lag). Only the first regionalized
factor corresponding at long range (8,000 m) was considered
for the final analysis, accounting for about 87 % of the vari-
ability at that spatial scale (see Table 4). The first regionalized
factor at longer rangewas interpolated by ordinary cokriging at
the nodes of a 25×25-m grid (see Fig. 7b). The loading values
for the first regionalized factor at long range (see Table 4) for
the second group of PTEs indicated that Al, Co, Cr, Fe, Ti and
V equally affected the first regionalized factor at long range
with no element predominant. The same occurred for La, Nb
and Ni. The contribution of the longer range component
(8,000 m) of variation to the total variance was 41 % and only
6 % for the shorter range component (2,000 m) indicating that
the variability of the second group of PTEs (Al, Co, Cr, Fe, La,
Nb, Ni, Ti and V) was probably unrelated to anthropogenic
causes, but rather to the predominant rock-forming elements
constituting the soil parental materials. The map of the first
regionalized factor at longer range (see Fig. 7b) shows a
smooth change of values. In addition, high values were located
in peri-urban areas (see Fig. 7b). These results were confirmed
by the maps of cobalt and chromium (see Fig. 9) where,
similarly to all elements of ‘group II’ (maps not shown), the
higher values of elements’ concentration were located in peri-
urban areas with a low road network density. The values of
concentration of elements belonging to ‘group II’ were higher
than those reported in literature (Wedepohl 1995), but similar
to the ones in parent rocks.

4 Conclusions

This study allowed to analyse and quantify the relationships
between potentially toxic trace elements and environmental
and anthropogenic causes of soil pollution by using principal
component analysis and factorial kriging analysis. The advan-
tage of this approach is that it is flexible and can be used to
make direct comparisons of soil pollution in different areas.
The regionalized factor at different scale of variability allowed
to aggregate and summarize the joint variability in the PTEs
and to draw conclusions regarding the probable causes of soil
pollution.

The study allowed to identify two groups of PTEs: the
first group including As, Pb and Zn; and the second one Al,
Co, Cr, Fe, La, Nb, Ni, Ti and V. The first group was related
to anthropogenic causes, while the second was more related
to rocks composition.

In the first group of PTEs, the results indicated Zn as the
variable most influencing the first regionalized factor at

shorter range, followed by Pb and As. Moreover, the contri-
bution of the shorter range component of variation to the total
variance was probably related to anthropogenic causes be-
cause the spatial distribution of the first regionalized factor
at shorter range showed a clear correspondence with the
sources of pollution such as the main roads and urban areas.

In the second group of PTEs, the results indicated that Al,
Co, Cr, Fe, Ti and V equally affected the first regionalized
factor at long range with no element predominating. The
contribution of the longer range component of variation to
the total variance was predominant indicating that the vari-
ability of the second group of PTEs (Al, Co, Cr, Fe, La, Nb,
Ni, Ti and V) was probably unrelated to anthropogenic
causes, but rather to the predominant rock-forming elements
that constituted the parental materials of the soil. Finally, the
results of this study can be considered a useful contribution
to identifying polluted areas and proposing remedial action
aimed at reducing health risk above all to people.
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