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Abstract
Purpose Soil saturated hydraulic conductivity (KS) is a key
variable in hydrologic processes, the parameters of which
have strong scale-dependency. Knowing the scaling depen-
dency of KS is important when designing an appropriate
sampling strategy.
Materials and methods Determinations of KS were made for
4,865 undisturbed soil samples, collected from a grid with
cells of 10×10 m in the Daye watershed (50 ha) on the
Loess Plateau, China. The dataset was “re-sampled” to
investigate the effect on KS of scales that differed by two
orders of magnitude in terms of spacing and support, and
eight scales of extent. The variance, correlation length, and
nugget–sill ratio derived by analysis of the full dataset were
taken to be the true values. Apparent values of variance,

correlation length, and nugget–sill ratio were those calculat-
ed for each re-sampled data sub-set.
Results and discussion Comparing the parameter values at
different scales showed that apparent variance increased
with increasing extent (p<0.01), decreased with increasing
support (p<0.01), but was not significantly affected by
spacing (p00.137). Apparent correlation length increased
with increasing extent and support (p<0.01). As spacing
increased below 1.1 times the true correlation length (i.e.,
below 80 m), the apparent correlation length decreased
slightly but, as spacing increased above 80 m, it notably
increased. Apparent nugget–sill ratio decreased with in-
creasing spacing and support (p<0.01), and increased with
increasing extent (p<0.01). The scaling dependency for KS

was in the order of extent > support > spacing for all three
parameters, with mean coefficient of determination values
of 0.96, 0.88, and 0.53, respectively.
Conclusions The statistical properties investigated for KS

were found to be scaling-dependent, which would benefit
sampling strategy design.

Keywords Correlation length . Nugget–sill ratio .

Re-sampling analysis . Scaling . Variance

1 Introduction

Increased environmental awareness has led to increased
interest in the transport of water and the redistribution of
solutes in soils and aquifers. Water transport has important
effects on soil erosion (Ehigiator and Anyata 2011), flood-
ing (Yang and Zhang 2011), redistribution of soil nutrients
(Armstrong et al. 2011), vegetation patterns (Ruiz-Sinoga et
al. 2010), and animal activity (Lima et al. 2011). Soil satu-
rated hydraulic conductivity (KS) plays a key role in these
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processes since it determines the maximum capacity of
saturated soil to transport water, and it is commonly used
in models to make unsaturated conductivity predictions
(Mualem 1992). However, the determination of KS is chal-
lenging because it can change by many orders of magnitude
over short distances (Sobieraj et al. 2004) unlike other
indexes of soil properties such as soil moisture, soil bulk
density, and most of the nutrient indexes. It sometimes
varies so widely that it is difficult to find representative
values to use in drain spacing calculations or other aspects
of soil management (Van Schilfgaarde 1970; Topp et al.
1980; Puckett et al. 1985; Gupta et al. 1993; Mohanty et
al. 1994). According to classic statistics, when the variability
is higher and other conditions are constant, more samples are
required. Hence, more samples are required to achieve a reli-
able estimate of KS than for the other soil parameters men-
tioned above. Knowledge of geostatistics gained from more
intensive or extensive sampling could give a clearer picture of
the spatial variability of a given regionalized variable, whereas
less intensive sampling, although cheaper, could miss impor-
tant spatial features (Van Groenigen et al. 1999). Moustafa
(2000) has shown that neglecting the spatial variability of KS

can lead to error rates of between −27 % and +3 % in the
design of drain spacing, and overestimates of the required
sample size by about 76 %. However, making intensive or
extensive measurements is costly, time-consuming and cum-
bersome. It is therefore important to know how KS varies with
sampling scales in order to understand and predict hydrological
processes at a range of scales.

Although the parameters used to describe the spatial vari-
ability of KS are scaling-dependent, most studies have been
carried out at different scales, or the scales at which KS has
been measured were inappropriate for the scales at which KS

predictions were needed. Three factors, which were defined as
a scale triplet, characterize patterns of sampling: spacing,
extent and support (Blöschl and Sivapalan 1995). “Spacing”
refers to the distance between samples; “extent” refers to the
overall coverage; and “support” refers to the area integrated by
each sample. Lin et al. (2005) noted that there can be substan-
tial variation in soil properties, such as the depth of the
A-horizon and pH, over even relatively short distances (in
meters). Franklin and Mills (2003) indicated that such spatial
heterogeneity in soil properties can cause variation in the
structure of soil microbial communities over similar scales
(centimeters to meters). Zimmermann and Elsenbeer (2008)
found regionally important disturbances significantly affected
KS within a research area of 2 km2 from which 30–150
samples per soil depth were collected; cattle grazing signifi-
cantly affected the spatial mean KS whereas landslides of
different ages did not, but both processes affected the spatial
structure of the topsoil KS. Hu et al. (2008) collected 106
samples from slope with an area of 9,600 m2 and found that
the heterogeneity and spatial dependence of hydraulic

properties were greater for the shaded than for the sunny
aspects. Buttle and House (1997) collected 35 samples from
a 3.22 ha forested basin to investigate the spatial variability of
KS and concluded that the spatial scale of the soil profile’s
bulkKS was most relevant to the characterization of the spatial
variability in hydraulic conductivity as an input for distributed
hydrological models. Sobieraj et al. (2002) investigated the
spatial variability ofKS, collecting 18 samples along a tropical
rainforest catena, and found that the spatial correlation for KS

was very low or non-existent at distances greater than 25m for
all soil depths (0–1 m). Moustafa (2000), however, found that
the correlation range for KS varied from 1,600 to 2,700 m
when the study was conducted in more extensive areas, rang-
ing from 941 to 1,848 ha.

To compare the results obtained by sampling at different
spatial scales, it is important to understand how KS changes as
a function of scaling. Although the issue of spatial scaling is
important, few studies have investigated the problem in the
field. For example, Western and Blöschl (1999) examined
scale-dependency in the Australian Tarrawarra catchment
(10.5 ha) for 1,536 soil moisture content samples and found
that sampling scales had different effects on the statistical
properties, the variance and the correlation length. Garten et
al. (2007) tested the hypothesis that variability of certain
parameters would increase with sampling scale, which ranged
from small (1 m) to large (1 km) in a temperate, mixed-
hardwood forest ecosystem in Tennessee, but obtained differ-
ent results for 11 soil properties that did not include KS.
However, their study was limited by two factors: (a) the small
number of samples (24) limited the application of semivario-
gram analysis and reduced the reliability of the results; and (b)
the sampling scales used were not further divided into spacing,
extent and support. Gao and Shao (2012) analyzed the changes
in interpolation accuracy with changing sampling scales for
seven soil properties, including KS and they noted that the
interpolation accuracy of KS increased with decreasing sam-
pling spacing and increasing sampling extent. The limited area
(900 m2), however, limited the further application of their
findings. This paucity of systematic studies, and the complex-
ity of the scaling issue, means that many problems still exist
and no consistent conclusions have yet been reported. In
particular, there have been very few reports concerning the
scaling dependency of KS, especially in the region of the Loess
Plateau, China. One of themain reasons is that measuringKS in
the field is costly and time-consuming (Moustafa 2000).

Thus, a comprehensive, systematic investigation into how
the statistical properties for KS vary as a function of spatial
scale is relevant. The main aims of the present study were: (1)
to analyze how the apparent statistical properties of KS (var-
iance, correlation length, and nugget–sill ratio) change with
the changes in sampling scale, in terms of spacing, extent and
support in a small watershed; and (2) to provide a reference for
decision-making when planning sampling strategies for KS.
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2 Materials and methods

2.1 Field site description

The study was conducted in the Daye watershed within the
larger Liudaogou watershed (110°21′–110°23′ E, 38°46′–
38°51′ N) located in Shenmu County, Shaanxi Province,
China (Fig. 1). The area has been susceptible to ongoing
severe water and wind erosion since ancient times (Tang et
al. 1993) that affects the environmental conditions and has
resulted in a fragmented landform, characterized by a large
number of deep gullies and undulating slopes. The Daye
watershed extends over an area of 50 ha at altitudes ranging
from 1,130 to 1,233 m (a. s. l.). The climate is classified
among the moderate-temperate and semi-arid zones: the
mean annual precipitation is 437.4 mm, nearly half of which
falls from July to September; the potential evapotranspira-
tion is 785 mm; the mean aridity index is 1.8; and the mean
annual daily temperature is 8.4 °C. A deep (up to 100 m)
loess layer, which originated during the Quaternary period,
covers the area. The dominant soil (a cultivated loessial
soil), is an Ust-Sandic Entisol. Sandy loam and silty loam
textures (mean particle size fractions: clay: 5 %; silt 43 %;
sand 52 %, USDA) dominate the upper 10 cm soil layer and
the mean soil bulk density of the 0–5 cm layer is 1.35 g/cm3

(Wang et al. 2010). Soil organic contents are low (Fu et al.
2010) and the soil structure is poor. Land uses include
scrubland of predominantly bunge needle grass and cara-
gana and also some cultivated farmland and arboriculture.

2.2 Sampling and measurements

Detailed measurements of the spatial patterns of KS were
made in the Daye watershed from August 03 to September
28 in 2009. During this time, the volumetric soil water con-
tents of the 0–5 cm soil layer ranged approximately from 10 to
15 %, under which conditions the samples were easier to
remove without disturbance enabling intact soil cores to be
obtained. In addition,KS was almost constant over time during
the experimental period (Hu et al. 2009), ensuring that most of
the observed variations in KS were spatial in nature. In the
present study, a total of 4,865 soil samples were collected to a
depth of 5 cm from which KS values were later determined.
The large number of samples made it possible for a series of
inherent scales to be investigated. In the present study, the
scale factors of spacing and support could be changed over a
range of two orders of magnitude, and eight different spatial
scales could be applied by changing the extent. A regular grid
sampling system has been proven to be more accurate in
predicting spatial distributions than randomized sampling
(Hirzel and Guisan 2002). Therefore, this method was
employed in the present study, collecting samples from loca-
tions set out in a regular grid comprising of square cells with

10m between rows and columns (see Fig. 1). However, due to
the highly complex topography of the study area, some of the
grid-point locations were omitted due to inaccessibility.

Data were collected from the field as follows: first, the
position of the sampling point was located using a Trimble
5700 GPS and the geographic coordinate was recorded. A
sample of undisturbed soil was taken using a soil-corer, 5 cm
long and 5 cm in diameter. The KS was measured using the
constant head method (Klute and Dirksen 1986). The ambient
temperature of the laboratory was constant at 20 °C. To make
our results comparable with others, we transformed the KS

value measured at 20 °C to their equivalents at 10 °C using the
equation (Liu 1982):

K10 ¼ Kt

0:7þ 0:03� t
ð1Þ

where K10 is the KS at 10 °C, Kt is the KS at t°C, and t is the
temperature at which KS was measured. The values of KS

referred to in this paper all refer to K10.

2.3 Data analysis methodology

Data were analyzed in two main steps. The first step was an
analysis of the full dataset, to generate the “true” values of
the parameters. The second step analyzed sub-sets of data
extracted from the full dataset to generate “apparent” param-
eters values obtained by “re-sampling”. We then analyzed
the differences between the “true” values and the “apparent”
values to determine scale-dependency. The parameters ex-
amined in this study were the variance, the correlation
length, and the nugget–sill ratio.

The variance was obtained by classical statistics and
geostatistical analysis produced the correlation length and
the nugget–sill ratio. Semivariograms were used to evaluate
the spatial dependence of the KS data. Romano (1993) and
Logsdon (2002) had reported positively skewed and log-
normal distributions of KS data due to preferential flow
phenomenon, which was applicable to the present datasets.
In this study, all the raw datasets that were not normally
distributed were logarithmically (Log10) transformed. In
both steps, an exponential model with a nugget was used
in the geostatistical analysis using GS+ (Gamma Design
Software 2004), since most of the integral scale data were
also best fitted by the exponential variograms having the
highest determination coefficient and the lowest residual
sum of squares. Based on the regionalized variable theory
and intrinsic hypotheses (Krige 1994), a semivariogram can
be expressed as:

gðhÞ ¼ 1

2NðhÞ
XN
i¼1

Z xið Þ � Z xi þ hð Þ½ �2 ð2Þ
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where γ(h) is the semivariance, h is the lag distance, N(h) is
the number of sampling couples in the interval h, Z(xi), and
Z(xi + h) are values of variable Z at positions xi and (xi + h).

Note: in the present study, no single model was the best-
fitted model for all the KS datasets of the various sampling
scales but most of the empirical semivariograms were better

Fig. 1 Spatial distribution of
4,865 samples collected from
the small Daye watershed on
the Loess Plateau
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fitted by the exponential model while the next best-fit was
obtained using the spherical model. Therefore, in this study,
in order to compare the results, we chose to use the expo-
nential semivariogram, which was expressed as:

gðhÞ ¼ C0 þ C1 1� exp � h

l

� �� �
ð3Þ

where C0 is nugget variance, C1 is structural variance, and l
is distance parameter called correlation length.

2.3.1 Analysis of the full dataset

The spatial map of predicted KS obtained by ordinary krig-
ing based on all 4,865 samples from the study area is shown
in Fig. 2. The exponential model was used to describe the
semivariograms of KS (Fig. 3). The summary statistics of the
full KS dataset (Table 1) could be defined as the “true”
values since they were derived from the full dataset, rather
than from part of the dataset.

Two notable features can be seen in Table 1. First, KS was
moderately spatially dependent in the study area (nugget–
sill ratio 25–75 %; Chien et al. 1997), and had strong
variability (coefficient of variation098.3 %); the maximum
value was more than 8,000 times that of the minimum value
(8.3 and 0.001 mm/min, respectively), which was similar to
the findings of Sobieraj et al. (2004). The highest high

values ofKS data in this small watershed were generally found
in sandier soils, which were located at the middle or top of the
steeper slopes where weathered soil parent material from
underlying rocks was exposed. Lower values occurred in
clayier soils in the valleys under grassland. However, the
range of KS in the present study differed from those of other
studies (Zimmermann and Elsenbeer 2008; Mohanty and
Mousli 2000), due mainly to the differences in scale. Second,
the data was not normally distributed but was strongly and
positively skewed (4.13) and was more strongly leptokurtic
(32.2) than normal. However, the data were approximately
log-normal, with a skewness value of 0.2 and a kurtosis value
of 1.5. The relatively high kurtosis value was likely due to
“outliers”, which we retained after confirming that they were
not a result of experimental error in the measurements and that
they were likely to be representative of certain locations in the
watershed. Transforming non-normally distributed data by
using logarithms (log10) is a common method (Journel 1980;
Saito and Goovaerts 2000) and is especially applicable to KS

studies (Romano 1993).

2.3.2 Re-sampling analyses

The aim of the re-sampling analysis was to emulate hypothet-
ical sampling scenarios (or model scenarios) for which only a
fraction of the full dataset might be available (Western and
Blöschl 1999). The hypothetical sampling scenarios differed in
terms of the scale of the samples. In the framework used here,
we considered three aspects of scale—spacing, extent, and
support—each of which could be re-sampled at a range of
different spatial scales for the re-sampling analyses. For each
re-sampled dataset the “apparent” variance, “apparent” corre-
lation length and “apparent” nugget–sill ratio were calculated
for each of the respective scales. In most cases, the “apparent”
values, derived from the re-sampled data, and the “true”
values, derived from the full dataset, differed in a manner that
reflected the bias introduced by the differences in the measure-
ment scales.

Fig. 2 Spatial interpolation map (ordinary kriging) of KS based on the
full dataset
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Fig. 3 Semivariograms with fitted models for KS based on the full
dataset for the small Daye watershed
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In the case of spacing, in order for the data to be repre-
sentative, sets of samples were re-sampled from the same
regular grid by increasing the spacing between samples in
10 m increments from 10 to 160 m for each dataset. Using
classical statistics and geostatistical analysis, the variance,
correlation length, and nugget–sill ratio were calculated for
each sampling scale. As the spacing was increased from 10
to 160 m, the number of samples decreased from 4,865 to
22. The summary statistics of the data sampled at these
different scales of spacing are given in Table 2. The scale,
in terms of the spacing, aSpc (in meters), was defined as the
average spacing of the samples:

aSpc ¼ A

n

� �1=2

ð4Þ

where aSpc (in meters) is the spacing of samples; A (in
square meters) is the area of the domain; and n is the number
of samples.

In the case of extent, the first scenario used all of the grid-
points. In the next scenario, the domain was subdivided into
two contiguous regions and the data from each region were
each considered to be one realization to give two realizations
comprising 2,432 and 2,433 samples, respectively. For each of
the two realizations, the “apparent” values of variance, corre-
lation length, and nugget–sill ratio were estimated. The mean
values of the parameters of the two realizations were then used
as the “apparent” parameters at this scale. In the next scenario,
the domain was subdivided into four contiguous regions and
treated as above to derive the means of the parameters of the
four realizations to give the “apparent” parameter values. We
continued to divide the domain in this way up to a maximum
of 128 contiguous regions, at which level each region
contained only 38 samples. The summary statistics for the full
list of all eight levels of subdivision of the sampling grid for
the case of extent are given in Table 2. The scale, in terms of
the extent, aExt (in meters), was defined as the square root of
the area of the region:

aExt ¼ Aregion

� �1=2 ð5Þ

where aExt (in meters) is the extent of the samples; and Aregion

(in square meters) is the ratio of the total area to the number of
regions, or realizations, that was given by:

Aregion ¼ A

nreal:Ext
ð6Þ

where nreal.Ext is the number of contiguous regions.
In the case of support, the first scenario used data from each

individual grid-point. In the next scenario, four adjacent points
(20×20 m) in contiguous sub-plots were averaged to give oneT
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mean value of KS and its corresponding mean geographic
coordinate. Thus, at this scale of support (20 m), 1,216 aggre-
gated values and their corresponding geographic coordinates
were obtained. Classical statistics and geostatistical analyses
were then used to estimate the variance, correlation length,
and nugget–sill ratio at this scale. In the next scenario, nine
adjacent points (30×30 m) were aggregated, and so on, until
the scenario where 196 adjacent points (140×140 m) were
aggregated. The summary statistics of the re-sampling

analyses for support are summarized in Table 2. The scale,
in terms of the support, was defined as the square root of the
area over which the samples were aggregated:

aSupp ¼ Aaggreg
1=2 ð7Þ

where aSupp (in meters) is the support of the samples; and
Aaggreg (in square meters) is the area over which the samples
were aggregated.

Table 2 Summary statistics for
KS under different sampling
scales, in terms of spacing, ex-
tent and support

n the number of samples, SD
standard deviation, CV coeffi-
cient of variation

Scaling values (m) n Mean (mm/min) SD (mm/min) CV (%) Skewness Kurtosis

Spacing 10 4,865 0.58 0.57 98.3 4.13 32.20

20 1,226 0.57 0.60 105.3 5.29 50.04

30 544 0.57 0.53 93.0 2.95 12.28

40 307 0.55 0.46 83.6 2.48 8.56

50 197 0.53 0.44 83.0 2.23 5.91

60 135 0.60 0.58 96.7 2.33 6.09

70 101 0.49 0.49 100.0 3.06 10.30

80 76 0.56 0.50 89.3 1.93 3.80

90 62 0.61 0.60 98.0 1.97 3.46

100 49 0.59 0.49 83.0 2.54 8.25

110 40 0.48 0.53 110.4 3.22 12.08

120 36 0.49 0.35 71.4 1.77 4.28

130 31 0.45 0.39 86.7 1.44 1.99

140 25 0.49 0.67 136.7 4.30 19.67

150 24 0.51 0.33 64.7 2.29 8.26

160 22 0.46 0.39 84.8 1.07 0.26

Extent 701 4,865 0.58 0.57 98.3 4.13 32.20

500 2,433 0.58 0.57 98.3 4.03 30.58

354 1,216 0.58 0.54 93.1 3.22 21.42

250 608 0.58 0.53 91.4 3.32 27.24

177 304 0.58 0.43 74.1 2.39 13.86

125 152 0.58 0.50 86.2 1.96 8.70

88 76 0.58 0.49 84.5 1.50 4.31

63 38 0.58 0.45 77.6 1.24 4.03

Support 0.05 4,865 0.58 0.57 98.3 4.13 32.20

20 1,167 0.58 0.45 77.6 2.59 6.89

30 510 0.58 0.41 70.7 2.67 9.37

40 285 0.58 0.39 67.2 2.49 6.89

50 179 0.59 0.38 64.4 2.67 8.66

60 126 0.59 0.36 61.0 2.54 7.25

70 90 0.59 0.35 59.3 2.61 7.91

80 66 0.59 0.33 55.9 2.28 5.63

90 54 0.59 0.32 54.2 2.00 3.95

100 43 0.60 0.31 51.7 2.16 4.92

110 35 0.60 0.31 51.7 2.62 9.10

120 27 0.60 0.32 53.3 2.15 5.15

130 22 0.59 0.25 42.3 1.47 1.90

140 21 0.60 0.30 50.0 1.76 2.83
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3 Results and discussion

Figure 4 shows the results of the re-sampling analysis. The
apparent parameters of KS depended to different degrees on
the sampling scale in terms of spacing, extent and support.

With an increase of spacing, the apparent variance de-
creased slightly (see Fig. 4a, top). Although the regression
equation was not significant (p00.137), it differed from the
results reported by Western and Blöschl (1999) who found
that sampling spacing did not affect the apparent variance of
soil moisture. The different methods used to re-sample
might partly explain the difference: in their study, variance
was the mean value of all the variances of their sub-datasets;
in our study, however, because we collected 4,865 samples
in a regular 10×10 m grid, we were able to select each re-
sampled point only once for each specific spacing scale, and
sampling from a regular grid probably reflects reality more
accurately. In addition, the variability of KS is much greater
than that of soil moisture. Both KS and soil moisture are
variable in space due to differences in soil texture (Biswas
and Si 2011; Rawls et al. 1998), soil structure (Dörner et al.
2010), climate (Wang et al. 2011), and land use (Hu et al.
2009; Wang et al. 2011). However, soil moisture can move
between locations along soil water potential gradients as
well as by “hydraulic lift” (Richards and Caldwell 1987),
which inherently reduces the spatial variability of soil mois-
ture contents. Garten et al. (2007) also found whether

measurement variability increased with increasing spatial
scales (1 m to 1 km) depended on the soil properties when
the variability in 11 soil properties was tested in a temperate,
mixed-hardwood forest ecosystem, in Tennessee, USA.

Spacing had a significant effect on apparent correlation
length (p<0.01; see Fig. 4a, center). The true correlation length
in the present studywas 70 m (see Fig. 3). Below 1.1 times this
length (i.e., 80 m), as spacing increased the apparent correla-
tion length decreased from 70 m for a spacing of 10 m to its
lowest value of about 30 m for a spacing of 50 m. At this point
of inflection, further increases in sampling space generally
resulted in increases in correlation length, and the rate of
increase also increased with sampling spacing. Generally,
when sampling spacing increased, the internal variability could
be ignored and the apparent correlation length increased with
increased spacing. However, when spacing was small enough,
the internal variability was also small and sampling was inten-
sive enough for any increase in spacing not to cause a
corresponding increase, or even to actually cause the observed
decrease, in the apparent correlation length. For example,
Kerry and Oliver (2007) reported that the apparent range of
clay content also decreased as spacing increased from 20 to
80 m. Our results were similar to those reported by Western
and Blöschl (1999), but the point of inflection occurred at 1.5
times the correlation length in their study. However, for a larger
spacing, the internal variability was not well-represented by the
sparser sampling, and the apparent correlation length increased
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significantly with further increases in spacing. This can best be
understood in terms of the frequency domain. Large spacing
causes an overestimation of apparent correlation length be-
cause, at these larger scales, sampling only resolves the low
frequencies while neglecting the smaller scale, high frequen-
cies. However, the high frequencies were partly “folded back”
from the lower frequencies. This effect is termed “aliasing” in
sampling theory (Vanmarcke 1983; Jenkins and Watts 1968)
and has been examined by Matalas (1967). When the spacing
is small, the effect of the “folded back” phenomenon is obvi-
ous, and with increasing spacing, the effect decreases. Hence,
the apparent correlation length does not increase when the
spacing increases from 10 to 80 m, but increased significantly
for spacing larger than 80 m in the present study. A similar
effect has been discussed in detail in relation to studies on
groundwater (Gelhar 1993) and soils (Russo and Jury 1987).

The difference in the positions of the inflection points
observed in the present study and in the study by Western
and Blöschl (1999) might be a result of inherent differences
in the natural levels of variability generally observed for KS

and soil moisture. Thus, the lower natural variability of soil
moisture allows for a larger spacing of sampling than is
necessary for KS. Based on this, the sampling spacing for
KS required for reliable estimates of the correlation length in
this study was 1.1 times the true correlation length (i.e.
80 m, see Fig. 3), with a sample size of 76 (see Table 2).

However, the apparent nugget–sill ratio decreased with
increased spacing indicating that spatial dependency was
overestimated at larger scales (see Fig. 4a, bottom). This
might be due to the scale of internal variability being
neglected: only samples collected at the largest scales did
not reflect the true variability. With increasing sampling
spacing, the nugget variance and structure variance
changed. However, the decrease of the apparent nugget–sill
ratio was mainly caused by the decreasing nugget variance
at spacing smaller than the true correlation length, and by
the increasing structure variance at sampling spacing ex-
ceeding the true correlation length.

Apparent variance, apparent correlation length and ap-
parent nugget–sill ratio increased with increasing extent
(see Fig. 4b). Similar results were reported by Western and
Blöschl (1999) when the variance and correlation length
of soil moisture data were investigated. The variability in
the parameters of KS mainly derived from the processes
controlled by the sampling extent; because the parameters
were the mean values of all the sub-areas. This observa-
tion could also be interpreted in terms of the frequency
domain. When keeping the spacing and the support of
samples uniform, the small extent resulted in a natural
variability that was only sampled at high frequencies,
while the low frequencies were not sampled. Consequent-
ly, the total variance was lower and the integral scale was
biased towards high frequencies (small scales). Unlike

spacing, no obvious “aliasing” phenomenon was observed
for extent.

Another interesting phenomenon was that the ratio between
extent and the apparent range or correlation length was nearly
constant. Gelhar (1993) reported the apparent correlation
length to be about 10 % of the extent in the case of hydraulic
conductivity in aquifers. Blöschl (1998) found similar results
with patterns of snow cover in an Alpine catchment in Austria,
as did Western and Blöschl (1999) for soil moisture in the
Australian Tarrawarra catchment. In the present study, we
found the ratio between the apparent correlation length and
extent for KS (from 8 to 12 %; see Fig. 4b, center) to be
reasonably consistent with the results mentioned above. A
further point of interest regarding the extent data of Fig. 4b is
that, although the three fitted curves indicated positive corre-
lations, the shape and slope gradients of each curve differed.
With increasing extent, from the minimum value of 63 m to a
moderate value of 177 m and to the maximum value of 701 m,
the slope gradients of the curves for apparent nugget–sill ratio
increased from −1.1E−05 to 1.5E−04 to 8.8E−04, for apparent
correlation length they were relatively constant changing from
0.06 to 0.07 to 0.13, while for apparent variance they decreased
from 6.2E−04 to 2.7E−04 to 8.6E−05. This meant that with
increasing sampling extent the heterogeneity of KS tended to
increase at a decreasing rate. However, the spatial dependency
expressed by the nugget–sill ratio, increased at an increasing
rate. Generally, both nugget variance and structure variance
increased with increasing sampling extent. Nugget variance
was a more sensitive parameter than the latter one, which
resulted in an increasing nugget–sill ratio with increasing
extent.

Increasing support decreased apparent variance, increased
apparent correlation length, and decreased the apparent nug-
get–sill ratio (see Fig. 4c). It was evident that variability was
reduced when data were sampled at increasing levels of sup-
port. Several studies have examined the relationships between
apparent variance and support. For example, Lauren et al.
(1988) found that the variability for KS decreased with
increases in sampling volume in a clayey soil with macro-
pores. Furthermore, Rodríguez-Iturbe et al. (1995) analyzed
soil moisture data derived from ESTAR measurements of the
sub-humid Little Washita watershed in south-west Oklahoma.
They examined a reduction in variance that occurred when a
grid of 200×200 m pixels was aggregated to create a 1×1 km
grid cell and concluded that soil moisture exhibited power law
behavior with the exponent α having values between −0.21
and −0.28 in the relationship:

d2app;Suoo ¼ Aa
aggreg ð8Þ

According to Eq. (7), Eq. (8) is equivalent to the exponent
having a value between −0.42 and −0.56 in the relationship
between apparent variance and support. Western and Blöschl
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(1999) also estimated the change of apparent variance with
changing support. They collected 1,536 samples in the
Australian Tarrawarra catchment and found that the section
of the plot from a support of about 0.3×1true to about 3×1true,
could be approximated by a straight line with a slope in the
range of −0.42 and −0.56. In the present study, the relationship
between apparent variance and support, when support
changed from 0.29×1true (20 m) to 2×1true (140 m), was
similar to the results of these other studies. When fitted by a
power function, the exponent was −0.456, and the coefficient
of determination (R2) was 0.855. However, we found that a
logarithmic, rather than a power function, to be a better
function since it gave a higher R2 of 0.934. Differences in
the experimental design and the subsequent re-sampling pro-
cedures as well as the difference in the investigated soil
parameter likely account for these slight differences between
the studies.

For a constant extent, the apparent correlation length and
apparent nugget–sill ratio had opposite trends (see Fig. 4a
and c). For example, if apparent correlation lengths in-
creased with changing scales, in terms of sampling spacing
(see Fig. 4a) and sampling support (see Fig. 4c), then the
apparent nugget–sill ratio decreased. This is explained by
the fact that the nugget–sill ratio reflects the proportion of
random variability within the total variability; hence the
smaller the value of the nugget–sill ratio, the stronger is its

spatial dependency, which in turn results in a greater corre-
lation length. However, if the extent increased or decreased,
then both the apparent correlation length and the apparent
nugget–sill ratio will correspondingly increase or decrease
(see Fig. 4b). The differences were in the rate of change of
the apparent correlation length and the nugget–sill ratio,
which has been discussed above. This demonstrated that
the effect caused by extent was more important than the
interaction of the apparent correlation length and the appar-
ent nugget–sill ratio.

In order to compare apparent and true values quantita-
tively, the information in Fig. 4 was re-plotted in a non-
dimensional form (Fig. 5). The apparent variance, correla-
tion length, and nugget–sill ratio were all normalized by
their true counterparts. Similarly, the sampling scales at
which spacing, extent, and support had been conducted
were normalized by the true correlation length. The overall
trend of the effect of measurement scale on the apparent
variance and the apparent correlation length is consistent
with that in Fig. 4 but now, the effects can be discussed more
quantitatively and are more comparable with the results
from other studies, regardless of the differences in the true
correlation length.

Spacing had no significant effect on the apparent normal-
ized variance but did affect the apparent normalized corre-
lation length and the nugget–sill ratio (see Fig. 5a). The
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biases for variance were all lower than 26 % (except for
39.6 % at the spacing of 50 m) when the spacing changed
within 1.6×1true (i.e. 110 m). However, when the spacing
exceeded 1.6×1true, the biases were more than 50 % for
most spacings. Hence, sampling at a greater density than
1.6×1true, with a sample number of 40 was suitable when
designing a sampling strategy for variance in the present
study. Once spacing exceeded about two times the true cor-
relation length, the apparent correlation length was biased by
up to a factor of two. The nugget–sill ratio was more affected
by spacing than by correlation length. If the spacing was large
enough, the value of the nugget–sill ratio might be as small as
5% of its true value. Extent had a significant effect on both the
apparent correlation length and the apparent nugget–sill ratio,
but its effect on the apparent variance was relatively small (see
Fig. 5b). The mean biases were −15.4 % (ranging from 0
to −37.4 %), −50.5 % (ranging from 0 to −71.4 %)
and −61.3 % (ranging from 0 to −88.5 %) for variance,
nugget–sill ratio, and correlation length, respectively, when
the sampling extent decreased from 500 to 62.5 m. One-way
ANOVA proved that the differences were all significant (p<
0.01) except for the difference between the nugget–sill ratio
and the correlation length. Compared with spacing or support,
extent was more closely related to the three variables having
mean coefficient of determination values of 0.53, 0.88 and
0.96 for spacing, support and extent, respectively. As long as
the extent was greater than about seven times the true corre-
lation length, the bias in variance, correlation length, and
nugget–sill ratio was small, each being more than 75 % of
their true values. However, when the extent was as small as
the true correlation length, which was close to the smallest
investigated scale, the apparent variance, correlation length,
and nugget–sill ratio also reached their lowest values at 60, 10,
and 35 % of their true values, respectively. Support signifi-
cantly affected all the statistical parameters. If it was smaller
than about 15 % of the true correlation length, the biases in
variance, correlation length, and nugget–sill ratio were small.
However, if support increased, the apparent variance could be
as small as 20 % of the true value, the correlation length could
be as large as six times the true value and the nugget–sill ratio
could be as small as 1 % of its true value (see Fig. 5c). All of
these effects, except for that of spacing on variance, were
significant (p<0.01) and most of the results corroborated the
findings of Western and Blöschl (1999) who investigated the
variance and correlation length of soil moisture data.

Figure 5 clearly shows that the ideal case for a sampling
scale is one with a very small spacing, a very large extent and a
very small support, which all lead to the apparent variance,
correlation length, and nugget–sill ratio being closer to their
true values. As spacing increased, or extent decreased, or
support increased, bias is introduced. However, since the
taking of more samples implies higher costs, it is important
to identify an optimal sampling scale. Since the nugget–sill

ratio is a non-dimensional parameter without physical signif-
icance, we will discuss only the sampling scales of variance
and correlation length. In practice, support is usually deter-
mined by the measurement technique and is chosen by default
when the measurement technique is chosen. In addition, since
support is usually very small in field studies, it is generally not
the limiting factor. Table 3 showed the required scales for
apparent variance and correlation length, in terms of sampling
spacing and extent, under different bias levels. As discussed
above, sampling spacing had no significant effect on variance,
so spacing was not an effective index by which to predict
variance. With the decrease of acceptable bias, the sampling
spacing should decrease and sampling extent should increase.
Furthermore, the correlation length required sampling at a
lower sampling spacing and at a greater extent than variance.
For example, the sampling extent for variance should
be >0.2×1ture, >1.1×1ture, >4.5×1ture, and >6.0×1ture if the
admissible bias is 50, 30, 10, and 5 %, respectively. However,
the critical extent is 5.6×1ture, 7.5×1ture, 9.2×1ture, and
9.6×1ture, respectively, for the same bias for correlation length
(see Table 3).

Sampling extent was more closely related to all three
parameters when compared with spacing and support, which
resulted in upscaling or downscaling being more accurate
for extent than for the other scale indexes based on the
results of this study. For an area with uniform soil and
vegetation properties, it would be more reasonable to dis-
tribute sampling locations in a smaller sub-area at a higher
density than to distribute them across the whole study area at
a lower density. However, if the study area demonstrated
greater spatial heterogeneity, the choice of a sub-area, which
could accurately represent the mean condition of the whole
area, needs to be made more carefully. For the sub-area, we
could obtain the extent using Eq. (5) and apparent variance,
correlation length, and nugget–sill ratio using classical sta-
tistics and geostatistical analysis. Through the polynomial
equation presented in Fig. 5b (center), we could calculate

Table 3 Sampling scales required for apparent variance (δapp
2) and

apparent correlation length (1app) under the allowable biases

Bias (%) Parameters Spacing (m)a Extent (m)

<50 δapp
2 – >0.2×1true (21)

1app <1.8×1true (126) >5.6×1true (299)

<30 δapp
2 – >1.1×1true (77)

1app <1.8×1true (126) >7.5×1true (525)

<10 δapp
2 – >4. 5×1true (315)

1app <1.7×1true (117) >9.2×1true (644)

<5 δapp
2 – >6.0×1true (420)

1app <1.4×1true (101) >9.6×1true (671)

a The number in brackets indicates the scale (in meters) needed in the
present study
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the true correlation length. Then true variance and true
nugget–sill ratio values could be obtained from the equa-
tions also presented in Fig. 5b (top and bottom). If the
sampling spacing and sampling support were inconsistent
with the case of Fig. 5b, we could convert them by the
equations presented in Fig. 5a or in Fig. 5c. However, the
disadvantage of doing this is that bias would be introduced
during the conversion.

4 Conclusions

In the presented study, we examined the effect of using re-
sampling analyses on the apparent spatial statistical proper-
ties of KS (variance, correlation length, and nugget–sill
ratio) as the scale of three aspects of sampling—spacing,
extent and support—changes. We concluded that:

(1) The statistical properties for KS were scale-dependent.
Apparent variance tended to decrease with increase in
sampling spacing but increased with increase in extent
and decreased with increase in support. Apparent cor-
relation length always increased with increases in spac-
ing, extent or support. Apparent nugget–sill ratios
decreased with increase in spacing and support, and
increased with increase in extent. All the fitted rela-
tions were significant (p<0.01) except for that between
variance and spacing.

(2) Upscaling or downscaling for the parameters of KS

were more reliable when based on sampling extent
than on spacing or support in this study. Consequently,
distributing limited sample locations in a sub-area of
the main study area at a higher sampling density is an
alternative sampling method, especially in a more ho-
mogeneous study area.

(3) The investigated statistical properties behaved differ-
ently according to sampling scales. For example, cor-
relation length required more samples than variance for
the same bias.

Our results could increase the understanding of the
effects of scaling on KS determinations for an area, and aid
decision-making when planning sampling strategies. How-
ever, the present study was conducted in a small area (50 ha)
for KS alone. Hence, additional studies are needed for larger
study areas and for other soil properties to examine whether
the results were site and/or variable specific.

Acknowledgments This work was supported by the innovation team
project of the Ministry of Education, China (No. IRT0749), and the
National Natural Science Foundation of China (41071156). The
authors are indebted to the editor and reviewers for their valuable
comments and suggestions. We also thank Mr. David Warrington for
his zealous help in improving the manuscript. Special thanks to the

staff of Shenmu Erosion and Environment Station of the Institute of
Soil and Water Conservation of CAS.

References

Armstrong A, Quinton JN, Francis B, Heng BCP, Sander GC (2011)
Controls over nutrient dynamics in overland flows on slopes
representative of agricultural land in North West Europe. Geo-
derma 164:2–10

Biswas A, Si BC (2011) Identifying scale specific controls of soil water
storage in a hummocky landscape using wavelet coherency. Geo-
derma 165:50–59

Blöschl G (1998) Scale and scaling in hydrology—a framework for
thinking and analysis. Wiley, Chichester

Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling—
a review. Hydrol Process 9:251–290

Buttle JM, House DA (1997) Spatial variability of saturated hydraulic
conductivity in shallow macroporous soils in a forested basin. J
Hydrol 203:127–142

Chien YJ, Lee DY, Guo HY, Houng KH (1997) Geostatistical analysis
of soil properties of mid-west Taiwan soils. Soil Sci 162:291–297

Dörner J, Dec D, Peng X, Horn R (2010) Effect of land use change on
the dynamic behaviour of structural properties of an Andisol in
southern Chile under saturated and unsaturated hydraulic condi-
tions. Geoderma 159:189–197

Ehigiator OA, Anyata BU (2011) Effects of land clearing techniques
and tillage systems on runoff and soil erosion in a tropical rain
forest in Nigeria. J Environ Manage 92:2875–2880

Franklin RB, Mills AL (2003) Multi-scale variation in spatial hetero-
geneity for microbial community structure in an eastern Virginia
agricultural field. FEMS Microbiol Ecol 44:335–346

Fu XL, Shao MA, Wei XR, Horton R (2010) Soil organic carbon and
total nitrogen as affected by vegetation types in Northern Loess
Plateau of China. Geoderma 155:31–35

Gamma Design Software (2004) GS+ Version 7. GeoStatistics for the
Environmental Sciences. User’s guide. Gamma Design Software,
LLC pp 160

Gao L, Shao MA (2012) The interpolation accuracy for seven soil
properties at various sampling scales on the Loess Plateau, China.
J Soils Sediments 12:128–142

Garten CT Jr, Kang S, Brice DJ, Schadt CW, Zhou J (2007) Variability
in soil properties at different spatial scales (1 m–1 km) in a
deciduous forest ecosystem. Soil Biol Biochem 39:2621–2627

Gelhar LW (1993) Stochastic subsurface hydrology. Prentice Hall,
Englewood Cliffs, p 390

Gupta RK, Rudra RP, Dickinson WT, Patni NK, Wall GJ (1993)
Comparison of saturated hydraulic conductivity measured by
various field methods. Trans ASAE 36:51–55

Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for
habitat suitability modeling. Ecol Model 157:331–341

Hu W, Shao MA, Wang QJ, Fan J, Reichardt K (2008) Spatial vari-
ability of soil hydraulic properties on a steep slope in a Loess
Plateau of China. Sci Agric 65:268–276

Hu W, Shao MA, Wang QJ, Fan J, Horton R (2009) Temporal changes
of soil hydraulic properties under different land uses. Geoderma
149:355–366

Jenkins GM, Watts DG (1968) Spectral analysis and its applications.
Holden–Day, San Francisco, p 525

Journel AG (1980) The lognormal approach to predicting local distri-
butions of selective mining unit grades. Math Geol 12:285–303

Kerry R, Oliver MA (2007) Comparing sampling needs for variograms
of soil properties computed by the method of moments and
residual maximum likelihood. Geoderma 140:383–396

874 J Soils Sediments (2012) 12:863–875



Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity. In:
Klute A (ed) Methods of soil analysis, Part 1. Am Soc Agron
Monograph 9:687–734

Krige DG (1994) A statistical approach to some basic mine valuation
problems on the Witwatersrand. J S Afr Inst Min Metall 94:95–111

Lauren JG, Wagnet RJ, Bouma J, Wosten JHM (1988) Variability of
saturated hydraulic conductivity in a glossaquic hapludalf with
macropores. Soil Sci 145:20–28

Lima MPR, Soares AMVP, Loureiro S (2011) Combined effects of soil
moisture and carbaryl to earthworms and plants: Simulation of
flood and drought scenarios. Environ Pollut 159:1844–1851

Lin HS, Wheeler D, Bell J, Wilding L (2005) Assessment of soil spatial
variability at multiple scales. Ecol Model 182:271–290

Liu XY (1982) The research method of soil physics and soil meliora-
tion. Shanghai Technology Press, Shanghai (in Chinese)

Logsdon SD (2002) Determination of preferential flow model para-
metres. Soil Sci Soc Am J 66:1095–1103

Matalas NC (1967) Mathematical assessment of synthetic hydrology.
Water Resour Res 3:937–945

Mohanty BP, Kanwar RS, Everts CJ (1994) Comparison of saturated
hydraulic conductivity measurement methods for a glacial-till
soil. Soil Sci Soc Am J 58:72–677

Mohanty BP, Mousli Z (2000) Saturated hydraulic conductivity and
soil water retention properties across a soil-slope transition. Water
Resour Res 36:3311–3324

Moustafa MM (2000) A geostatistical approach to optimize the determi-
nation of saturated hydraulic conductivity for large-scale subsurface
drainage design in Egypt. Agric Water Manag 42:291–312

Mualem Y (1992) Modeling the hydraulic conductivity of unsaturated
porous media. In: van Genuchten MTH, Leij FJ, Lund FJ (eds)
Indirect methods for estimating the hydraulic properties of unsat-
urated soils. University of California, Riverside, pp 15–36

Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data
to determine soil hydraulic properties. Soil Sci Soc Am J 49:831–836

Rawls WJ, Gimenez D, Grossman R (1998) Use of soil texture, bulk
density, and slope of the water retention curve to predict saturated
hydraulic conductivity. Trans ASABE 41:983–988

Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal
water transport between soil layers by Artemisia tridentata roots.
Oecologia 73:486–489

Rodríguez-Iturbe I, Vogel GK, Rigon R, Entekhabi D, Castelli F,
Rinaldo A (1995) On the spatial organization of soil moisture
fields. Geophys Res Lett 22:2757–2760

Romano N (1993) Use of an inverse method and geostatistics to
estimate soil hydraulic conductivity for spatial variability analy-
sis. Geoderma 60:169–186

Ruiz-Sinoga JD, Martínez-Murillo JF, Gabarrón-Galeote MA, García-
Marín R (2010) The effects of soil moisture variability on the
vegetation pattern in Mediterranean abandoned fields (Southern
Spain). Catena 85:1–11

Russo D, Jury WA (1987) A theoretical study of the estimation of the
correlation scale in spatially variable fields: 1. Stationary fields.
Water Resour Res 23:1257–1268

Saito H, Goovaerts P (2000) Geostatistical interpolation of positively
skewed and censored data in a dioxin-contaminated site. Environ
Sci Technol 34:4228–4235

Sobieraj JA, Elsenbeer H, Coelho RM, Newton B (2002) Spatial
variability of soil hydraulic conductivity along a tropical rain-
forest catena. Geoderma 108:79–90

Sobieraj JA, Elsenbeer H, Cameron G (2004) Scale dependency in
spatial patterns of saturated hydraulic conductivity. Catena 55:49–
77

Tang KL, Hou QC, Wang BK, Zhang PC (1993) The environment
background and administration way of wind-water erosion criss-
cross region and Shenmu experimental area on the Loess Plateau.
Mem NISWC Acad Sin Minist Water Conserv 18:2–15 (in
Chinese)

Topp GC, Zebchuk WD, Dumanski J (1980) The variation of in situ
measured soil water properties within soil map units. Can J Soil
Sci 60:497–509

Van Groenigen JW, Siderius W, Stein A (1999) Constrained optimisa-
tion of soil sampling for minimisation of the kriging variance.
Geoderma 87:239–259

Van Schilfgaarde J (1970) Theory of flow to drains. In: Chow VT (ed)
Advances in hydroscience, vol 6. Academic, London, pp 43–106

Vanmarcke E (1983) Random fields: analysis and synthesis. The MIT
Press, Cambridge, p 382

Wang YQ, Shao MA, Gao L (2010) Spatial variability of soil particle
size distribution and fractal features in Water-Wind Erosion Criss-
cross Region on the Loess Plateau of China. Soil Sci 175:579–589

Wang YQ, Shao MA, Zhu YJ, Liu ZP (2011) Impacts of land use and
plant characteristics on dried soil layers in different climatic
regions on the Loess Plateau of China. Agr Forest Meteorol
151:437–448

Western AW, Blöschl G (1999) On the spatial scaling of soil moisture.
J Hydrol 217:203–224

Yang JL, Zhang GL (2011) Water infiltration in urban soils and its
effects on the quantity and quality of runoff. J Soils Sediments
11:751–761

Zimmermann B, Elsenbeer H (2008) Spatial and temporal variability of
soil saturated hydraulic conductivity in gradients of disturbance. J
Hydrol 361:78–95

J Soils Sediments (2012) 12:863–875 875


	Spatial scaling of saturated hydraulic conductivity of soils in a small watershed on the Loess Plateau, China
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Field site description
	Sampling and measurements
	Data analysis methodology
	Analysis of the full dataset
	Re-sampling analyses


	Results and discussion
	Conclusions
	References




