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Abstract

Purpose At the land—ocean interface, large river deltas are
major sinks of sediments and associated matter. Over the
past decennia, many studies have been conducted on the
palacogeographic development of the Rhine delta and
overbank deposition on the Rhine floodplains. This paper
aims to synthesise these research results with special focus
on the amounts and changes of overbank fines trapped in
the Rhine delta and their controls at different time scales in
the past, present and future.

Materials and methods Sediment trapping in the Rhine
delta throughout the Holocene was quantified using a
detailed database of the Holocene delta architecture.
Additional historic data allowed the reconstruction of the
development of the river’s floodplain during the period of
direct human modification of the river. Using heavy metals
as tracers, overbank deposition rates over the past century
were determined. Measurements of overbank deposition
and channel bed sediment transport in recent years, together
with modelling studies of sediment transport and deposition
have provided detailed insight in the present-day sediment
deposition on the floodplains, as well as their controls.
Results and discussion Estimated annual suspended sediment
deposition rates were about 1.4x 10 kg year ' between 6,000
and 3,000 years BP and increased to about 2.1x 10° kg year
between 3,000 and 1,000 years BP. After the rivers were
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embanked by artificial levees between 1100 and 1300 AD,
the amount of sediment trapped in the floodplains reduced to
about 1.16x10” kg year . However, when accounting for re-
entrainment of previously deposited sediment, the actual
sediment trapping of the embanked floodplains was about
1.86x10° kg year . Downstream of the lower Waal branch
an inland delta developed that trapped another 0.4x
10° kg year ' of overbank fines. Since the width of channel
was artificially reduced and the banks were fixed by a regular
array of groynes around 1850, the average rates of deposition
on the embanked floodplains have been 1.15x10° kg year .
Scenario studies show that the future sediment trapping in the
lower Rhine floodplains might double.

Conclusions The variations in amounts of sediment trapped in
the Rhine delta during the past 6,000 years are largely
attributed to changes in land use in the upstream basin. At
present, the sediment trapping efficiency of the floodplains is
low and heavily influenced by river regulation and engineering
works. Upstream changes in climate and land use, and direct
measures for flood reduction in the lower floodplains, may
again change the amounts of sediments trapped by the lower
floodplains in the forthcoming decades.

Keywords Floodplains - Holocene - Preservation -
River deltas - Sedimentation - Trapping efficiency

1 Introduction

At the land—ocean interface, large river deltas are major sinks
of sediments and associated matter, such as contaminants,
carbon and nutrients. This filtering function has a profound
impact on the material fluxes from the continent into the
coastal zones and oceans (e.g., Bianchi and Allison 2009). As
a result of the continuous deposition of sediments and
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associated constituents, river deltas can provide important
records of changes in climate, land use and direct human
modification of the river system. Human interference has not
only affected the river deltas as places of intense land use
and with dense population and industrial activities but also
through changes to the land cover of the upland catchment
and modifications to the upstream river channel (for
example, by damming, dredging or channelisation). Both
natural and human impacts have greatly affected fluxes and
quality of water and sediment in many major river basins
across the globe during the past centuries to millennia
(Syvitsky 2003). Considering the potentially large impacts
on the river system, their effects are often detectable in the
depositional record of large river deltas. This, in turn, makes
large river deltas important natural archives for reconstructing
past environmental changes in the upstream river system.

A necessary prerequisite for reconstructing past changes
in river systems from deltaic deposits is that sediments from
past times representing different conditions of climate, land
cover and human impact have been preserved and can be
identified with sufficient spatial and temporal resolution.
The Holocene Rhine—Meuse delta forms a unique palaco-
environment to study sediment trapping on a millennia
timescale. This delta contains a relatively complete geological
record, as a result of rapid aggradation during the Holocene,
governed by eustatic sea level rise and land subsidence
(Torngvist 1993; Berendsen and Stouthamer 2000; Gouw
and Erkens 2007). During the past decades, the palacogeo-
graphic development of the delta has been extensively studied
and an extremely detailed database of the Holocene delta
architecture has been established (Berendsen and Stouthamer
2000; Berendsen and Stouthamer 2001; Gouw 2008).

Sediment trapping in the Rhine delta continued until
man started large-scale river management and engineering
works to protect the cultivated and occupied land in the
delta from flooding. The construction of dikes and embank-
ments commenced around 1000 AD, which constrained the
river and completely prevented flooding and sediment
deposition in the floodplain area behind the dikes. In the
mid-nineteenth century, the river channel was further
constrained by reducing the channel width and protecting
the banks from lateral erosion by a regular array of groynes.
These activities have greatly impacted the deposition of
sediments upon the floodplain. Presently, many floodplain
rehabilitation plans are being implemented for ecological
rehabilitation of the embanked floodplains and to increase
the discharge capacity of the river. To assess future changes
in sediment deposition rates, it is essential to have detailed
insight in natural and historic variations in these rates.

In this paper, we aim to synthesise a series of research
results that have been obtained in recent years on sediment
deposition in the Rhine delta. We summarise and discuss
the amounts of overbank fine sediments trapped over

different time scales in the past. We consider the millennia-
century time scale for the period 6000—1000 BP, a century
time scale for the period after embankment of the rivers in the
late Middle Ages, a decennial time scale for the period after
large-scale river normalisation works in the mid-nineteenth
century, recent sedimentation rates and scenario estimates for
sediment trapping for the next 50 years.

2 Study area

The Rhine delta in The Netherlands (Fig. 1) is one of the
largest and most complete sediment sinks in the Rhine river
basin (Hoffmann et al. 2007) and presently covers an area of
about 3,100 km?®. At present, the Rhine discharges about
2,200 m®> s ' with an average annual suspended sediment
load of 3.1x10° kg year ' (Middelkoop and Van Haselen
1999). The Waal branch is the main distributary, carrying two
thirds of the Rhine discharge and suspended sediment load.

Since the onset of deltaic deposition about 9,000 years
ago, the Rhine delta has been a near-complete sediment trap
for Rhine sediments (Beets and Van der Spek 2000; Erkens
2009). Sediment was mainly trapped in the back-barrier
area in the central part of The Netherlands, where sea-level
rise resulted in up to 20 m of accumulated Holocene
deposits (Erkens et al. 2006; Hijma et al. 2009). Holocene
aggradation in the Rhine delta started around 9,000 cal year
BP in the downstream area and gradually shifted upstream
to start around 5,000 BP in the upstream part of the delta
(Gouw and Erkens 2007). Proximal to the channel, overbank
deposits are mainly sandy and silty clays, in more distal
flood basins they consist of silty clay and clay. The total
thickness of the fluvial overbank deposits increases from
about 1 m near the delta apex to over 10 m in the near-coast
area. The upstream part of the delta is characterised by wide
meandering channel belts and the flood basins almost
entirely consist of clastic deposits. Downstream (towards
the West) channel belts become narrower and are larger in
number. In the flood basins, organic beds of increasing
thickness occur, intercalated by clastic overbank deposits
from the fossil river channels (Berendsen and Stouthamer
2000; Cohen 2003; Gouw and Erkens 2007).

Between 1000 and 1350 AD, local dikes protecting flood
basins from inundation were merged, resulting in the complete
embankment of the Rhine distributaries (Middelkoop 1997,
Hesselink 2002). Between the dike and the river channel, a
few hundreds of metres wide active floodplain (“embanked
floodplains™) remained subjected to fluvial processes. Within
the confines of the dikes, sand and clay were both deposited
and eroded by the river. The distal floodplain had become
disconnected from the river.

Due to two storm surges from the North Sea and two
floods of the river Rhine between 1421 and 1424 AD,
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Fig. 1 Rhine delta in The Netherlands with main distributaries. The inset shows the Biesbosch inland delta (modified from Kleinhans et al. (2010))

commonly known as the St. Elisabeth flood, a previously
reclaimed area in the southwestern part of the Rhine delta
was inundated. In about two centuries following the
catastrophic inundation, half the inundated area was filled
up by a shallow deltaic splay which is 85 km? in size and
up 9 to 4 m thick, consisting of channel bed sands covered
by a 1- to 2-m thick layer of silty clays (Kleinhans et al.
2010). This area became known as “the Biesbosch” and
functioned as a major trap of suspended sediments between
about 1600 and 1850 AD, until it was almost entirely
protected from flooding by artificial levees.

By the seventeenth century, local minor levees (“summer
dikes”) were erected along the channel margin to prevent
the embanked floodplain from being inundated by minor
floods during the growing season. However, when these
summer dikes are overtopped, the embanked floodplains
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function as a sediment trap. In the mid- and late-nineteenth
century, the Rhine distributaries were ‘normalised’, which
implied the straightening of meander bends, construction of
groynes, reduction of the channel width and lateral fixation
of the river channel (Middelkoop and Van Haselen 1999).
At some places, the channel bed was armoured with
concrete, while banks were protected by riprap. The river
normalisation works stopped the lateral river channel
migration, which resulted in the transport and deposition
of sand to become almost exclusively limited to the channel
bed, typically in the form of migrating ripples and dunes.
Only at high discharge was sand washed onto the channel
banks, forming small natural levees. More importantly,
river normalisation enhanced the preservation potential of
embanked-floodplain clays, because it put an end to erosion
of floodplain deposits by migrating channels.
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At present, the total surface area of the embanked flood-
plains is 286 km?, which is 5.6% of the total floodplain area.
A typical profile in the embanked floodplains consists of a
clay layer of up to about 2 m in thickness, on top of sandy
channel/point-bar deposits, with occasional residual channel
fills of several metres (Middelkoop 1997; Hesselink et al.
2003). The principal land use in the embanked floodplains is
pasture land; in some areas, reversion to natural wetland
conditions has occurred (e.g. in residual channels or old clay
pits). The main industrial activity is structural-ceramics
manufacture, including clay extraction; several brick and
roof-tile plants are present, built on flood-free mounds.

3 Methods
3.1 Millennial scale (6000—1000 BP)

To reconstruct the trapping of fine overbank deposits in the
Rhine delta at the millennial time scale, the following steps
were pursued (Erkens et al. 2006): (1) determination of the
total amount of mid and late Holocene, Rhine-derived
fluvial sediments in the Rhine—Meuse delta; (2) exclusion
of channel-belt deposits (gravel to fine sand) and organics
and (3) dating of sediment layers.

The total amount of Holocene fluvial sediment in the Rhine
delta was determined using a database of 200,000 borehole
descriptions (Berendsen and Stouthamer 2001). This database
was queried for all borings that reached the Holocene—
Pleistocene interface. Using the borings selected from the
database, we created a digital elevation model (DEM) of the
Late Pleistocene surface at a spatial resolution of 250x
250 m. This DEM was subtracted from the DEM of the
modern surface at the same spatial resolution. The surface
DEM had been derived by resampling a 1-m DEM based on
laser altimetry (data from Ministry of Transport, Public
Works and Water Management). Multiplication of the sum of
the resulting thickness of the Holocene deposits by the grid
cell size yielded the total deltaic volume.

The northern and southern limits of the delta, where
fluvial deposits thin out against higher topography (last
glacial cover sands, draped over older landforms), were
defined as the zone where the fluvial overbank deposits are
less than 1 m thick. The south-eastern part of the delta
contains considerable amounts of Meuse sediments, whilst
sedimentation dynamics downstream the Rhine—Meuse
confluence are dominated by the Rhine that discharges ten
times more water than the Meuse. Therefore, we excluded
all Meuse sediments deposited upstream of the most eastern
confluence, which has shifted in time, from further analysis.
We considered the Dutch—German border as the eastern
limit, where the delta now grades into the lower valley.
Towards the west, fluvial deposits grade into tidally influ-

enced deposits (estuaries, inlets, lagoons). We included fluvial
lagoonal deposits in the central Netherlands as these sedi-
ments are probably all Rhine sediments, but we excluded
marine deposits. The western limit was defined where
lagoonal peat forms the maximum proportion of the total
Holocene thickness (see Erkens et al. (2006) for more details).

To determine the amount of overbank fines, we used a
detailed cross-section across the Rhine delta oriented perpen-
dicular to the general flow direction (see Fig. 1). This cross-
section was compiled by Cohen (2003) from a total of 286
borings retrieved from the archives at Utrecht University
(Cohen 2003; Berendsen 2005). The average borehole
spacing in the cross-section is less than 100 m to obtain an
adequate overview of the lithostratigraphy (Weerts and
Bierkens 1993). It was classified into channel belts repre-
sented by relatively large sand bodies and associated overbank
deposits. The overbank deposits were further subdivided into
natural levee deposits, crevasse-splay deposits and clayey
floodplain deposits. Peat and organic mud, commonly found in
the floodplain, were included in an “organics” unit.

To determine the changes in fine sediment deposition
through time, isochrones for 1,000-year intervals were con-
structed for each cross-section based on datings of sediment.
This procedure is illustrated in Fig. 2. Approximately 28 '*C-
dates of floodplain deposits provide the framework for the
isochrones. Further, dating evidence used to construct time
lines is the established period of activity of the channel belts
and the associated overbank deposits. The period of activity
of the channel belts was based on Berendsen and Stouthamer
(2001) and Cohen (2003): the beginning of activity of a
channel belt was assumed to correlate with the base and the
end of the activity with the top of the overbank deposits of the
associated overbank deposits. In the floodplain, peat and dark-
coloured palaeo-A-horizons (e.g. Berendsen and Stouthamer
2001), which represent periods of little or no sedimentation,
were interpreted as associated time markers. Where the above-
described techniques were ineffective, timelines were recon-
structed based on the output of a 3D groundwater level model
(Cohen 2005). The proportion of silt and clay deposits per
time slice was calculated from the cross-section, and
subsequently, the proportion was multiplied by the total volume
of the Holocene fluvial sediments to obtain the total volume of
overbank fines in the Rhine delta. For this study, the results of
individual 1,000-year time slices were combined to derive two
time slices: 6,000—3,000 cal year BP and 3,000—1,000 cal year
BP. The volumes were converted to mass by assuming a
density of 1,300 kg m™ for all overbank sediments.

These results prove to be robust as they match well with the
results of Erkens (2009), who calculated deposited volumes
for the same time period in more detail and with a different
method (e.g. using more cross-sections). Obviously, the
results in this paper represent the preserved volumes of clay
deposits. However, Erkens (2009) determined that preservation
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Fig. 2 Part of the central cross-section (A—A’ in Fig. 1) (Cohen 2003; Erkens et al. 2006), subdivided in successive 1,000-year time slices based

on isochrones

of the delta was high during the Holocene and that on average
82% of the suspended load deposits were preserved, a value
which is expected to be even higher for the last 6,000 years.

3.2 Deposition after embankment

Channel dynamics reconstructed using previous studies of
old river maps (Middelkoop 1997; Wolfert 2001; Hesselink
2002). By comparing time sequences of old river maps of
different age mutually and with the present-day floodplain
geomorphology, it was possible to reconstruct for many
floodplain sections the changes in channel position, lateral
channel migration and associated changes in floodplain area
since about 1600 AD. The applied method is described in
detail by Hesselink (2002).

The occurrence of superficial clay deposits in the
embanked floodplains was assessed using a 3D clay-
resource model presented by (Van der Meulen et al. 2005,
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Van der Meulen et al. 2007). This geo-cellular model was
obtained by a 3D interpolation of lithological composition
(i.e. proportions of clay, sand, gravel, etc.), using about
380,000 borehole descriptions. Model raster dimensions are
250%250%0.2 m down to 3 m below the surface and 250 x
250x1 m below that level. From these data, clay volumes
within the embanked floodplains were identified by
analyses of vertical model-cell stacks. These volumes were
considered as the total volume of clay deposition since
embankment that has been preserved until to date (Hesselink
2002). However, during the 1300-1850 AD time, slice major
parts of the embanked floodplains were eroded by lateral
channel migration. Thus, the amounts of sediments that have
been preserved are considerably smaller than the amounts of
overbank fines that were actually deposited. We, therefore,
separately calculated this actual amount of deposition by
multiplying the preserved amounts of overbank fines from
this period by (1+R), where R is the fraction of the area that
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was reworked by the river during the period. The surface
area of reworked floodplains was estimated using old river
maps that document lateral migration of the river channel
over the past centuries, in combination of floodplain
morphology that reflects a former position of the river
channel (Middelkoop 1997; Hesselink 2002).

To estimate the amount of fine overbank deposits in the
Biesbosch area, we used the data collected by Kleinhans et
al. (2010). They used 360 borehole descriptions document-
ing the deltaic splay deposits from three sources: (1) data
from the archives at Utrecht University, (2) data from the
database of TNO/Geological Survey of The Netherlands
and (3) data of Zonneveld (1960).

3.3 Deposition since 1850 normalisation

The normalisation works around 1850 coincided with the onset
of the Industrial Revolution, which led to a significant increase
of the metal loads in the Rhine River (Middelkoop 2000).
These increased loads are well reflected in floodplain deposits
as increased metal concentrations. Therefore, we identified the
overbank deposits formed after the 1850 normalisations on
the basis of their increased heavy metal concentrations (Pb,
Zn, Cu and Cd). For this purpose, we used the data collected
by Middelkoop (1997, 2000, 2002) and Hobo et al. (2010),
which include heavy metal profiles taken along transects
perpendicular to the main channel in various floodplain
sections along each Rhine distributary. In total, these data
comprised 13 profiles along the IJssel, eight along the
Nederrijn-Lek, and 22 profiles along the Waal. First, we used
the dating results that were obtained by Middelkoop (2002)
and Hobo et al. (2010). Second, for each distributary, we
determined the average proportion of the vertical profiles with
elevated metal concentrations compared to the metal concen-
trations in the deepest part of the profiles. This provided an
estimate of the average proportion of the overbank fines that
were deposited after 1850 AD along each distributary.

3.4 Contemporary and future sedimentation rates

Contemporary sedimentation rates were determined from
measured overbank deposition during flood events using
sediment traps (Middelkoop and Asselman 1998; Thonon
2006) and using model calculations (Van der Perk et al.
2008; Straatsma et al. 2009). We used a combination of a
hydrodynamic model (WAQUA) that simulates the 2D water-
flow patterns (Ministry of V&W 2009) and a sedimentation
model (SEDIFLUX) that simulates sediment transport and
deposition (Middelkoop and Van der Perk 1998; Straatsma et
al. 2009). We ran WAQUA for 13 steady-state Rhine
discharges between 3,500 and 16,000 m> s~! at Lobith near
the German—Dutch border. The average annual flow dura-
tions for the present situation were derived from the observed

daily Rhine discharges at Lobith between 1901 and 2007.
The associated suspended sediment concentrations in the
lower Rhine were obtained using a sediment rating curve
(Thonon 2006). Model-parameter values used in SEDIFLUX
for sediment-settling velocity (6.7x10° m s') and critical
bed-shear stress for sedimentation (2.0 N m2) were assigned
based on previous modelling studies (Middelkoop and Van
der Perk 1998; Asselman and Van Wijngaarden 2002;
Thonon et al. 2007). The annual average sediment deposition
rates were calculated using the discharge frequency distribu-
tion and the sediment rating curve.

To estimate the potential changes in future sediment deposi-
tion on the embanked floodplains, we considered climate-
induced upstream changes in river discharge and suspended
sediment yield in the river as well as various measures for flood
reduction and restoring natural conditions in the embanked
floodplain area, projected to the year 2050 (Straatsma et al.
2009). We used the climate projections provided by the Royal
Dutch Meteorological Survey (KNMI) (Van den Hurk et al.
2006), from which we applied the KNMI-W scenario. This
scenario assumes a 2°C increase in temperature, a change in
precipitation of +6% in winter and —5% in summer and an 8%
increase in summer evaporation from 1990 to 2050. The flow
durations for the 2050 KNMI-W climate scenario were
calculated following the methodology presented in Thonon
(2006). Suspended sediment concentrations for the 2050
scenario calculations were obtained by adopting the sediment
rating curve estimated by Thonon (2006): Cps9 = 25.5+
1.96 x 107°0'¥ where C,pso=the suspended sediment
concentration estimated for the year 2050 (mg I'") and Q =
discharge at Lobith (m® s").

The future landscape of the embanked floodplains may
drastically change, depending on the measures that may be
undertaken for flood reduction, nature development, recreation,
infrastructure and other use of the floodplain area. Scenarios for
the layout of the floodplains of the River Waal in the Nether-
lands for 2050 were obtained from Straatsma et al. (2009), who
used a new value-based methodology for this purpose. Three
fundamentally different sets of landscaping measures were
defined that might be implemented by the year 2050:

* A relativistic scenario (“green”); measures comprise side
channels with naturally vegetated banks, 32 floodplain
lowering projects, three dike section relocations, minor
embankment removal and natural management of flood-
plain ecotopes.

* A materialistic scenario (“orange”) characterised by a
productive-efficient layout. Measures comprise deep side
channels, 51 floodplain lowering projects, minor embank-
ment removal and emphasised agricultural production.

* A systemic scenario (“yellow”) with a diverse pattern of
city expansion, nature development, agricultural pro-
duction and innovative groyne lowering. It comprised
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52 floodplain height change projects, minor embank-
ment removal outside the production regions and seven
dike repositioning projects.

For each scenario, the landscaping measures were
translated into a future topography and hydraulic roughness
distribution, implemented in the WAQUA-SEDIFLUX
models, and run for the future discharge and suspended
sediment loads in the Waal branch.

4 Results and discussion

The total mass of Holocene overbank fines currently present
in the entire Rhine delta amounts to about 15.8x10'% kg, of
which 93% was deposited before river embankment between
1100 and 1300 AD and 7% afterwards. Table 1 and Fig. 3
summarise the total volumes and masses of overbank fines
deposited in the delta during the considered time slices in
after 6000 BP.

4.1 Middle Holocene (6000—3000 BP) deposition rates

Between 6000 and 3000 BP about 4.1x10'* kg overbank
fines were deposited, which corresponds to an average
sedimentation rate of 1.4x10° kg year ' for this period. After
6,000 BP, the rate of eustatic sea level rise had strongly
decreased. A remaining relative sea level rise during the last
5,000 years was caused by land subsidence, mainly due to
compaction of previously deposited deltaic sediments (Cohen

2003; Gouw and Erkens 2007; Erkens 2009). Nevertheless,
the lower relative sea level rise allowed the delta to gradually
expand in upstream direction. Under these conditions,
considerable peat formation occurred, indicating that sedi-
ment supply was not sufficient to fill the available accom-
modation space (Erkens 2009). It is, therefore, likely that the
trapping efficiency of the delta was relatively high, particu-
larly when compared to fluvial valley environments (Erkens
2009). This suggests that the bulk of the overbank sediment
delivered to the delta was trapped on its way to the North
Sea.

4.2 Late Holocene (3000—1000 BP) deposition rates

After 3000 BP, a distinct shift in sedimentation occurred:
peat formation in the flood basins almost ceased while
overbank sedimentation increased across the entire delta
(Berendsen and Stouthamer 2000; Cohen 2005; Erkens
2009). Furthermore, two northern branches became active,
and sedimentation began along the Utrechtse Vecht (after
3000 BP), (Bos et al. 2009) and the Gelderse [Jssel (after
1500 BP) (Makaske et al. 2008; Erkens 2009). This
expansion of the delta was no longer solely determined by
relative base level rise but was also the result of increasing
sediment deposition. A total mass of 4.2x10'? kg sediment
was deposited between 3000 and 1000 BP, comprising
3.2 km®. The average deposition amount over this time
slice is 2.1x 10 kg year '. Since the creation of accommo-
dation space did not significantly change compared to the
middle Holocene, the enhanced deposition must be attrib-

Table 1 Amount of overbank fine sediment deposition during different phases in the past

Time slice Compartment Volume Mass Amount per year Amount per year + remob?®
[10°m®]  [10%kg]  [10°kg year '] [10°%kg year ']
Mid-Holocene (6000-3000 BP) Rhine delta 3.18 4,134 1.38 -
Late Holocene (3000-1000 BP) Rhine delta 3.22 4,186 2.09 -
After embankment (1300-1850 AD) Rhine branches 0.39 508 0.92 1.62
Issel 0.14 187 0.34 0.55
Nederrijn-Lek 0.12 160 0.29 0.52
Waal 0.12 161 0.29 0.55
Biesbosch 0.17 221 0.40 0.40
Extracted floodplain clay 0.10 131 0.24 0.24
Total 0.66 860 1.56 2.26
After normalisation (1850—present) Rhine branches 0.11 138 0.92 0.92
Issel 0.03 40 0.27 0.27
Nederrijn-Lek 0.03 34 0.23 0.23
Waal 0.05 62 0.41 0.41
Biesbosch 0.00 0 0.00 0.00
Extracted floodplain clay 0.03 35 0.23 0.23
Total 0.13 173 1.15 1.15

#When including sediment remobilized during the time slice
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The present and 2050 yearly deposition amounts do not include the
amounts deposited in the estuary

uted to increased sediment delivery from the Rhine
drainage basin. This late-Holocene increase in sediment
load matches the documented increase in erosion and
sediment delivery in upstream valleys, resulting from
progressive forest clearance for agriculture which started
by the Bronze Age and expanded during the Iron, Roman
and Middle Ages (Kalis et al. 2003; Méckel et al. 2003;
Hoffmann et al. 2007, 2009; Ward 2009; Erkens 2009).
Although the climate has varied as well in this period, with
climate optima during Roman and Middle Ages, the changes
in climate were too subtle to explain the major increases in
hillslope erosion reported from upstream valleys and sediment
deposition in the Rhine delta. In particular, the high sediment
deposition since the Roman Age must be attributed to human
land use change (Erkens 2009).

4.3 Post-embankment deposition rates: 1300—1850 AD
4.3.1 Floodplains

The average thickness of overbank fines in the embanked
floodplain area is about 1.8 m for the Waal floodplain and
about 1.7 m for the other Rhine branches. The present-day
total volume is 0.50 km®, which is equivalent to an amount
of 0.64x10'% kg. Based on the depth over which increased
metal concentrations occur in floodplain profiles from
several sites, about 79% of these floodplain clays, i.e.,
0.39 km? is estimated to be pre-1850.

4.3.2 Biesbosch inland delta

A major additional amount of fluvial overbank fines was
deposited in the Biesbosch delta. The post-1421 deltaic splay
deposit is characterised by bars of medium and fine sand
dissected by channels. Most of the sand, up to 4 m thick, was

deposited proximally along the central axis of the delta (NE—
SW). The deltaic sand is capped by 1-3 m of freshwater
intertidal floodplain deposits that accumulated mostly after
1600. In the east, progressive reclamations took place in the
eighteenth and nineteenth century. Downstream from the
Biesbosch area, sediment has continued to accumulate until
today. Deposition of overbank silts and clays in the Biesbosch
amounted to 0.17 km®, which mainly occurred between 1600
and 1850 AD.

4.3.3 Clay extraction

Van der Meulen et al. (2009) estimated the annual and
cumulative volumes of clay extraction using recent clay-
production figures since 1980 in combination with produc-
tion statistics of bricks and roof tiles for 1938-1991 and
extrapolated the results back in time assuming a relation-
ship between brick production and economic growth (gross
domestic product). The resulting total amount of clay
extraction from the Rhine floodplains between 1850 and
present equals 0.13 km®, which is an average rate of 0.9 x
10° m® year '. Most of the clay extracted after 1850 AD
was deposited before 1850. We estimated that about
0.1 km® of this volume was pre-1850 clay and 0.03 km®
post-1850 clay.

4.3.4 Total deposition

When adding the total amount of pre-1850 embanked
floodplain clays, the floodplain clays in the Biesbosch
splay, and the amount of excavated clay, the resulting total
amount of floodplain deposition between 1300 and 1850 is
0.86x10'? kg, which is equivalent to a volume of 0.66 km®.
This corresponds to a net accumulation rate of 1.56x
10° kg year . However, the actual deposition rate will have
been considerably larger. Old river maps and the current
floodplain morphology indicate that about 90% of the
embanked Waal, about 80% of the embanked Nederrijn-
Lek and 60% of the embanked IJssel floodplain were
reworked between 1300 and 1850. Using these recon-
structed erosion values, the derived accumulation rates were
converted to the actual deposition rates for the 1300-1850
period. This results in a total reconstructed deposition of
1.6x10" kg and an actual deposition rate of 2.26x
10° kg year '. The latter amount is larger than the estimated
deposition rate before embankment. Assuming that the
trapping efficiency of the embanked floodplains was
smaller than the natural delta means that the sediment
delivery to the delta during the 1300-1850 period was
larger than in the Late Holocene and, presumably, also than
to date. This fits well with many reconstructions that show
medieval land use to be more intense compared to earlier
and later periods (e.g., Lang et al. 2003) and with extremely
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high suspended load values measured during the late
nineteenth century (Ward 2008).

4.4 Post-normalisation deposition rates: 1850—present

The net post-1850 accumulation comprises the currently
present amounts of overbank clays plus the amounts that
have been extracted since 1850 for brick production. Using
heavy metal profiles in floodplain sediments, Middelkoop
(2002) estimated average deposition rates of overbank fines
on different transects across the lower Rhine floodplains for
the past century to vary between 0.2 and 10 mm year .
Sedimentation rates on the Waal floodplain have been
higher than on the Nederrijn-Lek and IJssel floodplains.
The sedimentation rates decrease with increasing distance
from the river channel but may be higher in local
depressions. A minor dike may reduce the sedimentation
rate by a factor of 2 to 3. Hobo et al. (2010) found local
deposition rates varying between 3 and 10 mm year ' for
the past decades, using optically stimulated luminescence
dating (Wallinga 2001) and heavy metal profile character-
istics (Wallinga et al. 2010). These values represent total
annual amounts of clay deposition in the order of 0.4-3.7x
10° kg year' over the entire embanked floodplain area.
Based on the depth of metal contamination, the total volume
of floodplain sediments deposited since 1850 is about
0.11 km®, equivalent to a mass of 0.14x10'? kg. Accounting
for clay extraction the estimated total deposition is 0.17x
10" kg. On average, this is about 1.15x10° kg year .

The trapped amounts of sediment in the floodplains after
channel normalisation were thus considerably lower than in
the preceding period. This is likely mainly due to the fact
that the main channel no longer could erode and migrate
laterally, which prevented the “resetting” of the overbank
deposition process. Instead, floodplain sedimentation con-
tinued uninterrupted by erosion, which resulted in increas-
ingly higher floodplain surfaces with low flooding
frequencies and inherent lower deposition rates (Middelkoop
1997). The construction of minor embankments further

Table 2 Present-day suspended sediment budget of the lower Rhine

prevented flooding and sediment deposition on the
embanked floodplains. In addition, sediment yield from
the Rhine basin might have decreased after 1850 AD. In the
course of the twentieth century, large areas in the Rhine basin
became reforested, which must have reduced soil erosion and
sediment yield. In the same period, large-scale river works
were undertaken in the Rhine basin (Buck et al. 1993).
Channel banks were protected from erosion, preventing them
to function as a sediment source, while many stretches of the
upstream Rhine tributaries were regulated by weirs that trap
sediment.

4.5 Current deposition rates

At present, about 3.1 x10° kg—with year-to-year variations
between about 2.8x10° and 3.4x10° kg—suspended
sediment reaches the Rhine delta at the German—Dutch
border each year (Table 2). This sediment is distributed
over the lower Rhine branches along with the discharge
distribution; the Waal River carries about 2x10° kg year .
Sediment trap measurements undertaken by Middelkoop
and Asselman (1998), Asselman and Middelkoop (1998)
and Thonon (2006) show that present-day deposition
amounts on the embanked floodplains during individual
flood events are in the order of 0.5-7.5 mm year '. These
values are in line with Asselman and Van Wijngaarden
(2002) who calculated deposition of suspended sediments
on the floodplains using a combination of a 1D hydraulic
model and a settling model for the floodplains and found an
average value of 1.3 mm year '. This corresponds to a total
annual deposition equal to 0.48x10° kg year .

Results obtained using the SEDIFLUX model show
typical contemporary overbank sedimentation rates for
different locations and reaches of the Rhine floodplains
varying between 0.1 and 9 mm year '. The average annual
accumulation rate for the entire embanked floodplains is or
0.39x10° kg year ' of which 0.09x10° kg year ' is
deposited on the IJssel floodplain, 0.12x10° kg year ' on
the Nederrijn-Lek floodplain and 0.19x10° kg year ' on

Compartment Amount per year [10°kg year '] From total Sediment trapping efficiency
Per branch
Inflow Rhine at Lobith 3.10 - -
Deposition Rhine branches 0.39 0.13 -
Lssel 0.09 0.03 0.26
Nederrijn-Lek 0.12 0.04 0.17
Waal 0.19 0.06 0.09
Clay extraction 0.68 - -
Rhine Estuary 2.50 0.81 -
Outflow North Sea 0.20 0.06 -
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the Waal floodplain (see Table 2). The corresponding
sediment trap efficiencies for the lower Rhine branches
(calculated as the trapped amount divided by the total
amount entering each branch) are 0.26 for the IJssel,
0.17 for the Nederrijn-Lek and 0.09 for the Waal. This
larger trapping for the IJssel is due to its smaller main
channel compared to the floodplain area, whilst the
large main channel and relatively narrow floodplain
area along the Waal result in a low trapping efficiency
of this branch. The total annual conveyance loss due to
overbank sedimentation is 13% of the total annual
suspended sediment load entering the delta at Lobith.
Current amounts of clay extraction are about 0.68Xx
10° kg year ', which is remarkably larger that the annual
floodplain deposition.

The largest trapping of suspended sediment occurs in the
Rhine estuary, in the deep Rotterdam harbour area and
Haringvliet, where each year 2.5x10° kg of fine fluvial
sediments settle, which is 81% of the incoming fluvial
suspended sediment (Ten Brinke 2005). About 0.2x
10° kg year ', which is 6% of the incoming amount at
Lobith, discharges into the North Sea.

4.6 Future deposition rates

Estimates of future sediment trapping are applied to the Waal
River. Being the largest Rhine distributary, we assume that it
represents the entire lower Rhine floodplain area. The KNMI-
W climate scenario results in higher winter discharge of the
lower Rhine (Shabalova et al. 2003), which will lead to more
frequent inundation of the floodplains. Consequently, the
annual sediment deposition will increase by 58%. However,
landscaping measures will more than double the floodplain
sedimentation rate, which will increase by 112% (Green
scenario), 143% (Yellow scenario) and 148% (Orange
scenario) when compared to the present-day situation.
Spatial differentiation between the scenarios is considerable;
large increases in deposition will occur where minor
embankments are removed, floodplain surface is lowered
and side channels are dug.

5 Conclusions

The Rhine delta has experienced several phases with
remarkably different deposition amounts and rates during
the past millennia. These changes can be attributed to
different controls that were dominant during subsequent
phases in the Holocene sedimentary history of the delta.
Between 6000 and 3000 cal year BP, deposition of fine
overbank sediment took mainly place in large backswamp
areas behind the coastal barrier. Here, accommodation
space was created by relative sea level rise (i.e. land

subsidence), and the combination of peat lands and
subsidence made the delta an efficient sediment trap. After
3000 BP, human intervention in the upstream basin became
increasingly important. The expansion of agriculture at the
cost of the forest cover resulted in an increase in sediment
yield to the Rhine River. During the centuries before
embankment, this resulted in a large accumulation of
overbank fines in the entire delta. Since more than 80%
of these deposits have been preserved, residence time of
fine deposits in the natural, pre-embanked, delta is relatively
long.

The establishment of artificial levees resulted in a
dramatic decrease of total deposition amounts on the
embanked floodplains when considered over the entire
period 1300—-1850. This is due to the poor preservation of
the deposits. Until 1850, the main channels could laterally
migrate and so eroded previously deposited overbank fines.
Consequently, the residence time of the overbank fines in
this period was on average much shorter than for the pre-
embankment overbank deposits. The resulting remobilisation
of previously deposited sediment will have formed a
secondary local sediment source. However, assuming that
lateral erosion and remobilisation occurred during (near)
bankful discharge, most of these sediments may have been
carried to the estuary. When accounting for the remobilisation,
annual deposition rates were considerably higher. Due to the
wide and shallow river channel, and the periodic rejuvenation
of the floodplains, new low floodplain areas inundated
frequently and could trap large amounts of overbank fines
during a flood.

The normalisation works after 1850 resulted in a deeper
main channel, while floodplains were no longer eroded.
Inundation frequency of the aggrading floodplains decreased
over time, resulting in decreasing sedimentation rates. As a
result, the present-day trapping of sediment by the embanked
floodplains is relatively low: 13% of the sediment load
entering the delta at Lobith, and the majority of the suspended
sediment passes the floodplain reaches and is deposited in the
estuary. The preservation of this post-normalisation floodplain
sediment has been large: clay excavation for brick factories
and the digging of sand pits were the only anthropogenic
processes that caused removal of clay from the embanked
floodplains after 1850.

In the coming century, climate change causes increased
flooding of the embanked floodplains, accelerating over-
bank deposition by nearly 60%. This means an increase of
the small trapping efficiency of the present-day floodplains
from 13% to 20%. In contrast, the landscaping measures as
foreseen in the scenarios to prevent increasing flood water
levels result in a substantial increase in the interaction of
water and sediment between the main channel and the
floodplain. This will considerably increase the floodplains’
natural function as traps of overbank fines, as it will
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increase the trapping efficiency to 30% of the incoming
suspension load at Lobith.

This sequence of deposition episodes and underlying
causes of the changes in deposition excellently demonstrate
how different external forcings—both in the upstream basin
and in the delta itself—have determined and changed the
role of the Rhine floodplain as a trap of overbank fines
during the past millennia. Especially the impact of humans
on sedimentation in the Rhine delta shows an interesting
pattern. During the prehistory, humans had an indirect
impact when deforestation upstream increased the delivery
of fines to the Rhine delta. From medieval times, the direct
role of humans became apparent when they embanked the
deltaic channels and changed the functioning of the delta
(resulting in lower trap efficiency of the delta). From the
nineteenth century onwards, parts of the Rhine catchment
were reforested and indirect human impact diminished.
However, in the same period, direct human impact strongly
increased with the normalisation of the Rhine, both in the
delta and upstream. The construction of groynes and dams
impacted sediment delivery to the delta (lower) and the
functioning of the delta (lower trap efficiency, higher
preservation).

In the present-day Rhine delta, the trap efficiency, preser-
vation of deposits and upstream sediment delivery are all
strongly determined by human action and can be regarded as
highly unnatural. The many proposed landscaping measures
will considerably rehabilitate the natural role of the floodplains
as traps for fluvial sediment conveyed from the continents to
the coastal zone.
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