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Abstract
Purpose  The Higg Materials Sustainability Index (MSI) consists of five life cycle indicators to help the apparel industry 
inform material selection at the design stage. Until 2020, the Higg MSI applied a single score and after much debate, in 2021, 
indicators will no longer be aggregated. The problem of tradeoffs remains, and so this study evaluates potential aggregation 
approaches to help decision makers deal with tradeoffs that solve previous issues and allow for an integrated view.
Methods  Aggregation can be compensatory such as in the case of the weighted sum in the previous Higg MSI, or partially 
compensatory, and this relates as to how tradeoffs are managed. This study compares aggregation in the Higg MSI to four 
other aggregation methods via a comparative application using six textile materials (cotton, wool, PET, nylon 6, lyocell, and 
viscose) that, while not functionally equivalent on a mass basis, serve as an illustration of the effects of aggregation. This 
paper compares three compensatory aggregation methods to results from the Higg MSI—internal normalization of division 
by maximum, global normalization, monetization—and one partially compensatory method—stochastic multi-attribute 
analysis (SMAA). Methods were chosen to ensure a broad coverage according to their applicability to the Higg MSI.
Results and discussion  The comparison of raw materials using the impact categories used in the MSI Higg show tradeoffs, 
particularly for two materials which are the best performing materials in two impact categories and worse performing mate-
rials in the other two impact categories (out of four categories). For materials presenting tradeoffs, results show a distinct 
pattern between compensatory methods and SMAA. Compensatory single score methods place these materials in the low-
est ranks, even lower than a material which is not the best performing material in any category. In SMAA, these same two 
materials rank above the mediocre material. There is a difference in how compensatory methods and partially compensatory 
methods handle the tradeoffs, between impacts and the resulting ranking of the materials.
Conclusions  Analysis shows that the current approach to aggregation in the Higg MSI is based on a weighted sum and, as 
with the other fully compensatory approaches, has three fundamental problems: linear compensation between poor and good 
performances, lack of accounting of mutual differences, and inverse proportionality. These problems can lead to material 
decisions that may enable burden shifting and unintended environmental consequences as a result of using the Higg MSI.
Recommendations  The Higg MSI needs to support companies in understanding the environmental sustainability of their 
products to be able to identify improvement options in a way that can adapt to the industry’s environmental concerns and 
business strategy. Therefore, it is recommended that the Higg MSI apply aggregation that is methodologically defensible 
regardless of the material in question to incentivize a healthy competition for environmental stewardship among industry 
members.

Keywords  Higg MSI · Textile · Apparel · Decision support · Interpretation · Aggregation · Sustainability · LCA

1  Introduction

The Higg Materials Sustainability Index (Higg MSI) pro-
vides quantitative information on the environmental impact 
of materials used in textiles. The Higg MSI was developed 
by the Sustainable Apparel Coalition (SAC) as a tool for 
its users to reduce the life cycle impacts of their products 
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(SAC 2020a). The SAC, which now has over 200 industry 
members in the apparel, footwear, and home textile sectors, 
offers a common platform for companies to compare differ-
ent materials, inform material selection at the design stage, 
and support communication of information to the public in 
a consistent manner. The Higg MSI aggregates four cradle-
to-fabric-gate life-cycle-based environmental indicators 
(global warming, water scarcity, eutrophication potential, 
and abiotic depletion potential) and a fifth semi-quantitative 
indicator on chemistry into single value scores (Table 1).

Part of the efforts of the SAC is to continue to provide 
scientifically robust information to its members; thus, 
approaches within the Higg MSI are regularly updated to 
represent scientific advancements and best available data 
(SAC 2017; Lollo and O’Rourke 2020). One of the areas 
identified for improvement is in the aggregation approach 
(Watson and Wiedemann 2019), and it is the subject of the 
latest update. In November, 2020, the SAC announced that 
due to stakeholders concerns, the Higg MSI will no longer 
apply aggregation in 2021 and allow industry members to 
view individual performances of impact categories as well 
as allow them to apply their own criteria for decision making 
(SAC 2020b). Therefore, the Higg MSI will go from applica-
tion of a weighted sum to aggregate indicators, to avoiding 
aggregation and leaving industry members to deal with the 
criteria on their own. This change is understandable because 
the issues of the weighted sum for environmental sustain-
ability applications, involving compensation, inverse pro-
portionality, and bias are well documented in the literature 
(reviewed in Sect. 1.2). However, the apparel sector is now 
left with the same problem as before and their solution may 
not necessarily mean progress. Industry members may apply 
other versions of the weighted sum and not realize the inher-
ent methodological issues or leave it up to the team to decide 
and this process is subject to cognitive biases. Research 
shows that when faced with information overload, it is com-
mon to focus on a single criteria (such as global warming) 
and systematically allow for burden shifting, or to decide 
on our preconceived notions and judgments (Buchanan 
and Kock 2001; van Knippenberg et  al. 2015; Goette  
et al. 2019).

A critical issue with the normalization used in the 
weighted sum applied by the Higg MSI is that impact 
categories contribute to the final score in a way that is 
inversely proportional as to how these issues perform 
with the point of reference—meaning that aspects with 
the highest environmental impact in the area of reference 
(the normalization reference) contribute the least to the 
score and vice versa because the contribution to score is 
driven by the magnitude of the denominator (the area of 
reference) (White and Carty 2010). For example, the more 
we reduce our global ozone depletion emissions, the more 
strongly this impact will influence the results.

Another limitation of the aggregation method used in 
the Higg MSI is the way in which it deals with trade-
offs—poor and good performances of an alternative. This 
issue is separate from input data values and a matter of 
the algorithm itself. The weighted sum used in the Higg 
MSI allows for full compensation between poor and good 
performances, which allows for improvements in one 
environmental aspect to be compensated for by degrada-
tion in others, indefinitely. A further limitation is that the 
weighting (weighting referring to the action of applying 
weight factors to results) used in the Higg MSI reflects the 
biases of some, but not all stakeholders, which the ISO 
standards for LCA prohibit for public comparisons, such 
as those provided by the Higg MSI (ISO 14044 2006). It 
is important to recognize that although it applies “equal 
weighting,” it pertains to a particular point of view where 
all impacts have the same importance. This does not reflect 
the points of view that might consider climate change or 
water scarcity more important.

Due to the increasing use of the Higg MSI in guiding 
the textile, apparel, and footwear sector in environmental 
sustainability decisions, it is important to take a closer look 
at how data is being interpreted with the aim of improving 
decision support. We recognize this as a multicriteria deci-
sion analysis problem where different apparel and textile 
brands have to deal with multiple environmental indicators 
and that when making comparisons, they frequently face 
tradeoffs. Without a conscious decision-making approach, 
organizations are vulnerable to subpar decision-making 

Table 1   Indicators aggregated in the Higg MSI

Indicator (units) Impact assessment method

Global warming (kg CO2 eq) IPCC GWP100 2013
Water scarcity (m3) The SAC used the impact assessment in Pfister et al. (2009) at the time of the study and in the middle of 2020 

changed the water metric to the AWARE impact assessment
Eutrophication (kg PO4 eq) CML-IA Baseline
Abiotic depletion (MJ) CML-IA Baseline
Chemistry (unitless points) Semi-quantitative indicator based on grouping of USEtox ® scores with addition of approved certification 

qualifiers (SAC 2017)
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processes regardless of the accuracy of the data being pre-
sented to them.

The goal of this study is to explore alternative ways of 
aggregating life cycle environmental impacts into points to 
form the Higg MSI and to assess whether the aggregation 
aspect of the Higg MSI can be improved with a partially 
compensatory approach. Alternative approaches to aggre-
gation are assessed on their robustness, how they cope with 
tradeoffs, and their ability to adopt developments in the field 
such as to incorporating uncertainty, dealing with multiple 
stakeholders, and providing decision support as well as their 
conformance with the ISO standards for public comparisons.

This study starts by reviewing the methodological impli-
cations of the aggregation approach applied by the Higg 
MSI until 2020 and its problems prior to exploring future 
avenues.

1.1 � Basics of the weighted sum and its 
implementation in the Higg MSI

In general terms, a weighted sum has two steps: first there 
is a scaling (also known as normalization) step which con-
verts the different units of the indicators (kg CO2 eq, and 
m3 for example) into a common unit by dividing by a point 
of reference (referred in the LCA literature as normaliza-
tion reference); the second step consists of the application of 
importance weight coefficients (referred in the LCA litera-
ture as weight factors). The scaled and weighted indicators 
are summed up to form the overall score in points (Eq. 1).

Where the characterized result (CR) of indicator, i, is 
divided by the normalization reference (NR) of the corre-
sponding indicator, i. The Higg MSI normalizes according to 
the industry’s annual impact. The division is later multiplied 
by the weight factor (w) of indicator i. The Higg MSI assigns 
equal weight factors (w) for all indicators, or “1”. The result-
ing point value of the Higg MSI for alternative, a, is the sum 
of this operation across indicators.

This form of weighted sum is common in a broad range 
of applications and is also used in the LCA community as 
described by the ISO standards in the optional interpreta-
tion steps although not allowed in public comparative asser-
tions (Guinée 2002; Bare and Gloria 2006; ISO 14044 2006; 
Ryberg et al. 2014). The weighted sum as shown in Eq. 1 can 
have variations with regards to the normalization reference 
chosen ( NRi).

The normalization step in a weighted sum can be done 
with respect to an external or internal reference, and each 
approach has different implications for the interpretation of 
results (Tolle 1997; Norris 2001; Prado et al. 2012) although 

(1)Higg Indexa =
∑

i wi

CRi

NRi

in both cases, the aggregation remains compensatory. In 
external normalization, as used by the Higg MSI, results 
are normalized according to a reference outside of the scope 
of the study. Typically, in LCA, this external reference con-
sists of the impacts of a given geographical region (global, 
regional, or national) over the course of a year (Bare and 
Gloria 2006; Sleeswijk et al. 2008; Lautier et al. 2010). Sev-
eral impact assessment methods, such as CML-IA, ReCiPe, 
and TRACI, provide external normalization reference data-
sets that can be used to evaluate the results (Guinée 2002; 
Goedkoop et al. 2009; Bare 2011).

Internal normalization consists of scaling the study 
results relative to a reference value within the study bound-
ary. It can be division by the largest, an alternative identified 
as the baseline, or an average result for the alternatives being 
evaluated. Before reference datasets for normalization were 
compiled for various geographical regions, internal normali-
zation was more commonly used, but concerns such as rank 
reversal and insensitivity to magnitude (Norris 2001; Prado 
et al. 2012) led to the preferred use of external normali-
zation in LCA. In both approaches, it has been found that 
the normalization step has a large influence in the outcome 
of results (Stewart 2008; Myllyviita et al. 2014; Pollesch 
and Dale 2015; Prado et al. 2017a; Wulf et al. 2017), and 
therefore, it is important to study the implications of each 
approach.

1.2 � Fundamental limitations of the weighted sum 
for the Higg MSI

While the Higg MSI is a great step forward for the apparel 
industry, as alluded to above, there are a number of issues 
that may hinder the overall goal of reducing life cycle 
impacts. A better understanding of these limitations will 
allow the industry to improve the Higg MSI with better out-
comes for its goal.

The use of a weighted sum, either with external or internal 
normalization, has fundamental issues that remain regard-
less of the coverage of the normalization reference (national, 
global, or industry based) and regardless of whether the data 
compilation and quality issues are addressed (Prado et al. 
2012). These are labeled as fundamental limitations because 
they stem from either methodological inconsistencies or 
unsuitable for the type of indicators at hand.

First, there is an issue of inverse proportionality, where 
the impact scores that are most severe in the normaliza-
tion reference area will yield systematically lower normal-
ized scores, and vice versa. Because of this reversal, the 
greater the improvements the industry has in an impact area, 
the more important that area will become to the scoring, 
resulting in further emphasis in reduction of those impacts 
while leaving the others to be increased or left at status quo. 
White and Carty (2010) identified this bias in 800 selected 
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inventory processes in TRACI and CML-IA 2000 impact 
assessment methods where the normalization references of 
each method consistently highlight the same toxicity catego-
ries. These findings are also confirmed in several studies as 
reported by Prado et al. (2017b) where the ReCiPe, CML, 
and TRACI impact assessment methods show systematic 
biases across product systems. The Higg MSI normalizes 
with regards to the annual impacts of the sector and in a 
weighted sum; therefore, it is also subject to the effect of 
inverse proportionality even if annual industry data for nor-
malization is up to date and compiled with a high degree 
of completion and accuracy. This effect contradicts one of 
the objectives of the Higg MSI, which aims to improve the 
environmental sustainability performance of the textile and 
apparel sector. If the goal of the index is to inform deci-
sions and if the normalization is systematically masking key 
aspects, guidance can be misleading.

A complementary issue in how characterized perfor-
mance is normalized is the accounting of uncertainty. Stud-
ies in life cycle impact assessment show that the issues high-
lighted by standard normalization references (regional or 
global) tend to be those with the largest uncertainties (Prado 
et al. 2017b). Therefore, the extent to which a certain impact 
category contributes to the single score is inversely propor-
tional to the industry hotspots (inverse proportionality) and 
also independent of the robustness of the indicator. The Higg 
MSI copes with this issue by reducing the score to the four 
impact categories considered most robust and excludes from 
the index other concerns, although these are required in the 
data submission process (such as agricultural land occupa-
tion, and human toxicity cancer and noncancer).

The exclusion of many impact categories due to uncer-
tainty is also problematic. Environmental sustainability is 
a multidimensional problem extending beyond the four life 
cycle impact categories and thus having an index with a 
limited coverage also means leaving behind other life cycle 
impact issues relevant to organizations, as well as emerg-
ing issues that have yet to be integrated in life cycle impact 
assessment, such as microplastics. To wait for a robust 
enough life cycle impact assessment method to include such 
indicators in the index is to produce an index with a limited 
capability to inform decision support.

The second fundamental problem of the weighted sum 
deals with its incompatibility with environmental appli-
cations due to compensation. A weighted sum with nor-
malization by division (external or internal) forms a linear 
aggregation algorithm where there is no limit in scale to the 
normalized result. This means that the normalized magni-
tudes can differ by great amounts, minimizing the effect of 
weights. Thus, the normalized result, and thereby, the nor-
malization reference, drives the aggregated result (White and 
Carty 2010; Myllyviita et al. 2014; Castellani et al. 2016; 
Prado et al. 2017b, 2019; Wulf et al. 2017). This linearity 

enables what is known in decision analysis and aggregation 
theory as “compensation” (Munda and Nardo 2009; Rowley 
et al. 2012). Compensation is the characteristic of a method 
that enables poor and good performance to make up for one 
another indefinitely. For environmental applications, this 
means that improvements in one impact category can make 
amends for increases in environmental impact in another 
impact category—thus leading to environmental burden 
shifting. Fully compensatory methods enable a single good 
performance to drive the results thus favoring extreme solu-
tions, which deal with tradeoffs in ways that are incompat-
ible with a strong sustainability perspective (Stewart 2008; 
Prado et al. 2019).

The property of compensation is not flawed, per se, as it 
is applicable in cases where poor and good performances 
should offset each other, such as with economic criteria 
(profit and loss). However, in an environmental and/or sus-
tainability context the practice of compensatory aggrega-
tion methods for a composite index is deemed unsuitable 
and instead partially compensatory/non-linear methods are 
recommended instead (Munda and Nardo 2009; Pollesch 
and Dale 2015, 2016; Munda 2016). Therefore, the issue of 
compensation is of concern for the Higg MSI which aims to 
promote improved material sustainability decision making 
via scientifically derived quantitative information.

The third fundamental limitation with the current 
approach to aggregation is known in decision analysis as the 
“typical weighting error” (Edwards and Barron 1994). The 
aggregation algorithm should take into account the change 
in preferences, and the degree of importance can change 
with respect to the spread (how different alternatives are). 
For example, when purchasing a car, price is an important 
criterion (measure of importance), but the degree of impor-
tance changes if one car costs $15,000 and the other $15,100 
(measure of spread). A $100 difference could be deemed 
negligible in this purchase. The effect of spread in the degree 
of importance is recognized in the decision analysis litera-
ture as the range-sensitivity principle (Fischer 1995). In 
the weighted sum, as currently applied in the Higg MSI, 
the measure of spread is not taken into account—neither 
by the normalization nor the weighting step—which then 
constitutes a “typical weighting error” and a methodological 
inconsistency. The measure of spread in life cycle midpoint 
indicators can be difficult to assess because, unlike a $100 
difference, it is difficult to determine when a certain amount 
of kg of CO2 per functional unit represents a negligible or 
a significant amount To solve this issue, the normalization 
approach would have to consider mutual differences with 
regard to uncertainty, which implies an entirely different 
approach to normalizing by division (represented in Eq. 1) 
as shown in outranking.

The other solution to the typical weighting error in the 
current Higg MSI is to apply tradeoff weights as opposed to 
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importance weights. Tradeoff weights require information 
on what can constitute a swap between criteria (Hammond 
et al. 1999; Keeney 2002). A task that is difficult to apply 
when the units of life cycle impact categories are difficult to 
relate to each other in terms of magnitude, such as the swap 
equivalency between kg of CO2 eq. and kg of SO2 eq. This is 
a broader problem in the life cycle community, which is an 
active area of research aiming to estimate importance weights 
(Finnveden 1999; Bengtsson and Steen 2000; Ahlroth 2014; 
Itsubo et al. 2015) for life cycle impact categories; however, 
these authors do not mention the potential for theoretical 
inconsistency in its intended application.

This critique is not intended to invalidate the Higg MSI 
as a whole because this platform has been able to unite 
key stakeholders in the apparel and textile industry around 
scientifically-based life cycle impact assessment data and 
represents an initiative with the potential to improve decision 
making in the sector. Rather, this critique delves deeper into 
remaining methodological issues, even unrecognized in the 
mainstream by general LCA practitioners, to illustrate gaps 
and seek improvement options.

These three fundamental issues, as described initially, 
apply to all forms of a weighted sum, and therefore, the 
critique applies to alternative aggregation methods tested 
in this study, such as global normalization (a weighted sum 
with normalization according to annual global impact), and 
internal normalization by maximum. Only the second fun-
damental problem applies to monetization. Each aggrega-
tion method, including the partially compensatory method, 
stochastic multi-attribute analysis (SMAA), is explained in 
the methodology section.

2 � Methodology

To analyze the aggregation approach in the Higg MSI along 
with alternative approaches, this study uses a set of mid-
point environmental impact results for a range of textile raw 
materials (fossil and biobased) and simulates a single score. 
The raw materials are compared on the basis of 1 kg each, 
and, even though these materials may not be equivalent on a 
mass basis, the profile of results serves as a typical illustra-
tion of tradeoffs often faced in comparative analyses. The 
aggregation methods (independent variable) are compared 
based on the ranking of alternatives that derived from the 
single scores (dependent variable).

2.1 � Selected textile materials

The study uses life cycle impact data covering cradle-to-
gate results for key raw materials in textiles: cotton, lyo-
cell, nylon 6, polyethylene terephthalate (PET), viscose and 
wool—a mix of biobased and fossil-based materials. Given 

the comparison on a kg basis is not functionally equivalent 
and that the comparative data has not undergone an ISO 
review procedure the raw material options are anonymized 
and labelled A, B, C, D, E, and F, to focus on how the aggre-
gation method handles the information and avoid inconsist-
encies in the comparison of raw materials. For the purposes 
of this study, the impact categories to be aggregated con-
sist of the four life cycle based indicators (global warming, 
eutrophication, abiotic depletion (fossil fuels), and water 
scarcity) used in the Higg MSI and excludes the fifth semi-
quantitative criterion on chemistry (Fig. 2). Midpoint impact 
data was based on a per kg basis for various textile materials 
derived from the Higg Material Sustainability Index data-
base (version 2.0).

Note that the Higg MSI undergoes semiannual updates 
concerning data, and in 2020, the water metric has changed 
from cumulative water use measured in m3 to water scarcity 
considering water availability also measured in m3. Still, 
the aggregation method remains the same. Prior to 2019, 
the chemistry points were added after the weighted sum, 
and therefore, these were excluded originally. In 2020, the 
chemistry points then became part of the weighted sum and 
while they derive from a life cycle impact indicator, freshwa-
ter ecotoxicity, there is a conversion procedure based on an 
arbitrary scale and type of product. Therefore, for illustrative 
purposes, we exclude this from the evaluation of aggregation 
approaches as these do not depend on the number of criteria.

Therefore, the methodological illustration in this study 
remains valid even though it does not reflect the data 
updates. The midpoint results provided follow the life cycle 
inventory modeling assumptions and impact assessment 
of the Higg MSI (SAC 2017). The data for each material 
consists of a midpoint result for each indicator and a set of 
data quality scores for the material in general (not specific 
to each indicator). Therefore, this study takes precalculated 
midpoint values for textile materials as a point of departure.

The midpoint results for the six selected materials 
(Fig. 1) show tradeoffs in all four categories where the 
materials with the highest impacts in some categories can 
also be the ones with lowest impact in others. Two raw 
materials stand-out in terms of tradeoffs: raw material A 
that has the highest water scarcity by about one order of 
magnitude as compared to the other materials, but it also 
has the lowest global warming impact and abiotic deple-
tion. Raw material F shows a similar pattern where it has 
the highest global warming impact by approximately a 
factor of 5 as compared to the other raw materials as well 
as the highest eutrophication impacts, but it has some of 
the lowest impacts in water scarcity and abiotic deple-
tion. Overall, there is no single raw material option that 
performs best in any category and so any material choice 
results in a compromise. It is unclear how organizations, 
brands and designers will select materials based on this 
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information. The existence of tradeoffs like these pro-
vides a suitable basis for our case study to evaluate the 
alternative aggregation approaches.

2.2 � Selected aggregation approaches

The Higg MSI single score is meant to provide easy to 
understand information about a material’s environmental 
impact in a way that facilitates decision-making around 
material selection. For these purposes, this study evalu-
ates five methods of aggregation for use in the Higg MSI, 
including the current approach of the Higg MSI, and four 
potential alternatives (Table 2).

2.3 � Weighted sum‑based approaches: Higg MSI, 
weighted sum with global normalization 
and weighted sum of internal normalization 
of division by maximum

These three aggregation approaches follow the same proce-
dure with the only difference being the normalization value. 
Equation 2 shows the weighted sum in generic terms.

where.
CRi is the characterized result of indicator, i;
NFi is the normalization factor (the inverse of a normal-

ization reference value). Table 3 shows the normalization 
values used in each case.

wi is the weight factor of indicator i.
To align with the weighting procedure of the Higg MSI, 

all weights were equal to 1.
All of the weighted sum methods are prohibited by the 

ISO 14044 standard for public disclosure because they 
include weight factors that represent a particular value 
system (ISO 2006).

(2)Single scorea =
∑

i wi × CRi × NFi

2.4 � SMAA

The application of SMAA requires an additional preparation 
step, which is not needed in the weighted sum methods. The 
preparation consists of the inclusion of uncertainty factors 
to transform the results of impact categories, given as single 
values (as shown in Fig. 1), to probability distributions.

Propagation of this uncertainty is estimated using the data 
quality factors for each material and then applied to the pedi-
gree matrix (Eq. 3) to generate a geometrical standard deviation 
which is a parameter of dispersion (Frischknecht et al. 2004). 
Note that, while the pedigree matrix consists of six data quality 
indicators, the data provided by the Higg MSI reports on four 
quality indicators. To fill the gaps, a default value of 3, repre-
senting a mid-case, was applied to the remaining indicators 
(reliability and sample size) as shown in Table 4.

The rating in each data quality indicator category (as 
shown in Table 4) corresponds to a pre-defined uncertainty 
factor. For example, material A has a rating of 2 in the tem-
poral data quality indicator (Table 4), which corresponds 
to an uncertainty factor of 1.03 as shown in Table 5. Each 
rating in each data quality indicator corresponds to a spe-
cific uncertainty factor that is predetermined and shown in 
Table 5. The calculation procedure of these uncertainty fac-
tors is explained in dedicated publications (Weidema and 
Wesnæs 1996; Ciroth et al. 2016; Muller et al. 2016).

The uncertainty factors are then used in Eq. 3, to calcu-
late a geometric standard deviation (GSD), per material, that 
allows for simulation of the uncertainty around single-value 
midpoint scores.

where.
A with subscripts 1 to 6, is a function of the uncertainty 

factor ( Ux) , provided in Table 5, of each data quality indica-
tor score as follows, Ax = [ln

(

Ux

)

]
2.

Ab corresponds to the basic uncertainty indicator cal-
culated by Ab = [ln

(

Ub

)

]
2 , with a default value chosen for 

(3)GSD2 = exp
√

A1+A2+A3+A4+A5+A6+Ab

Fig. 1   Comparative LCA results 
of selected materials. Data table 
in supplementary information
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this study of Ub = 1.05 for all textile materials based on a 
representative value of uncertainty factor given a rating 
of 3. The basic uncertainty corresponds to the epistemic 
error, the intrinsic error in measurement. When propagating 
uncertainty in inventory, the uncertainty factor is provided 
by ecoinvent depending on the type of the exchange (com-
bustion type, or agricultural for example) (Lewandowska 
et al. 2004; Muller et al. 2016). The basic uncertainty factor 
serves as an estimation of uncertainty when information is 
scarce.

GSD is the geometric standard deviation used in conjunc-
tion with the given mean value to generate a probability 
distribution for each impact category result. Unlike an arith-
metic standard deviation, a geometrical standard deviation 
does not have units and acts as a measure of dispersion (an 
error factor) that applies to each of the four midpoint scores 
per alternative (GSD per material in Table 6).

Once the parameter of dispersion based on data qual-
ity is quantified, it is possible to generate results showing 
probability distributions to be used in SMAA calculations 
(Fig. 2). SMAA is explained in a step-wise manner in Prado 
and Heijungs (2018). Here, we include a description of the 
general approach with definition of parameters.

The normalization component of SMAA consists of out-
ranking, namely the PROMEETHEE II method, used for 
ranking purposes (Brans et al. 1986; Brans and Mareschal 
2005). Outranking scales results internally, in a pair-wise 
manner, using a non-linear function. Within each criterion, 
i (or impact category in the case of LCA), and each Monte 
Carlo run, r, outranking evaluates whether the difference, 
dijkr (on the x-axis), between an alternative material, j, with 
respect to another alternative material, k, falls under com-
plete preference (for j), partial preference (for j) or indif-
ference to whether j or k is better (Fig. 3). A preference 
threshold and an indifference threshold per criterion, i ( Pi 
and Qi respectively on the x-axis) provide the boundaries for 
each determination. These thresholds can be elicited from 
experts, or as in the case of LCA, the thresholds are derived 
from the uncertainty in the data (Rogers and Bruen 1998; 
Prado-Lopez et al. 2014). The preference threshold, Pi, is 
the average standard deviation of all alternative materials 
in impact category, i. The indifference threshold, Qi , is half 
of Pi.

The outranking function in Fig. 3 is set up so that a lower 
environmental impact is preferred. Depending on how alter-
native materials perform with respect to each other, they 
obtain an outranking score ( �ijkr on the y-axis) of 0, 1, or 
between 0 and 1, which is what makes SMAA a partially 
compensatory method. When an alternative material is supe-
rior to another material, in a magnitude greater than the pref-
erence threshold,Pi, the alternative obtains an outranking 
score of 1, not more. Likewise, if the alternative material is 
inferior or indifferent, the alternative obtains a score of 0, Ta
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not less. If the difference, dijkr,lies between the preference 
and indifference threshold, the alternative material obtains 
a score, �ijkr , between 0 and 1.

The main differences between SMAA and other methods 
evaluated in this study is that, in outranking, (1) there is a 
limit to the normalized value and (2) that the outranking 
score is tied to the mutual differences with respect to uncer-
tainty. It may be that an alternative is superior in one aspect 
(impact area) than in an another, but the better (alternative) 
material would not obtain more than the maximum amount 
of points. In addition, by including uncertainty, SMAA takes 
into account the whole range of performance, that is, the 
stochastic value of the LCA midpoint result via Monte Carlo 
runs (the randomly obtained values with successive Monte 
Carlo simulations for the probability distribution determined 
for each impact category). Therefore, an outranking score 
will be assigned per run, as indicated by the subscript r 
in Fig. 3. It may be that alternative A is superior to B in 
some runs and indifferent or inferior in other runs. Thus, 
outranking scores reflect this uncertainty. Moreover, when 
evaluating the mutual difference with respect to uncertainty, 
alternative material, k, needs to have a larger difference from 
material j in the aspects (impact areas) with greatest uncer-
tainty to fall within the complete preference range. This 
requirement means that multiple aspects (impact categories) 
with different levels of uncertainty can be considered and 
included in the analysis, instead of filtering out aspects with 

high uncertainty from the start. By including the uncertainty 
in the aggregation procedure, SMAA is sensitive to changes 
in uncertainty information. In the absence of a measure of 
maximum impact allowed (such as a planetary boundary to 
the scale of kg of raw materials for textiles), a useful metric 
to inform the decision is the mutual difference (Prado-Lopez 
et al. 2016). The impact category that has the largest differ-
ence is the impact category for which the decision has the 
highest impact.

Weights in SMAA are also assigned as exogenous 
coefficients of importance or independent variables, 
each of which may be important. Instead of applying a 
single weight to each impact category, SMAA applies a 
distribution of weights that reflect all the possible pref-
erences. Stochastic weights provide an alternative to the 
“equal weights” that were chosen for Higg MSI, which 
was partially designed to reflect a neutral stance as to the 
importance of any single impact category. With stochas-
tic weights, it is possible to cover the whole spectrum of 
choices that a user may make about the importance of 
an impact category and to avoid imposing a particular 
value system, which is a concern in the ISO interpreta-
tion guidelines for sharing comparative assertions in LCA. 
Since SMAA does not use the weighting method prohib-
ited in ISO 14,044 and does not violate the underlying 
reason behind the prohibition, it may be used for public 
disclosure.

Table 3   Normalization values for weighted sum approaches

Normalization factors per 
approach

Global warming (GW) Eutrophication (EUT) Water scarcity (WS) Abiotic depletion 
(ABD)

Sources

Higg MSI 1.00E + 00 kg−1 CO2 eq 1.00E + 03 kg−1 PO4 
eq

3.31E + 01 (m3)−1 7.59E − 02 MJ−1 Normalization factors 
used in the Higg MSI

Weighted sum with global 
normalization

1.45E − 04 cap*year kg−1 
CO2 eq

6.32E − 12 cap*year 
kg−1 PO4 eq

9.48E − 03 cap*year m−3 2.63E − 15 cap*year 
MJ−1

GW: ReCiPe midpoint H 
World normalization 
reference; EUT and 
ABS: CML-IA World 
2000 normalization 
reference; WS: From S. 
Pfister personal com-
munication

Weighted sum with internal 
normalization of division 
by maximum

2.94E − 02 kg−1 CO2 eq 
[performance of raw 
material F]

9.62E + 01 kg−1 PO4 
eq [Performance of 
raw material F]

6.94E − 01 (m3)−1 
[Performance of raw 
material A]

8.13E − 03 MJ−1 
[Performance of 
raw material C]

Normalized relative to 
alternatives. No external 
sources

Table 4   Data quality scores 
used for each of the materials 
analyzed

Pedigree matrix data quality factors A B C D E F

Reliability 3 3 3 3 3 3
Completeness 2 3 2 2 3 3
Temporal 1 2 1 1 2 1
Geographical 2 2 2 2 2 3
Further technological correlation 2 2 3 3 2 2
Sample size 3 3 3 3 3 3
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More importantly, the use of stochastic weight coef-
ficients with an outranking scaling does not represent a 
“typical weighting error” as described for the application 
of the weighted sum. Thus, aggregation based on outrank-
ing and importance coefficients represents a methodologi-
cally sound approach.

In the end, aggregation in SMAA is a function of the 
outranking scores referred to as positive flows (the alter-
native versus the others) and negative flows (the others in 
relation to the alternative in question) that are weighted 
with the stochastic weights and summed up to generate 
a set of stochastic scores which are later turned into a 
probabilistic ranking (Tervonen and Lahdelma 2007). 
Probabilistic rankings give the likelihood that an alterna-
tive occupies a certain rank. For instance, alternative A 
may be 70% likely to rank first.

2.5 � Monetization

In the monetization approach, no normalization is applied. 
Instead, each indicator is weighted by the monetary cost of 
the impact. This study applies a range of monetary values 
(Table 7) for each impact category to generate a lower and 
upper score for each alternative (Eq. 4).

where.
a refers to an alternative, a textile material in this case; 

CRi,a refers to the characterized result over impact category, 
i, for alternative, a; MFi,loworhigh refers to the monetization 
factor that converts each unit of impact to monetary units. 
Monetary values are converted to EUR2018 equivalents 
as a function of the currency inflation (details found in  
supplementary Excel file).

(4)Total scorea, low or high =
∑

i

CRi,a ×MFi,low or high

Values for global warming derive from a meta-analysis 
that takes into account the damage by each additional unit of 
kg of CO2 eq (Bruyn et al. 2010). This range is also consist-
ent with other methods that take into account abatement and 
damage costs (Table 3 in Trucost 2015). Eutrophication costs 
are based on damage (for the low estimate) and abatement 
(for the high estimate) costs (Bruyn et al. 2010). The costs 
for abiotic depletion range from zero from an abatement and 
damage cost perspective because depleted resources have no 
costs associated with damage or abatement (Bruyn et al. 2010) 
to 2.9 USD2008 kJ−1 for crude oil according to a cost surplus 
approach (Ponsioen et al. 2014). For the case of abiotic deple-
tion, this study includes a cost estimate different to damage or 
abatement with the aim of representing a range of values. This 
monetization approach serves as a screening assessment based 
on damage and abatement costs. In the event of performing 
monetization based on market prices such as carbon (or oth-
ers that emerge in efforts to combat environmental impact), 
it will be necessary to consider the variability of markets in 
the impact assessment. It is recommended that further lit-
erature review is performed in this case given the variety of 
approaches and estimations specific to particular situations 
and geographical locations.

3 � Results

Prior to assessing the results of the different aggregation 
approaches it is important to do a recap of midpoint perfor-
mances per raw material (Fig. 1). At midpoint, raw material 
B is best in two out of four impact categories, and it does 
not perform worst in the remaining two. raw material C and 
D are not the best, nor the worst, in any impact category, 
which means both materials are somewhere in the middle 
across the four impact categories. Raw material A is the best 
in one category and the worst in one. Similarly, raw mate-
rial F is not the best in any category but is nearly the best in 
one category and worst in another. Finally, raw material E is 
worst in one category and is not the best in any category. The 
extent by which a raw material is “best” or “worst” is differ-
ent in each case, which has to do with the measure of spread.

Results of the different aggregation methods show the 
contribution of impact categories to the single score: global 
warming (GW), eutrophication (EUT), water scarcity (WS), 
and abiotic depletion (ABD). Based on the total Higg MSI 
score, the materials can be ranked to assess how the differ-
ent aggregation approaches perform in judging the relative 
favorability of the materials.

Table 5   Pedigree matrix uncertainty factors (Frischknecht et  al. 
2004)

Uncertainty factors per data quality 
indicator score

1 2 3 4 5

Reliability ( U
1
) 1.00 1.05 1.10 1.20 1.50

Completeness ( U
2
) 1.00 1.02 1.05 1.10 1.20

Temporal ( U
3
) 1.00 1.03 1.10 1.20 1.50

Geographical ( U
4
) 1.00 1.01 1.02 1.10 1.10

Further technological correlation ( U
5
) 1.00 1.20 1.20 1.50 2.00

Sample size ( U
6
) 1.00 1.02 1.05 1.10 1.20

Table 6   Calculated geometric 
standard deviations for each 
material

A B C D E F

GSD 1.115 1.119 1.115 1.115 1.119 1.118

1365The International Journal of Life Cycle Assessment (2021) 26:1357–1373



1 3

Starting with the current Higg MSI aggregation method, 
results show that raw material B has the lowest total score, 
meaning the Higg MSI ranks it as the most environmentally 
preferred material of the six options (Fig. 4). The score also 
shows that raw material A has the highest total score fol-
lowed by raw material F. Global warming, abiotic depletion, 
and eutrophication make up most of the score for most of 
the materials, and water scarcity dominates the score of raw 
material A. Raw materials C and D rank in the middle of the 
materials (second and third place), and raw material E ranks 
fourth, despite not having a preferable performance in any 
impact category.

When applying internal normalization of division by the 
maximum, results show the same rank ordering as in the 

MSI Higg MSI, but the total scores are closer in magnitude 
(Fig. 5). Here, raw material B still has the lowest impact 
score. Raw material D and E still rank in the middle, and 
raw material A and F are the two materials with the highest 
impact score, ranking in fifth and sixth place (Fig. 5). The 
composition of single scores in the method of internal nor-
malization is dominated by eutrophication and abiotic deple-
tion. Global warming does not have as large as an influence 
as with the current Higg MSI (Fig. 4).

Results using the corresponding global normalization 
references generate a single score where raw material B 
has the lowest impact score and raw material A the larg-
est score (Fig. 6). A difference in the ranking of materials 
occurs with raw materials D and E, in which raw material 
E has a better single score than D. The profile of scores in 
this aggregation approach has visible contributions from 
half of the impact categories. The other two impact cat-
egories are orders of magnitude smaller and have no influ-
ence on the results once normalized, which is due to the 
magnitude of the normalization reference. These results 
show a case in which the normalization reference is most 
dominant.

The Higg MSI utilizes characterized impact categories of 
three different life cycle impact assessment methods: IPCC, 
CML, and Pfister et al.(2009), which each have an annual 
world normalization reference for a different year and a dif-
ferent compilation approach. Therefore, aggregation using 
a global normalization, in this case, can suffer from addi-
tional inconsistencies beyond those previously discussed for 
this approach. A similar pattern where the normalization 
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Fig. 3   Outranking function
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reference dominates has been identified in various impact 
assessment methods (Prado et al. 2017a).

Monetization of life cycle impacts allows for the aggrega-
tion of results into a single monetary metric. Figure 7 shows 
the results of the monetization approach and the low and 
high estimates per impact category for each raw material. 
Results show that, on average, the environmental impacts of 
raw material A have the highest cost followed by raw mate-
rial F. Raw material B has the lowest cost, according to this 
approach, meaning that it is the preferred material from an 
environmental impact standpoint. The contribution to the 
total cost (Fig. 7) show that for raw material A, the costs 
due to water scarcity dominate which is in alignment with 
the contribution of the other aggregation approaches. For 
the other materials, most of the cost comes from the global 
warming impacts.

Given that SMAA takes into account uncertainty of the 
impact categories performance, results when using SMAA 
show a probabilistic ranking, which is illustrated by the like-
lihood of each alternative to occupy a certain rank. Rank 1 
represents the most environmentally preferred material, and 
rank 6 is the least preferable material, given the aggregated 
performance of the four environmental indicators and sto-
chastic weights.

Results show that raw material B is most likely prefer-
able material followed by raw material C (Fig. 8). Because 
these outcomes are not deterministic ranks, there is no exact 
ordering of alternatives, rather the graph informs how com-
petitive each material is with respect to each other. Here, 
raw material B is a strong best alternative, as it has an 80% 
likelihood to occupy the first rank. Raw material C has a 
50% likelihood to occupy the second rank. Raw material D 
is somewhat equally distributed between the third, fourth, 
and fifth rank, with a 27%, 27%, and 32% likelihood of occu-
pying these ranks, respectively. Therefore, raw material D 
does not have a dominant position, as raw material B or raw 
material C do, in a single rank, rather it is a competitive 
midrange alternative. Raw material A has a likelihood that is 
not particularly strong in any single rank, and raw material A 
can occupy any of the six ranks with a similar probability of 
8%, 20%, 13%, 21%, 14%, and 25% likelihood, respectively. 
Although the highest likelihood for raw material A is in the 
last rank, raw material A is not the most likely last material, 
rather raw material E is. This change for raw material E is 
a key difference in comparison with all the other aggrega-
tion methods. The other methods place raw material E more 
favorably in the middle, despite raw material E not being an 
alternative that excels in any impact category and is has the 
highest impact in one impact category.

Both raw material A and raw material F have a group 
of probabilities that permit occupying the whole range of 
ranks, without one rank being particularly likely, because 
their environmental performances have high tradeoffs with 
respect to the other materials. They are the best two perform-
ing materials for half the impact categories (GW and AB for 
raw material A, and AB and WS for raw material F) and the 
worst two materials in the other two categories, (EUT and 
WS for raw material A, and GW and EUT for raw material 
F) (Fig. 1). Lastly, raw material E appears to be the least 
environmentally preferred material with the highest likeli-
hood to occupy the sixth rank.

Table 7   Monetization factors

Impact category Units Estimate Value

Global warming EUR2018 kg−1 CO2 eq Low 0.017
High 0.073

Eutrophication EUR2018 kg−1 PO4 eq Low 2.034
High 12.430

Abiotic depletion EUR2018 MJ−1 Low 0
High 0.00290

Water scarcity EUR2018 m−3 Low 0.463
High 3.063

Fig. 4   Higg MSI with equal 
weights single score results. 
Raw materials shown from 
lowest to highest single score 
(pertaining to rank 1 to 6)

0

10

20

30

40

50

60

70

B C D E F A

Si
ng

le
 sc

or
e 

w
ith

 M
SI

 H
ig

g 
m

et
ho

d 
(p

oi
nt

s/
kg

 ra
w

 m
at

er
ia

l)

ABD

WS

EUT

GW

1367The International Journal of Life Cycle Assessment (2021) 26:1357–1373



1 3

SMAA results are a product of 1000 Monte Carlo runs 
in which the individual impact category contributions to 
the aggregated score vary each time. To plot the contribu-
tions of the impact category for the SMAA method and 
to understand the composition of the scores in the Monte 
Carlo runs, an average contribution of an impact category 
to the score in the runs can be visualized (Fig. 9). Unlike 
the other contribution plots, this graph indicates the cat-
egories and the extent to which each category positively 
contributed to the score, not the impact magnitude per se. 
A larger contribution from an impact category in Fig. 9 
points out to a favorable performance in that category as 
compared to the others. These represent positive contri-
butions which “help” a material rank more favorably. For 
example, raw material A has a favorable performance in 
GW and AB and therefore it gets most of its “good” points 
from here.

4 � Discussion

After a thorough evaluation of the current aggregation 
approach in the Higg MSI, the limitations of the weighted 
sum approach were found to affect comparative results in a 
negative way. The ranking of various materials in the Higg 
MSI does not represent the tradeoffs at midpoint, which can 

be seen with the relative aggregated scores for raw materials 
A, E, and F. All aggregation methods favored raw material 
B, which can be justified on the basis of its midpoint per-
formance, but fully compensatory methods also favored raw 
material E over A and F given that E does not excel at any 
impact category, while A and F do (Fig. 1).

Figure 10 shows a summary of the resulting ranks of raw 
materials aggregated scores and a pattern can be identified 
with compensatory and noncompensatory methods. The 
ranking of raw materials is most similar in compensatory 
methods than with SMAA (partially compensatory) where 
raw materials A and F go up in rank and raw material E 
goes down in rank. Raw materials A and F have favorable 
performances in half the impact categories, but in compensa-
tory methods these still have lower ranks than raw material 
E that does not excel in any impact category and is worst in 
one. In SMAA, the only partially compensatory method, 
raw material E takes the last rank (goes from rank 4 in com-
pensatory approaches, to rank 6) and raw materials A and 
F go up in rank.

The differences in rank orderings between methods 
are due to the level of compensation. A weighted sum for 
instance, which is the basis of the compensatory meth-
ods, allows for burden shifting between impact catego-
ries limiting the ability of a method to have a balanced 
assessment of pros and cons, thus reducing the ability of 

Fig. 5   Internal normalization by 
division with equal weights—
single score results. Raw 
materials shown from lowest to 
highest single score (pertaining 
to rank 1 to 6)

0

0.5

1

1.5

2

2.5

B C D E A F
Si

ng
le

 sc
or

e 
w

ith
 in

te
rn

al
 

no
rm

al
iza

�o
n 

(p
oi

nt
s/

kg
 ra

w
 m

at
er

ia
l)

ABD

WS

EUT

GW

Fig. 6   Global normalization 
and equal weights single score 
results. Raw materials shown 
from lowest to highest single 
score (pertaining to rank 1 to 6)

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

B C E D F A

Si
ng

le
 sc

or
e 

w
ith

 g
lo

ba
l 

no
rm

al
iza

�o
n 

(p
oi

nt
s/

kg
 ra

w
 m

at
er

ia
l)

ABD

WS

EUT

GW

1368 The International Journal of Life Cycle Assessment (2021) 26:1357–1373



1 3

the Higg MSI to guide environmental sustainability deci-
sions. This is evidenced by the fact that a raw material 
with a less favorable performance across midpoints (such 
as raw material E), scores better than materials with a 
more favorable performance across midpoints such as raw 
material A.

There are various aspects affecting the robustness of the 
current MSI Higg index starting with the fact that the impact 
categories contribute to the final score in an inversely pro-
portional manner to the industry’s benchmark (normaliza-
tion reference) and not by the measure of spread between 
alternatives—making this a case of a typical weighting error.

Robustness is also affected by basing the index on average 
performances (midpoints) when these performances are not 
equally representative, i.e., have different measures of spread, 
for the type of materials evaluated. Datasets of biobased 
materials, typically have much higher uncertainties (and 
variability) than datasets of industrially produced materials, 
such as fossil-based polymers. Exclusion of uncertainty can 
be misleading in the case of comparisons involving industrial 
and agricultural systems if averages are not comparable given 

the spread. This lack of clarity is a concern for the users of 
the Higg MSI (Watson and Wiedemann 2019).

Uncertainty of life cycle assessment results is not 
accounted for in the current aggregation method in the 
Higg MSI. The closest information to uncertainty are the 
additional data quality descriptors and it is up to the deci-
sion maker to interpret this on their own. Even when two 
materials are indistinguishable when uncertainty is included, 
these methods include average difference in the assessment. 
Including the range of most likely performances and know-
ing where results are statistically meaningful can contribute 
to better decisions.

Additionally, the ability to take into account information 
with different levels of uncertainty would enable the Higg 
MSI to include a more complete set of environmental indi-
cators and provide better information for decision-making. 
This can also improve comparisons of agricultural and 
industrial based systems, a common comparison, as data 
would be interpreted with the spread. This would provide a 
more holistic representation of environmental sustainability 
while attending to the concerns of data robustness.

Fig. 7   Monetization results 
with ranges. Above: the range 
of monetized total impact per 
material. Below: The contribu-
tion by impact category to the 
lower and upper estimates per 
material. Raw materials shown 
from lowest to highest single 
score (pertaining to rank 1 to 6)
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As an alternative to aggregation based on a weighted sum, 
there is SMAA which can account for uncertainty in the 
aggregation of results and can incorporate information with 
different levels of uncertainty.

Furthermore, outranking normalization as performed 
in SMAA facilitates inclusion of input criteria in different 
scales (ordinal or cardinal), which allows for consideration 
of qualitative criteria. While, in the current Higg MSI, input 
criteria are normalized by the industry’s performance and 
leaving the analysis subject to inverse proportionality. In 
SMAA, normalization is relative to the alternatives being 
considered, which allows for inclusion of input criteria 
without comparing to the industry’s performance. It must 
be noted that the impacts of the entire industry, which are 
currently used as a normalization reference, still serve a pur-
pose in benchmarking for industry wide assessments.

SMAA opens an opportunity to consider emerging con-
cerns of the industry for which there are no operational 
impact assessment models yet. One example of these con-
cerns is microplastic release and biodegradability, which is 
currently not considered in life cycle impact assessments. 
These topics are important to the industry and consumers 
due to unknown impacts associated with microplastics. 
Criteria of biodegradability could be included in SMAA 
through several possible paths, such as a qualitative scale 
(1 to 5) corresponding to the time a material takes to bio-
degrade or as a yes/no criteria describing whether the 
material is biodegradable or not—depending on the infor-
mation available. The current form of aggregation of the 

Higg MSI is limited in its ability to address the industry’s 
current environmental sustainability concerns and, as a 
result, this method limits the ability of the Higg MSI to 
inform decision making or adapt to emerging environmen-
tal concerns of significance.

Illustration of SMAA in this study uses midpoints 
as these are the indicators used in the Higg MSI, and 
although previous SMAA studies in LCA also use mid-
points (Rogers and Seager 2009; Prado-Lopez et al. 2014), 
it can also technically apply to endpoints. However, mid-
points would be a recommended starting point to avoid 
the uncertainties in the pathways between midpoint and 
endpoint in LCIA. Also, one of the aims of endpoints is 
decision support by means of reducing indicators, but this 
is provided by SMAA with foundations in the decision 
analysis field. The discussions in the LCA field between 
midpoints and endpoints have spanned many years (Bare 
et al. 2000; Kägi et al. 2016), and the overall message is 
that midpoints provide more robust information but can 
be difficult to manage. Endpoints make LCA results easier 
to manage but at a cost due to the uncertainties in the 
pathways and that they are important to show results at 
midpoint. Similarly, SMAA would act as a compliment 
to midpoint results as it is important to understand the 
underlying tradeoffs.

Although it is expected that SMAA can represent an 
improvement over current aggregation practice in the Higg 
MSI (or even the practice of no aggregation), there are 
challenges to its implementation and communication. First, 
SMAA requires quantitative uncertainty data, which is cur-
rently not available for each midpoint category. A similar 
procedure, as performed here of converting the data quality 
indicators to an estimation of dispersion can apply to cases 
for which uncertainty results are not available or as a tran-
sition while the database gathers the required information 
(instead of requiring midpoint values, the MSI Higg can 
request mean and standard deviations of results). This will 
require efforts to adapt the submission process and platform 
to calculate the single scores accordingly.

Fig. 8   Probabilistic ranking of materials generated with SMAA. 
Rank 1 on the x-axis represents the most preferable position, which 
is most likely occupied by raw material B. The last place, rank 6, is 
most likely occupied by raw material E, making it the least preferable 
material, followed by raw materials A and F. Raw materials C and D 
rank in the middle

Fig. 9   Contributions to scores via SMAA. These represent positive 
contributions which “help” a material rank more favorably
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Besides implementation, another challenge with SMAA 
results may be interpretation. Explaining the results can be more 
difficult than the current bar charts because the SMAA graphs 
are portraying more information and because the audience is less 
familiar with distributions and uncertainty in general. To address 
these concerns, it would be necessary to draft different viewing 
modes, so that SMAA results can be simplified according to the 
audience. Also, it could be useful to provide tutorials on how to 
interpret results as part of the help section on the Higg Web site.

It must be noted that SMAA is only applicable for com-
parative assessments as it produces a number that is relative 
to the alternatives being compared. This result is unlike the 
current method of aggregation (and the other compensatory 
methods included here), which generates a single score that is 
independent of the comparison being made. This means that 
results of a comparison are only valid for that comparison and 
the alternatives included and cannot be taken out of context.

5 � Conclusion

The current Higg MSI allows for full compensation 
between indicators and does not provide a balanced view 
of tradeoffs in textile materials. This also means that the 

analysis does not consider the significance of mutual dif-
ferences and creates an index vulnerable to the effects of 
inverse proportionality (masking the aspects most impact-
ful to the industry and vice versa) while neglecting uncer-
tainty of life cycle impacts. The current approach to aggre-
gation in the Higg MSI has opportunity for improvements, 
which could enhance the ability of the Higg MSI to support 
industry decisions and it does not necessarily mean aggre-
gation has to be avoided as planned for 2021, but rather 
improved.

To enable a treatment of tradeoffs that is in line with a 
strong sustainability perspective, it is recommended that 
the Higg MSI examine implementation of a partially com-
pensatory aggregation approach instead of leaving decision 
makers unaided. Such an approach can consider uncertainty 
in the data, provide more meaningful comparisons between 
bio and industrial systems, and enable the inclusion of envi-
ronmental criteria with higher uncertainty levels, as well as 
qualitative indicators.

As the industry makes advances in sustainability efforts, 
the Higg MSI should strive to provide an environmental 
sustainability decision tool that (1) enhances understanding 
of the environmental sustainability of material operations 
and enables identification improvement options; (2) covers 
impacts broadly in a way that can adapt to the industry’s 
environmental concerns and each business’s strategy; and 
(3) applies methodologies that are defensible regardless 
of the material in question, incentivizing a healthy com-
petition for environmental stewardship among industry 
members.

Supplementary information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11367-​021-​01928-8.
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