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Abstract
Introduction  The flexibility of life cycle inventory (LCI) background data selection is increasing with the increasing 
availability of data, but this comes along with the challenge of using the background data with primary life cycle inventory 
data. To relieve the burden on the practitioner to create the linkages and reduce bias, this study aimed at applying automation 
to create foreground LCI from primary data and link it to background data to construct product system models (PSM).
Methods  Three experienced LCA software developers were commissioned to independently develop software prototypes to 
address the problem of how to generate an operable PSM from a complex product specification. The participants were given 
a confidential product specification in the form of a Bill of Materials (BOM) and were asked to develop and test prototype 
software under a limited time period that converted the BOM into a foreground model and linked it with one or more a 
background datasets, along with a list of other functional requirements. The resulting prototypes were compared and tested 
with additional product specifications.
Results  Each developer took a distinct approach to the problem. One approach used semantic similarity relations to identify 
best-fit background datasets. Another approach focused on producing a flexible description of the model structure that 
removed redundancy and permitted aggregation. Another approach provided an interactive web application for matching 
product components to standardized product classification systems to facilitate characterization and linking.
Discussion  Four distinct steps were identified in the broader problem of automating PSM construction: creating a foreground 
model from product data, determining the quantitative properties of foreground model flows, linking flows to background 
datasets, and expressing the linked model in a format that could be used by existing LCA software. The three prototypes are 
complementary in that they address different steps and demonstrate alternative approaches. Manual work was still required 
in each case, especially in the descriptions of the product flows that must be provided by background datasets.
Conclusion  The study demonstrates the utility of a distributed, comparative software development, as applied to the problem 
of LCA software. The results demonstrate that the problem of automated PSM construction is tractable. The prototypes 
created advance the state of the art for LCA software.
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1  Introduction

Modeling the potential direct and indirect environmental 
impacts of chemicals, materials, and the products is 
the aim of LCA studies. Including all indirect activities 
in the economy requires significant data on extractive, 
industrial, agricultural, transport, and disposal processes 
that capture their material and energy requirements and 
their environmental emissions and wastes. Practitioners 
must rely on existing datasets to fulfill these “background” 
data requirements. Furthermore, the data must all be 
interoperable so that they can be used together, and be 
based on coherent modeling assumptions. Existing life cycle 
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inventory data are often not interoperable (Ingwersen 2015; 
Suh et al. 2016), but achieving this has been acknowledged 
as essential for broader LCA data sharing and usage of data 
from multiple sources (Ingwersen et al. 2015; Canals et al. 
2016).

Identification, acquisition, and integration of data 
continue to pose a significant challenge to those who create 
models for LCA studies, particularly for studies that do not 
rely on a single life cycle inventory database for background 
data. This task involves acquisition of data from various 
sources, structuring the data for use in an LCA as a network 
of processes, and linking the processes together to build a 
product system model (PSM). Data discovery applications 
and data portals (e.g., Nexus (GreenDelta 2019), the Federal 
LCA Commons (USDA 2019), the Global LCA Data Access 
Initiative (UNEP/SETAC Life Cycle Initiative, 2019)) that 
provide structured life cycle inventory data from multiple 
sources are in their early stages. Data mining approaches 
are also in early development to create more data for life 
cycle assessment from public sources (Cashman et al. 2016; 
Ciroth and Srocka 2017). Building variations of PSMs using 
a single LCI database have also been automated in the Wurst 
software for ecoinvent (Mutel 2017). While there are great 
challenges to finding and or developing new LCI data for 
life cycle assessments, the greater challenge in the field 
right now might be linking LCI data together from different 
sources and assembling them in a structured PSM that can 
be reviewed, revised, and reused by others (Kuczenski et al. 
2018). Because PSMs may consist of hundreds or thousands 
of processes combined from various sources, it is necessary 
to be able to describe those models precisely and in a 
transparent fashion.

Often, the description of a PSM can be done in two 
parts: the description of the foreground as a network of unit 

processes, nominally a tree whose root is the functional unit 
of the model, and the linking of terminal nodes or “leaves” 
in that network to process models found in background 
databases (Kuczenski 2019). While this description may not 
hold for some activities, particularly in chemical production 
(which may involve loops in the foreground system), it is 
suitable to describe the foreground of most product LCAs. 
The linking of LCI processes from various data sources 
could be accomplished using various methods. One method 
that has been proposed is through the creation of “bridge” 
processes, which prevent the need to alter the existing 
datasets that are linked (Ingwersen et al. 2018).

The purpose of this study was to develop prototype 
software capable of generating reusable product system 
models from a standardized product specification and 
automatically linking these models with existing LCI data 
from disparate sources to create PSMs. The study adopted 
a methodology that draws from the “hackathon” model 
(Briscoe and Mulligan 2014), in which participants are 
invited to develop code to solve to a well-specified technical 
problem. The contributions are available for review and 
adaptation by the general public.

2 � Methods

A challenge was initiated to create prototype software that 
can assemble a full PSM from disparate data sources. Three 
experienced LCA software developers were invited to participate, 
with a fourth participating as a convener and moderator. Each 
developer was allotted up to 80 hours of independent work 
to perform the task. A set of requirements was given to each 
developer to follow (Table 1). Neither a graphical user interface 
nor elementary and product flow harmonization were required.

Table 1   Software requirements

No Requirement

1 The software may make use of any existing software or source code, as long as the software/code license permits its reuse without any 
licensing fees

2 LCI data used may come from open or proprietary sources. However, any proprietary source data must be aggregated in a manner suitable 
for data sharing

3 The software must include automated data discovery functions to identify LCI to satisfy process requirements
4 The software must be functional with LCI datasets from the Federal LCA Data Commons
5 LCI data product flow names used in the PSM should be modified in content to the most limited extent possible. “Bridge processes” provide 

an alternative method of linking unit processes without altering the product flow names (Ingwersen et al. 2018)
6 All dependencies must be documented and be publicly available or otherwise made available to the project team
7 The software should read and generate LCI data in a described LCA data exchange format, preferably in JSON-LD according to the open-

LCA JSON-LD schema, but minimally in JSON-LD, ILCD, or ES2 formats
8 Development in the Python 3 language is preferred, but not required
9 The software must provide metadata on the PSM content and structure. Model contents may include description of sub-PSMs within the 

modeled PSM. See Kuczenski et al. (2018), Sect. 5
10 The software must work on current Windows and Macintosh operating systems and preferably on others, including Linux
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The developers were given data for an assembled product 
and asked to use their software to develop PSMs consisting 
of a foreground system for the selected assembly along 
with selected supporting background systems. The selected 
assembled product was the landing gear for a Boeing F/A-
18E/F “Super Hornet” aircraft (F-18 LG). The landing gear 
consisted of independent nose (1) and rear (2) systems in 
the form of assemblies, where each assembly consisted of 
one or more subassemblies and/or individual components 
(Fig. 1). The data were provided in the form of a standard 
Bill of Materials (BOM) and were confidential.

We performed two tests of the extensibility of the prototypes, 
testing their performance in creating PSM models from two 
additional datasets. The first dataset was a BOM spreadsheet for 
the assembly of a printed circuit board (PCB). The spreadsheet 
included twelve components, of which seven were assigned part 
numbers and five were given only text descriptions. The second 
dataset was a life cycle inventory unit process for the sorting 

of construction and demolition debris in a material recovery 
facility (CDD MRF) taken from the Federal LCA Commons 
(USDA 2019). This dataset was provided in JSON-LD 
openLCA format and had approximately 65 exchanges, 
including both intermediate and elementary flows.

3 � Results

The input BOMs could all be interpreted as trees of 
assemblies, sub-assemblies, and components that could be 
converted into a foreground PSM. The components, or leaf 
nodes of the trees, represent inputs to the foreground from the 
background. Converting a BOM into a complete PSM was 
shown to require three modeling steps: constructing the trees; 
determination of quantitative properties of the leaf nodes; and 
linking the leaf nodes to background databases. These were 
accompanied by a fourth step of describing the models in a 

Fig. 1   Schematic drawing of one landing gear product system
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format that can be read into an LCA program, referred to as 
“serialization.” A complete solution to the study problem 
would complete all four steps. In this section, each prototype 
is presented along with a brief summary. This is followed by 
an assessment of the prototypes in their success in creating 
PSMs from the F-18 LG dataset and with alternative datasets.

3.1 � Presentation of prototypes

Three prototypes pslink, antelope, and perdu were initially 
constructed by the three developers. All prototypes are written 
in Python and require a Python interpreter to use or launch. 
The prototypes are designed to run independently, though they 
required different levels of configuration and interaction.

3.1.1 � pslink

pslink imports and stores BOM data as trees and uses them 
to create a foreground PSM. The user must then collect or 
mine data on the material composition and dimensions of the 
component inputs to the foreground model/leaves of the PSM 
tree, and store these attributes as key-value pairs in a text file 
for each component. The pslink quantitative solver tests each 
attribute file against a collection of symbolic formulas that 
compute the volume of various solids. These formulas can be 
dynamically registered, allowing a user to specify formulas 
specific to the input data. If a formula is found that can be 

computed using the supplied attribute information, the result 
is taken to be the volume of the part. In case multiple formulas 
could be satisfied by the supplied data, only the first formula 
encountered is used. pslink also requires that the user store 
density data on the materials identified in the composition 
data. Keywords from the component attribute data are 
matched against the stored densities. If a match is found, an 
exchange can be created, converting the previously calculated 
volume to a mass for a given material in a component. If 
multiple matches are found, the mass is partitioned equally 
among them.

The linking step in pslink starts from a simplified 
semantic graph that a user creates for the materials present 
in the attribute data. The users input is a simple text file 
where each line declare the material name and then one or 
more related names, and their relationship to the material 
name, where relationship types are “same as, = ”; “broader 
than,^”; or “derived from, < .” An example of records related 
to a steel is as follows:

“steel,” “ferrous metal”^
“steel product,” “steel” < 
“stainless steel,” “steel”^
“stainless steel alloy,” “alloy”^, “stainless steel”^
“alloy 660,” “stainless steel alloy 660” = , “stainless steel 

alloy”^
A network of semantic relations is created from this file, 

like shown in Fig. 2, and stored as a graph.

Fig. 2   Semantic network of 
product relations in pslink
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In order to derive the product flow information from the 
background database of interest, the user is required to extract 
a list of processes and product flows names and compile 
them in a comma-separated text file. The products of the 
background database are bound to the products of the graph via 
a lexical analysis. The function of the lexical matching can be 
configured, and different functions are implemented in pslink 
that consider specific syntactic elements of product names in 
LCI databases. For each binding, the lexical matching factor, 
fl , is stored which has a value in the range of [0,1].

For each product in the foreground system, entry points 
into the semantic network are again searched via a lexical 
analysis. Starting from these entry points the graph is 
traversed along the relations to the nodes with bindings 
to products of the background database. Each relation is 
assigned a relation factor, fr , that is specific for the relation 
type (e.g.  “same as”: 1.0, “broader”/“narrower”: 0.75, 
“derived from”: 0.5). A traversal factor ft is calculated for 
each path from an entry point to a binding of a background 
product by multiplying the lexical and relation factors across 
the segments, s , of the path p:

Figure 3 illustrates this procedure. The calculation of 
the traversal factors can be documented with the integrated 
explain function, which presents a list of the relations used 
to determine each factor.

ft =
∏

s∈p

fl fr

The products of the background databases with the highest 
traversal factors are finally assigned to a product of the 
foreground system in the linking step. The collection of flows 
and linked unit processes are then serialized as JSON-LD 
following the openLCA schema (Srocka et al. 2020), allowing 
them to be imported into OpenLCA software for practitioner 
use. If the model is imported into an existing database that 
includes the linked background processes, then those processes 
would be linked to the designated datasets upon import.

3.1.2 � Antelope

antelope is a Python tool based on the Antelope LCA 
framework (Kuczenski and Beraha 2015). antelope also 
converts BOMs into product system models with a tree-
like structure, with the reference flow at the root of the tree. 
antelope includes an algorithm for detecting and removing 
duplicate subassemblies using tree isomorphism (Valiente 
2002). By treating duplicated assemblies as distinct product 
models, the duplicates are removed and the models are 
re-used in separate places in the product system.

When a PSM is described as a tree, the interior nodes 
and leaf nodes serve different purposes (Fig. 4). Branches 
connecting interior nodes reflect direct relationships between 
foreground elements and define the structure of the PSM. Leaf 
nodes, on the other hand, represent flows which enter or leave 
the foreground system, and which must be linked in order 
to compute the model. If they are linked with a background 

Fig. 3   Calculating the traversal factor in pslink
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activity, they become intermediate exchanges that represent a 
dependency of the foreground on that activity. Note that the 
direction of dependency is unrelated to the physical direction 
of the flow (i.e., a foreground process could depend on both 
material suppliers and waste disposal services). If they are 
linked with an environmental context, they become elementary 
exchanges (none of those were included in the current study).

Each link in the model must be assigned a weight, which 
is the exchange value of the link, or the quantity of the child 
flow that is required by the parent. During traversal of the tree, 
each node’s weight is calculated by multiplying its parent’s 
node weight by its exchange value. The record of this traversal 
can be used to reconstruct the model. In the antelope traversal 
implementation, any node can be specified as private, in 
which case the nodes interior to that node’s subtree will be 
concealed and only the aggregate result reported.

Once the product models are created and linked to 
background datasets, the product system can be described 
as an LCA disclosure, a data structure that simplifies the 
expression of the model structure (Joyce 2019; Kuczenski 
2019). Disclosures are constructed from a traversal of the 
product tree under a particular scenario. The antelope user 
can specify certain sub-assemblies or the whole assembly 
to be aggregated during the traversal, so that private or 
proprietary information in the PSM can be concealed 
from view while still contributing to the disclosure. The 
disclosures are saved as excel files for easier accessibility.

3.1.3 � Perdu

perdu is a Flask (Pallets Project 2020) web application 
for matching product data against standard industry and 
product classifiers. perdu embeds classification systems, 

including the Global Product Classification (GPC), the 
North American Industry Classification System (NAICS), 
and US Bureau of Economic Analysis Detail Input-Output 
schema as implemented in the USEEIOv1 model (Yang et al. 
2017). perdu extracts names and descriptions from these 
classification systems and uses that data to build indices 
for searches. Various search algorithms provided by the 
Whoosh library (Chaput 2012) are implemented to search 
these indices using terms from the product data.

The web application was designed around a simple 
workflow (Fig. 9). A user can upload a spreadsheet or table 
(Excel or csv file) with “name” and “description” fields or an 
openLCA JSON-LD archive with processes and flows to be 
matched. perdu will extract the names and descriptions from 
the tabular data or the processes and flows from the JSON-LD 
and store them as a term list and present them to the user 
for interactive matching. With the product data loaded and 
names presented to the user, the user selects a classification 
system to use, and an initial list of match suggestions is 
provided. The search terms can be refined in cases where the 
given labels are difficult for automatic algorithms to interpret. 
Multiple matches per query are possible. The user then selects 
a proposed match for each term and describes the relationship 
type; matches are either “exact,” “approximate,” “narrower 
than,” or “broader than.” The interface does not include any 
mechanism for quantitative characterization (i.e. the mass or 
dollar value of each node). The review process occurs in a 
browser window, and after it is complete, the user can export 
a static file that contains the saved matching information. 
Following interactive search, review, and linking, perdu can 
produce output files of matches in a CSV, JSON, or Turtle 
(TTL) formats. The web application also includes a stand-
alone search window.

Fig. 4   Exchanges and depend-
ency relationships in a product 
system model. Circles represent 
foreground nodes, solid 
rectangle represents activities 
in a background database, and 
dotted rectangle represents an 
environmental context. The 
direction of the exchange can be 
either as an input to or output 
from the foreground
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3.1.4 � Summary

Table 2 presents a summary of the prototypes.

3.2 � Prototype testing

3.2.1 � Landing gear model

The principal test case, the F-18 LG dataset, consisted 
of eight assemblies supplied in two BOMs in the form of 
Excel spreadsheets. The BOM was anonymized using a 
software routine included in the antelope contribution and 
is henceforth referred to as F-18 LG ANON. The resulting 
foreground models were observed to have a total of 1528 
distinct elements, where each element corresponds to a row 
in a BOM. These models included 1045 distinct flows, of 
which 810 were leaf nodes; some of which were reused more 
than once.

In order to prepare pslink for use with the F-18 LG ANON 
foreground model, a mechanical parts database (PartTarget 
Inc. 2019) was mined to extract material composition and 
dimensions. As different components can have very different 
attributes that describe their dimensions, it was necessary 
to accommodate a wide range of attribute names. Density 
data for materials identified in the parts were manually input 
from various online sources (amesweb.info 2019; MatWeb, 
LLC 2020; ThoughtCo Inc. 2020). A semantic graph of 
associated material relationships was manually created. 
pslink, enabled with these input data, constructed PSMs 
from the F-18 LG ANON dataset and selected background 
datasets. The linkages between the F-18 LG ANON dataset 
and background databases are summarized in Table 3.

The data mined had identified 27 unique materials in the 
F-18 LG ANON dataset that became the basis of pslink’s 
matches to background database products. In all three 
background sources, corresponding product flows were 
found for nearly all materials (25 or 26 out of 27). Each 
product flow could then be linked to one or more providing 
processes; the database with the most unique product flows 
(Ecoinventv2.2) able to provide the most potential matches to 
these materials (66). But the number of foreground model leaf 
nodes for which linkages were created was the same between 
the USEEIOv1.1 and Ecoinventv2.2 sources (77) and only 
slightly less for the LCA Commons source (70), which could 
be explained by the one less material provided by the LCA 
Commons in comparison with the other two databases.

The created models were exported from pslink in 
JSON-LD and successfully imported into openLCA (Fig. 5) 
where it was verified that life cycle inventory results could 
be calculated to generate nonzero scores (Fig. 6). However, 
the simple tree-traversal algorithm led to doubled exchanges 
in 19 duplicate processes.

antelope captured the tree structure of the F-18 LG ANON 
dataset, including detection and removal of duplicated 
subassemblies. Within the structure of the model, nineteen 
duplicate subassemblies were detected, making up 126 elements 
or about 8% of the total. The models were exported as disclosures 
in spreadsheet format to facilitate review. Visualizations of 
portions of the foreground and background for the study test 
case are shown in Figs. 7 and 8. This prototype did not use data 
discovery to determine flow properties of parts, and instead used 
manual designation of each part’s “part type,” “material,” and 
“size” as a basis to link to valid datasets in the USLCI, USEEIO,  
and ELCD databases. Because this procedure was done by 

Table 2   Summary characteristics of three initial prototypes

Prototype Primary dependencies Data discovery Supervised or 
unsupervised 
matching?

Datasources linked Product 
system 
statistics?

Output formats

pslink olca-py Semantic similarity Unsupervised USEEIOv1.1, LCA Com-
mons, ecoinvent v2.2

Y JSON-LD

antelope Antelope LCA Tree isomorphism Supervised USEEIOv1.1, USLCI, 
ELCD

Y JSON, Excel

perdu Whoosh, RDFLib Metadata search Supervised USEEIOv1.1, GPC, NAICS N CSV, TTL, JSON-LD

Table 3   pslink match statistics for F-18 LG ANON dataset

FS foreground data source, BS background data source

FS FS unique 
materials

BS BS unique prod-
uct flows

Materials with at least 1 
possible match

Possible material 
matches

Leaves with 
links estab-
lished

F-18 LG ANON 27 ecoinvent v2.2 1924 26 66 77
F-18 LG ANON 27 USEEIOv1.1 388 26 30 77
F-18 LG ANON 27 LCA Commons 752 25 32 70
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hand, it was very time-intensive and potentially error-prone, 
but could be applied consistently to all 810 unique components. 
A total of 25 USLCI processes, 19 USEEIO sectors, and 17 
ELCD processes were identified as linking targets. The curated 
characterizations were included in the antelope contribution in 
spreadsheet form. The price and mass characterizations were 
random.

perdu did not perform automatic model generation, but 
instead focused on the classification of leaf nodes in the 
model. The prototype included search indexing frameworks 

for three different classification schemes: NAICS, GS1, 
and the US system of national accounts, as implemented 
for LCA in the USEEIO database (Yang et al. 2017). Other 
classifications can be added by following the patterns laid 
out in the prototype.

3.2.2 � Handling of alternative input datasets

Because of the similarity of first alternative dataset, the PCB 
BOM, to the main test case, all three tools were successful 

Fig. 5   PSM of landing gear connected to USEEIO in openLCA

Fig. 6   LCIA results computed from the linked landing gear model in openLCA
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in processing the PCB BOM. There were no duplicate flows. 
antelope and pslink prototypes correctly interpreted the 
spreadsheet and constructed a foreground model; however, the 
pslink prototype omitted the flows that had no part numbers. 
Because of lack of any text descriptions accompanying the part 
numbers in the BOM, the flow property description step failed 
for both pslink and antelope, and no linking was performed. 
With the perdu prototype, on the other hand, it was possible to 
identify matching classifications from the available schemes.

The attempt to use the second alternative dataset, the CDD 
MRF unit process, was less successful. Although openLCA 
and the antelope core software can both access OpenLCA 
datasets, perdu was the only prototype able to accommodate 
input data in this format directly (see Fig. 9). The CDD MRF 
test revealed another issue that was relevant to the project. Ten 

exchanges in the model included links to “bridge processes” 
for various activities found in the USEEIO database, using 
the “defaultProvider” property defined in the openLCA 
schema (Srocka et al. 2020). However, the bridge processes 
themselves were not included along with the CDD MRF 
dataset, and so there was no way for any software to “build” the 
links or to identify the linking targets. This outcome revealed  
that further development is needed to successfully make use of 
bridge process specifications.

3.3 � Autoprox: an additional prototype for direct 
open LCA software integration

The challenges associated with the second alternative 
dataset—namely an existing unit process—inspired creation 

Fig. 7   A portion of a model’s internal nodes (foreground) documented in a spreadsheet
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of an additional prototype, autoprox, that can link a unit 
process with background datasets, and make these links 
in the form of bridge processes (Ingwersen et al. 2018). 
autoprox is written in Kotlin and depends on the openLCA 
core API and a Java virtual machine. It reads directly from 
an openLCA database rather than from input files like 
the Excel files storing the BOMs. The user supplies two 
inputs: the id of the unit process in the openLCA database 
for which linking to datasets to provide product flow inputs 

is desired, and one of three alternative matchers, which are 
implementations of common matching algorithms. The 
best matches are then used to automatically create bridge 
processes within the given openLCA database between the 
given process and other available processes in the database.

The three different matchers each use principles of 
lexical and/or semantic matching between flow names 
(Pawar and Mago 2018), but use different forms of 
information to evaluate the match. The first matcher, 

Fig. 8   A portion of a model’s leaf nodes (background) documented in a spreadsheet

Fig. 9   Matching the CDD MRF dataset using Perdu
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BigramsDiceMatcher, uses “bigrams,” which are sets of 
two consecutive letters, syllables, or words in a text string. 
It works well for matching flows that have distinctive 
words or phrases, like “asphalt shingles,” but less well for 
flows that are made up of common or generic words. The 
second matcher, InfoContentMatcher, uses the “information 
content” of a word, defined as the length of the word times 
the inverse of its frequency in the collection of candidate 
processes. Longer words and less-frequent words have 
higher information content. The information content of flow 
words is then compared with the information content of 
provider flows to find the best matches. The third matcher, 
WordNetPathMatcher also uses the information content 
of words, but combines this information with a semantic 
similarity score derived from a large natural language 
corpus. The reader is encouraged to read more about these 
matchers on the autoprox site (link provided in the Code 
Availability section).

Like the other solutions, autoprox is limited to identifying 
possible matches from the background processes that are 
available, which in this case come from the given openLCA 
database. The techniques implemented in the autoprox 
prototype could provide inspiration for further research in 
semantic and lexical matching for LCA applications.

4 � Discussion

While each prototype has its strengths and deficiencies, 
none was capable of transforming a product specification 
into a complete PSM with all product flows provided by 
background datasets without manual intervention. We found 
that the solution to automatically generating product system 
models from standardized product data has several steps, and 

that some of those steps are more amenable to automation 
than others. Each prototype demonstrated progress toward 
this end, yet all still require user involvement for one or 
more steps.

Figure 10 shows the overall problem and identifies the 
key contributions of each prototype.

The pslink and antelope prototypes were capable of 
transforming BOM input data into a product system model 
to serve as a foreground system. Notably, this was not the first 
demonstration of BOM to LCI automation (Sundaravaradan 
et al. 2011; Tao et al. 2014; McIntosh and Koffler 2014; 
Mishra and Singh 2019), but these are the first open source 
implementations of such conversions. Detecting and 
removing duplicate subtrees may be required to avoid double 
counting, with antelope the only prototype designed to detect 
and remove duplicate subtrees. antelope is also capable of 
optionally anonymizing assemblies and subassemblies 
in a BOM, which adds value for protecting primary data 
confidentiality. Modeling of the second test dataset, a unit 
process, had different requirements, which were met through 
the creation of an additional prototype, autoprox.

The flow property description step was found to be the most 
challenging of the four. No prototype was able to perform this 
step without user input. Each component from a BOM that was 
determined to be a leaf node was identified only as a “piece,” 
but background datasets provide flows in terms of physical 
extent, most frequently mass, or by price. Therefore, before 
linking could be performed, each component required qualitative 
and quantitative description. This step has not received much 
attention in the literature for process LCA, although it is 
also present in hybrid LCA, where physical flows must be 
expressed in terms of their monetary value in order to link to 
economic input-output models (Suh and Huppes 2005). Each 
prototype took a unique approach to flow description. pslink 

Fig. 10   The four steps for developing a PSM from a product dataset identified in the study, and the contributions of each prototype to each step
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takes a material-centric approach, where it uses component 
material composition and dimensions along with density data 
and registered volume formulas to calculate the mass of each 
material in a component. For pslink to perform this step, the 
user is required to collect these physical data and prepare them 
in defined formats, some of which can be automated. In the 
antelope case, the qualitative description of each leaf node is 
performed by the user by manually mapping a flow to a reference 
background dataset product flow, and then the mappings 
were used to generate mock quantitative data according to 
heuristics. perdu works on the assumption that the flow property 
description problem is a nomenclature problem, recognizing the 
lack of a common nomenclature for products/intermediate flows 
across life cycle inventory sources. Classifications systems are a 
common way of product identification used in product category 
rules and environmental product declarations (Ingwersen and 
Stevenson 2012; Minkov et al. 2015), and perdu classifies flows 
according to one of these formal systems. In an application, it 
is possible that a modeler will already have direct access to 
information about the parts contained in their product system, 
and this information must be used in a tool-dependent manner 
to describe these properties.

In the linking step, the use of a semantic linking demonstrated 
by pslink and autoprox shows great promise to select “best-fit” 
background process to provide the required foreground input 
flow. The use of large lexical databases and machine learning 
algorithms has been identified as a promising approach 
for reconciling different background LCI databases (Davis 
et  al. 2010; Kuczenski et  al. 2016). The pslink prototype 
implementation depended on a locally-defined semantic 
network, and the autoprox prototype extended this approach 
to use a variety of matching algorithms, including more 
robust semantic databases. These techniques can be used for 
foreground systems when sufficient lexical content is available. 
The novel linkage metrics from pslink—the lexical, relation and 
traversal factors—demonstrate a way to assess the validity of 
machine-based links. However, the approaches may generate 
false matches, suggesting that the results would still need 
to be manually reviewed. They also can require substantial 
computational resources. Each tool was limited to searching 
one user-specified background datasource specified by the user 
at a time.

Serialization is the simplest problem to solve, with the pslink 
contribution demonstrating straightforward implementation of 
JSON-LD export and linking to target background datasets 
present in openLCA. The perdu prototype does not construct 
LCA models. perdu prepares lists of database matches for 
further use in a linked data approach, which would be possible 
to integrate with emerging data resources such as BONSAI 
(BONSAI 2020). The LCA disclosure framework used in 
antelope can define the relationships, but further development 
is required to support serialization. Only pslink met the study 
requirements to generate direct inputs to openLCA but a linked 

dataset is dependent upon the presence of the background 
dataset in the software to forge the link. In contrast, the antelope 
prototype uses an LCA disclosure format that is not limited 
to a single source of background data. This is intended to be 
accomplished by providing “stable semantic references” to the 
background datasets used. In practice, this is accomplished by 
naming each background dataset with both an “origin” that 
identifies the specific data source, and an “external reference” 
that unambiguously specifies a particular dataset. In principle, an 
LCA software system could obtain the exact dataset specified as 
long as it can properly interpret the named origin. While it would 
be straightforward to express the LCA disclosure format using 
the openLCA schema, this functionality is not yet implemented. 
It would still be subject to the same constraints as the pslink 
serialization: the referenced datasets would need to be present 
in the database in order to be linked.

4.1 � Future use in LCA software

These prototypes are not yet integrated into the LCA software 
tools already used in the community by practitioners. However, a 
number of assets they share would facilitate their incorporation. 
These assets include the following: (1) each prototype is 
already packaged in a way that facilitates automated install 
or embedding in other tools; (2) the prototypes are written in 
a language (Python) that can already be run by tools such as 
openLCA or Brightway via their existing interfaces; (3) the 
tools exports matches and PSM in standard exchange formats 
already readable by LCA software tools like JSON-LD and 
ILCD; (4) the open-source licenses permit reuse, embedding, 
and modification without licensing; and (5) management of the 
source code for the prototypes in a version control system that 
supports collaboration and issue tracking (github).

The incorporation of one of more of the prototypes into 
an LCA tool would make them more accessible to a larger 
body of practitioners.

5 � Conclusion

The PSM automation project demonstrated success in both 
principle and practice. In principle, this method of challenging 
experts to solve specific problems by independently and 
creatively writing code within a set of technical and logistical 
constraints can be effective in the LCA domain. In practice, 
the present study generated three operable prototypes that 
together describe the solution space of the study problem. The 
process of converting a foreground into a product system model 
requires four different steps: description of the model structure, 
determination of flow properties, linking flows to background 
databases, and serializing the model into a format that can be 
interpreted by LCA software. The three prototypes, along with 
the additional autoprox tool, showed that experienced LCA 
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software developers could write software to address, in some 
cases, all of the steps, in a relatively short period of time. Thus, 
with greater investment of time into refining or improving these 
prototypes, or into further development of methods to tackle 
one of the four steps delineated by this study, is likely to yield 
very useful product system assembly tools. It is our hope that 
the community continue to build on the work that is included 
in this project.
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