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Abstract
Purpose Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread
application, robustness, and validity still face multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a
dedicated cross-cutting working group on regionalized LCIA aims to provide an overview of the status of regionalization in
LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of
LCIA methods, LCI databases, and LCA software.
Methods A survey of current practice among regionalized LCIA method developers was conducted. The survey included
questions on chosen method’s spatial resolution and scale, the spatial resolution of input parameters, the choice of native spatial
resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the
assessment of uncertainty from input parameters and model structure, and the variability due to spatial aggregation.
Recommendations are formulated based on the survey results and extensive discussion by the authors.
Results and discussion Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial
resolutions are generally chosen based on the availability of global input data. Annual modeled or measured elementary flow
quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such
as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter,
model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So
far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially
differentiated model CFs are not easily available, archetype models are sometimes developed.
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Conclusions Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using
standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs,
aggregated CFs should always be provided and should be calculated as the weighted averages of constituent CFs using annual
flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency,
and robustness in the development and application of regionalized LCIA methods.
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Variability

1 Introduction

Life cycle assessment (LCA) is frequently used to quantify the
environmental impacts of a product or a service throughout its
entire life cycle (ISO 2006a, 2006b). Life cycle impact assess-
ment (LCIA) method developers have long recognized that,
for many impact categories, the impact of a given elementary
flow depends on where that flow occurs, and have therefore
provided site-dependent characterization factors (CFs)
(Potting and Hauschild 2006). In the last decade, regionalized
methods have included impact categories such as air pollution
(Roy et al. 2012; van Zelm et al. 2016), freshwater and terres-
trial acidification (Roy et al. 2014; Azevedo et al. 2015), eu-
trophication (Azevedo et al. 2013; Scherer and Pfister 2015),
respiratory effects from particulate matter (Humbert et al.
2009), water scarcity and related impact on human health
and ecosystem (Pfister et al. 2009; Verones et al. 2010,
2013, 2017b; van Zelm et al. 2011; Hanafiah et al. 2011;
Helmes et al. 2012; Pfister and Bayer 2014; Motoshita et al.
2014; Scherer et al. 2015; Pfister and Suh 2015; Sonderegger
et al. 2015; Boulay et al. 2018), land use, biodiversity, and soil
quality (Núñez et al. 2010, 2012; de Baan et al. 2012, 2013;
Chaudhary et al. 2015; Chaudhary and Brooks 2018), toxicity
and exposure effect (Wegener Sleeswijk and Heijungs 2010;
Owsianiak et al. 2013; Kounina et al. 2014; Wannaz et al.
2018a, 2018b), as well as overarching methods such as
EDIP 2003 (Hauschild and Potting 2005), TRACI (Bare
2011), IMPACT World + (Bulle et al. 2012), eco-scarcity
2013 (Frischknecht and Knöpfel 2013), and LC-IMPACT
(Verones et al. 2016). Such regionalized LCIA models and
methods include spatial inputs from fields such as climatolo-
gy, geology, hydrology, ecology, human geography, and envi-
ronmental engineering. In theory, maps of regionalized LCIA
characterization factors can be combined with site-dependent
life cycle inventories to produce more accurate and less un-
certain LCA results. In practice, such regionalized LCA can
be limited by a lack of standardization in regionalized LCIA
data formats, poor site-dependent inventory data availability,
and a lack of widespread software support. Regionalized nor-
malization and weighting also present a separate set of chal-
lenges, primarily due to data quality and availability. This
paper is the consensus output of a UNEP-SETAC Life Cycle
Initiative working group on the harmonization of LCIA

regionalization (Frischknecht and Jolliet 2016; Verones et al.
2017a), and provides an overview of the status of regionaliza-
tion in LCIA methods and recommendations for LCIA meth-
od, LCI database, and software developers to harmonize and
support regionalization in LCIA. We do not discuss the devel-
opment of regionalized inventory databases, which is the fo-
cus of a separate working group, or the development of the
impact assessment models themselves.

2 Methodology

2.1 Recommended nomenclature

We recommend and use the following specific terms for con-
cepts that have been used inconsistently in previous literature:

& Spatial unit: the geometrical definition and metadata of a
spatial feature, such as the coordinates of a raster cell or a
polygon and all associated spatial and non-spatial
metadata.

& Spatial resolution: the set of spatial units used in an inven-
tory database or LCIA method. We note that this differs
slightly from the traditional definition of spatial resolution
being the smallest distinguishable parts (Lam and
Quattrochi 1992), as the spatial units used in LCIA, such
as watersheds, can have dramatically different sizes.

& Native spatial resolution: the spatial resolution of LCIA
method CF maps which the method developers best feel
represents the spatial variability of CF values.

& Aggregated spatial resolution: a transformation of the na-
tive spatial resolution to a new spatial resolution, usually
at the country, continental, or global scale.

We use the terms site-specific, site-dependent, and site-
generic as defined and used by Potting and Hauschild (2006).

2.2 Survey of current practice

A survey of developers from every recent regionalized LCIA
method known to the working group was conducted by phone
or email. A summary of the questions asked is shown in
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Table 1, and the full list of questions and answers is given in
the Electronic supplementary material.

2.3 Formulation of recommendations

The recommendations in this paper and technical appendix
were developed over online meetings from 2015 to 2018
and during a Pellston Workshop in Valencia, Spain, in
January 2016.

3 Results

3.1 Summary of survey results

In this survey, methods for 27 regionalized impact indicators
were reviewed. Widely used LCIA methods, such as TRACI
(3 impact categories, hereafter IC), Ecological scarcity 2013
(2 IC), and EDIP 2003 (3 IC), as well as more recent LCIA
methodologies like LC-Impact (5 IC), IMPACT World+ (13
IC), and AWARE (1 IC) were included (Hauschild and Potting
2005; Bare 2011; Bulle et al. 2012; Frischknecht and Knöpfel
2013; Verones et al. 2016; Boulay et al. 2018). They cover the
following environmental issues: water use, land use, acidifi-
cation, eutrophication, human toxicity, respiratory inorganics,
smog formation, and photochemical ozone formation. Most
methods had global spatial coverage, except for TRACI
(USA) and EDIP (Europe).

The survey results are summarized in Fig. 1 and discussed
in detail in the following sections.

3.1.1 Choice of native spatial resolution

In theory, the native spatial resolution should reflect the
observed spatial variability of a given environmental issue
and elementary flow. Surveyed method developers were
aware of how the choice of native spatial resolution could
influence the produced characterization factors. However,
in our survey, the native spatial resolution choice was
driven in most cases by the following factors: input data
availability, especially when global coverage was desired;
optimizing model robustness and consistency instead of
finer spatial resolution; and the limited availability of
models for specific impact categories. Few developers
used tools like spatial interpolation or minimization of
spatial autocorrelation (Mutel et al. 2012) to actively
choose a spatial resolution not already found in their input
data. Instead, several method developers tested multiple
possible native spatial resolutions, and the chosen native
spatial resolution was then a compromise between scien-
tific fidelity and practical considerations, such as data size
and calculation times.

The surveyed native spatial resolutions ranged from very
small to very large regions (i.e., from tens to millions of square
kilometers), from tens to thousands of spatial units, and from
spatial units based on biophysical or political boundaries to

Table 1 Survey questions
Meta information LCIA method name

Contact person

Midpoint or endpoint (damage) modeling

Impact category (water scarcity, land occupation, etc.)

Spatial resolution and scale Spatial coverage (global, country level, etc.)

Description of the chosen native spatial resolution: use of spatial
differentiation or archetype?

Spatial resolution for input
parameters in the LCIA model

Fate factor

Effect factor

Improvements/limitations

- Short term (interim approach)

- Overall (directional)

How was the native spatial resolution chosen?

Was the chosen native spatial resolution compared with alternatives?

Would a finer native spatial resolution be preferred?

Is a finer native spatial resolution the best way to reduce
overall uncertainties?

Would a finer native spatial resolution be operational?

Operationalization Did you try to align the LCIA spatial resolution with the spatial
resolution of available inventory data?

To which spatial resolutions was the aggregation performed?

What method was used for spatial aggregation, if any?

Which aggregation scale would you recommend?

Uncertainty assessment Was basic uncertainty from input parameters assessed?

Was basic uncertainty from the model structure assessed?

Was spatial variability due to spatial aggregation assessed?
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grid cells. In some cases, such as acidifying emissions to air,
consumption of surface and groundwater, and toxicity assess-
ment, individual substances, such as ammonia or SOx, or clas-
ses of substances, such as water from surface sources or water
from aquifers, will each have their own spatial resolution
within one impact category.

3.1.2 Desirability of finer native spatial resolutions

Most impact assessment (IA) method developers mentioned
they would prefer a finer native spatial resolution to better
represent their CF spatial variability. However, most of them
cited data availability and time effort as the limiting factors to

Fig. 1 Summary of quantitative survey results
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do so. Some developers mentioned they would prefer to focus
on improving underlying LCIA model details, such as as-
sumptions and input parameter data quality, rather than the
spatial resolution, as this was a more efficient path to reduce
CF uncertainty. In our survey, the IA method developers were
split about whether a finer native spatial resolution was the
best way to reduce overall uncertainties. Those who answered
Byes^ considered their native spatial resolutions too coarse
and felt that a finer resolution would better reflect spatial im-
pact variability. Those who answered Bno^ presented several
arguments against a finer spatial resolution: (1) inventory data
is not ready, or has very poor spatial resolution; (2) result
uncertainty is driven by inventory or impact assessment model
uncertainty, not IA spatial uncertainty; (3) results on a finer
spatial resolution would actually have higher uncertainty, due
to the use of either spatial interpolation, more detailed but less
accurate models, or uncertainty on the exact location of with-
drawal or emission (e.g., for water supply or effluents); and (4)
the amount of work and new tools needed to deal with big data
can be overwhelming or infeasible.

3.2 Aggregation of characterization factors

Method developers aggregate native resolution CF to larger
spatial resolutions (e.g., regional, continental, and global
levels) to meet specific study or software requirements.
During this aggregation, method developers face challenges
in (1) the selection of appropriate techniques used to aggregate
native CFs; (2) the definition of aggregation-scale regions;
and (3) the handling of native-scale regions for which no
CFs are provided.

3.2.1 Selection of appropriate aggregation techniques

As shown in Table 2, method developers have handled aggre-
gation in an ad hoc and uncoordinated fashion. When aggregat-
ing, most developers used a weighted average of the native-
scale CFs, but significant differences were observed in the
choice and source of data used as weights. The most widely
used weighting data were annual elementary flow quantities in
each native-scale region. This approach assumes that the spe-
cific activities in each given study, and their corresponding
elementary flows, are more likely to happen in areas where they
are generally already occurring. This approach is practical, as
such flow data is often gathered during method development.
One can even differentiate such flow quantities by industrial
sector, for example, differentiating consumption of water for
agricultural and non-agricultural purposes (Boulay et al.
2018), and thus generate sector-specific aggregated CFs.

Proxy weighting data has been used when data on the ac-
tual distribution of the elementary flow quantities were un-
available. Population counts have been used as weighting
proxy, with the assumption that the spatial patterns of stressors

are well correlated with population distributions (Humbert
et al. 2011). Given no other suitable proxy data, the surface
area of each native-scale region could be used as a last resort
(Mutel et al. 2012).

3.2.2 Definition of aggregation regions

Aggregation to country and continent scales can be another
source of discrepancies across methods. Country borders can
change over time, as can the number of countries. Country
boundaries can also vary based on the chosen data source and
that source’s spatial resolution. Not all country borders are rec-
ognized by other countries, and different data sources treat dis-
puted areas differently. The situation is even less clear when it
comes to continental boundaries; while the United Nations has
a country-based list of regions and sub-regions (United Nations
Statistics Division 2018), few method developers follow this
standard. In particular, the boundary between Asia and
Europe can differ by more than one thousand kilometers, de-
pending on the data source. Method developers doing aggrega-
tion need to check whether their country definitions span mul-
tiple continents, which could lead to unexpected results.
Discrepancies on the spatial definitions of countries and conti-
nents can lead to mismatches with life cycle inventory datasets,
even if the formal name of the spatial unit is identical.

3.2.3 Handling of no data values

Regionalized LCIA methods with global coverage will still
have some areas where no CFs are provided. Such Bno data^
CFs can arise due to a lack of data, such as isolated islands, or
in regions where it would not make physical sense to provide a
CF, such as land use in the ocean. The way these no data
values are handled in the aggregation process can significantly
affect the aggregated CF values, but is seldom described. Four
approaches to handle no data values in weighted, average
aggregation techniques are present in the literature: (1) treat
no data values as zeros; (2) assign a default value such as the
global average; (3) interpolate from neighboring areas where
real-value native CFs are present; and (4) exclude no data
spatial units from the weighted average.

The choice among these four techniques should reflect the
reason that such no data values occur. In areas where it is rea-
sonable not to have a CF, such as Antarctica, the last option (4)
is preferable. Equating no data regions with zero CFs (1) is the
most widely used but can introduce significant and systematic
downward bias in aggregated CFs. The use of default values (2)
is a good compromise for spatial units where a CF is expected
to be non-zero but not available. Interpolation from near neigh-
bors (3) has been used to fill in no data values for coastal areas
(Pfister et al. 2011), but should only be used as a last resort; it
would be far preferable to fill the missing input data in the
LCIA model.
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4 Discussion

4.1 Spatial archetypes

Archetypes are classes of similar scenarios or situations
that can explain some of the variability in CFs.
Archetypes can incorporate geographical information
(Blow population density,^ Bagricultural^), though spatial
differentiation is not always the primary consideration
(Bfrom high stacks,^ Bindoor^). Archetypes can impart
information more efficiently than spatial units when such
spatial units would need to be defined on a very fine
spatial resolution, or when spatial differentiation is not
the main driver for variability. For example, some intake
fractions are driven by population density around emis-
sion sources (Apte et al. 2012; Hodas et al. 2016). In this
case, it is more important to know whether a particulate
matter emission happens in a city or a rural area than to
know whether it takes place in France or Italy. Even a
regionalized IA method with a native spatial resolution
of 50 km by 50 km (van Zelm et al. 2016) will be less
accurate than urban versus rural archetypes, as most of the
grid cells will be composed of a mix of high and low
population density and will therefore not be able to reflect
the actual variability in intake fractions.

Archetypes may further represent an efficient way to link
inventory and impact assessment. It may be difficult to know
the exact location where an emission takes place, but we can
easily differentiate whether it takes place indoors or outdoors,
or the fraction occurring in an urban versus rural area.

Several challenges need to be addressed to ensure the con-
sistent and efficient use of archetypes. To be practical, arche-
types must be general enough that they can be used across
different impact categories and LCIA methods. Proliferation

of category-specific archetypes is not practical since this
would mean that different inventory flows would be reported
in different ways depending on the considered category. The
definition of archetypes therefore requires coordination be-
tween LCI databases and LCIA methods, as well as across
LCIA methods, to ensure consistent archetype use and
definitions.

Archetypes should be relatively easy to use (Helmes et al.
2012). Kounina et al. (2018) defined archetypes for the fate of
eutrophying or toxic substances in freshwater based on the resi-
dence time of water to the sea and the water depth. In this case, it
is easier to provide a map, as the input data needed to choose the
archetype would require site specificity (Kounina et al. 2018).

Finally, archetypes may not be able to reflect the entire
range of variability. For example, the archetype label Burban^
may include large variations in population densities between a
small and a large city, or between a North American low-
density and an Asian high-density city. A hybrid approach
that combines archetypes with location-specific inputs can
be one way forward (Fantke et al. 2017). Parameterizing ar-
chetypes for different regions, like different parameters for a
default urban area in each continent of the world (Fantke et al.
2017), could also be tried, though such an approach could lead
to inconsistencies without community consensus.

4.2 Uncertainty and variability

Current LCA practice merges input parameter and model un-
certainty, commonly understood as reducible through model
refinement or data acquisition, and inherent variability, which
is not. Both input parameter and model uncertainty and inher-
ent variability have a spatial and a non-spatial component. The
merging of those uncertainties into a single probability distri-
bution presents challenges for regionalized IA method
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Table 2 Weighting proxies to upscale the native CF to country, continental, and global CF for regional and local impact categories (non-exhaustive list)

Impact categories Elementary flow type LC-Impact IMPACT World + ReCiPe 2016

Photochemical ozone
formation

Emission (kg) Annual flow quantity NR Annual flow quantity

Particulate matter formation Emission (kg) Annual flow quantity Population count Annual flow quantity
Terrestrial acidification Emission (kg) Annual flow quantity Annual flow quantity Annual flow quantity
Aquatic acidification Emission (kg) NA Annual flow quantity NA

Emission (kg) - Emissions from fertilizer
and manure applications

- Crop area (for erosion)

Population count Population count

Marine eutrophication Emission (kg) NA Airborne Annual flow quantity NA
Terrestrial eutrophication Emission (kg) NA NAa NA
Land stress Land occupation (area occupied

over time, m2/year), land
transformation (area
transformed, m2)

Total ecoregion area
(biodiversity indicator)

- Ecoregion area used for
each land use type

- Area of climate zones or of
Holridge life zones used
for each land use type

NR

Water stress/water use Water consumption (m3) Water consumption Water consumption Water consumption
Ionizing radiation Emission (Bq) NR NR NR

NR not regionalized, NA not available yet



developers, as it is difficult to give practitioners guidance on
how much of the total uncertainty is spatially correlated, and
how much is due to inherent variability and should therefore
be independently sampled from spatial unit to spatial unit.

4.3 Value choices in aggregation

The choice of the proxy can have considerable influence on
the resulting aggregated CFs. For example, the use of popula-
tion counts to upscale CFs for freshwater eutrophication at
local resolution may lead to different aggregated CFs com-
pared to the use of phosphorus emissions as proxy. A large
fraction of phosphorus emissions stems from agricultural
sources, which are not highly populated areas, thus generating
important bias in the aggregation. In addition, for a country
with important exports from a strong agricultural sector, the
population densities will be decoupled from the emission in-
tensities in that country, and their use will thus contribute to a
bias in the obtained CF compared to other countries.
Illustrations of such biases have been shown in previous stud-
ies, e.g., land use impact assessment.

Using current annual flow quantities or proxy data such as
population counts in the aggregation calculation introduces
uncertainty due to practitioner choice: the implicit assumption
of such techniques is that current patterns are good predictors
of the spatial pattern of stressors caused by a specific func-
tional unit. There is a parallel here with current debates on
Battributional^ versus Bconsequential^ LCA; using current
spatial patterns of stressors is analogous to the attributional
approach, whereas a consequential perspective might, for ex-
ample, prefer to use a model of where agricultural land could
be transformed or intensified due to increased demand when
calculating land use impacts.

5 Recommendations

5.1 Overall recommendations

Our first overall recommendation is that method developers
should provide a more complete set of information than is
currently provided. This recommendation is specified in detail
in the following sections and includes (1) a transparent and
consistent set of metadata; (2) LCIA CFs with separate char-
acterization of uncertainty and variability; and (3) aggregated
CFs which include variability due to spatial aggregation.

We recommend that methods be provided in, and LCA
software support, a standardized regionalized LCIA data for-
mat. Existing LCIA formats do not support regionalized CFs
and do not enjoy broad community support. A draft standard
is provided in the Electronic supplementary material. The pro-
posed data format is not a new creation, but rather a standard-
ized way of using existing data and metadata formats such as

GeoTIFFs, GeoJSON, and the OpenKnowledge Foundation’s
Data Package, and will be tested and applied to both IMPACT
World+ (Bulle et al. 2012) and LC-IMPACT (Verones et al.
2016). Feedback from the broader LCA community as well as
LCA software developers will be solicited.

Specific recommendations are given below to IA devel-
opers (Section 5.2), LCI database providers (Section 5.3),
and LCA software developers (Section 5.4).

5.2 Recommendations for IA method developers

Transparent and comprehensive documentation Regionalized
method developers should clearly and transparently state (1)
which parameters are regionalized, and at what spatial resolu-
tion, in their LCIA model and input data sets; (2) aggregation
method, if any; and (3) value choices. All IA method devel-
opers should indicate the basis of their choice of native spatial
resolution, even if they have chosen site-generic modeling.
Regionalized methods should indicate whether they would
have preferred a different native spatial resolution.

Standard data formats Regionalized IA method metadata and
CFs should be provided in a standardized data format. We
have proposed and will test one such format, described in
the Electronic supplementary material.

Common and comprehensive elementary flow nomenclature
CFs should be provided using a common and comprehensive
nomenclature such as found in the ELCD or ecoinvent data-
bases or produced through community reconciliation efforts
such as the Global LCA Data Network (GLAD).

Native spatial resolution Spatial input datasets for regional-
ized impact assessment models should be aggregated as little
as possible, as such aggregation causes loss of information. In
cases where IA model input datasets have different resolu-
tions, it is preferable to downscale the input data to the finest
spatial resolution instead of aggregating all input data to the
coarsest resolution.

Archetype development When similar scenarios or situations
can explain a large fraction of CF variability, we recommend
defining archetypes that reflect this similarity. This develop-
ment should be done under the condition that related LCI
information could easily be adapted to match such archetypes.
In cases where the use of archetypes could lead to additional
complexity in their implementation, we recommend calculat-
ing sector- or industry-specific average CFs.

Spatial aggregation Regionalized IA method developers
should provide aggregated characterization factors, and docu-
ment how such aggregated factors were calculated.
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& Global factors should always be provided; continental and
region- or country-specific factors should be provided when
these spatial units are larger than the native resolution.
Continental region and sub-region definitions are encouraged
to follow the United Nations geoscheme (United Nations
Statistics Division 2018), and any other continental-
resolution regions should be labeled as such and be given
names not overlapping those found in the United Nations
geoscheme. Data sources for continent and country borders
should be documented and publicly accessible, including
their URLs, version numbers, and access dates.

& The approach used to handle no data CF values in aggre-
gation should be explained. We recommend that no data
values should be skipped in the aggregation algorithm (the
fourth approach in Section 4.2), though care should be
taken when a large fraction of an aggregated spatial unit
has no data CF values.

& Aggregation techniques across impact categories within
an LCIA method should be as consistent as possible. We
recommend the use of annual flow quantities in the
weighted average aggregation calculation whenever avail-
able. Alternative aggregation approaches, such as using
proxies based on population counts, can be used if neces-
sary. LCIAmethod developers should document the ratio-
nale for using those alternative proxies.

& The data used for the aggregation should be as consistent
as possible with the data used in the IA model, including
having the same reference year and spatial resolution. Any
discrepancies between these data sources should be
documented.

Should there be high variability in regionalized CFs within
large and diverse countries, sub-national or regional CFs may
be developed.

Report uncertainty factors separately IA method developers
should include quantitative estimates of uncertainty and vari-
ability in their published CFs at both the native and aggregated
spatial resolutions. For aggregated spatial units, CFs should
include a separate estimate of variability due to spatial aggre-
gation. In all cases, a total probability distribution function for
the CF should be given.

Changing the spatial resolution of model inputsMany fields
of scientific inquiry contribute datasets and models that
could be useful for impact assessment applications, each
with their own spatial and temporal resolution and level of
detail. Adapting and transforming these inputs is the first
step for most impact assessment method development, but
such modifications can change statistical or other data
properties due to the modifiable areal unit problem
(Fotheringham and Wong 1991). Method developers
should check, understand, and document changes

introduced by the adaptation and transformation of model
inputs.

Global coverage Global coverage of regionalized IA methods
is recommended, but is not a requirement—in some cases,
region-specific models may have higher accuracy. Some pa-
rameterized models can be adapted to many regions provided
region-specific input data is available, like the InVEST model
(Sharp et al. 2014). This is a promising approach, though we
caution that model developers should thoroughly and critical-
ly evaluate the global application of such models.

Develop regionalized archetypes Combining archetypes, such
as population density classes, with spatial information, such as
a city name and location, could be an efficient way to provide
high-fidelity CFs. If global spatially differentiated CFs cannot
be easily developed for certain impact categories, such as par-
ticulate matter formation, using detailed location-specific ar-
chetypes can capture important CF variabilities (Fantke et al.
2017). More research is needed on the implementation and
tradeoffs of such an approach.

Validity check with case study Regionalized LCIA developers
should use their methods in LCA case studies or method compar-
ison studies to show the practicality and usefulness of their CFs.

5.3 Recommendations for inventory databases

Prioritize the development of regionalized inventories
Regionalized inventories are necessary to unlock the value
of the data that already exists in regionalized LCIA methods.
Therefore, database developers should prioritize the develop-
ment of regionalized inventories when high spatial variability
is observed or expected.

Document the spatial resolution of the inventory Inventory
databases should document and make available the geograph-
ical definition of each spatial unit used in the database, as well
as how these definitions were derived. A good example is the
ecoinvent geography definitions report, which includes all
spatial units in four different spatial data formats, built using
open data and software (Mutel 2017). We encourage invento-
ry databases to use existing and widely available data and
definitions, such as Natural Earth data and the United
Nations geoscheme (United Nations Statistics Division
2018) whenever possible.

Three-dimensional spatial information In addition to the geo-
graphic location, some impacts are impacted by the altitude of
the stressor. The most prominent example are the varying
climate change impacts of air emissions at low and high alti-
tudes (Fuglestvedt et al. 2010). The existing archetype ap-
proach is, however, adequate to capture this variability.
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Support archetype developments Inventory database devel-
opers should support the development of regionalized arche-
types where appropriate, including conducting trial applica-
tions on existing datasets, providing their experience
implementing archetypes in a consistent fashion, and integrat-
ing archetypes with proven value in a timely manner.

5.4 Recommendations for software developers

Support for native resolution CFs LCA software should sup-
port regionalized LCA calculations and the data formats for
regionalized LCIA methods. Such support can include inte-
grating GIS directly into the LCA software or using external
services for on-demand or pre-calculated GIS operations.

Clear and tested calculation algorithms The algorithms used
in regionalized LCA calculations should be documented and
publicly available. Transparency is vital to build trust in the
results and understanding of such advanced and novel
calculations.

Support the standard data format LCA software should sup-
port the standard data format proposed in the Electronic sup-
plementary material for documenting CFs, as this will simpli-
fy the use of and ensure consistency in the implementation of
regionalized LCIA methods.

6 Conclusions

Based on our survey of all major recent regionalized
LCIA methods, developers face the following challenges
when developing robust and usable methods: (1) data
availability for LCIA characterization factors with global
coverage; (2) lack of standardization and harmonization
when calculating weighted spatially aggregated CFs; (3)
insufficient quantification and differentiation of uncertain-
ty factors; and (4) inconsistent metadata and data formats.
There are also practical challenges posed by poor spatial
resolution and understanding of spatial dynamics in LCI
databases and software support for regionalized LCA
calculations.

The recommendations for regionalized method, inven-
tory database, and software developers in this manuscript
can help improve the transparency, consistency, and data
quality of both regionalized LCIA methods and their use
in LCA software and inventory databases. With spatially
differentiated LCI data and advanced LCA calculation
routines becoming increasingly available, regionalized
LCA can contribute to improving the robustness of
LCA results by reducing uncertainties due to spatial
variability.

Disclaimer The views expressed in this article are those of the authors and
do not necessarily represent the views or policies of the organizations to
which they belong. The designations employed and the presentation of
the material in this publication do not imply the expression of any opinion
whatsoever on the part of the UNEP/SETAC Life Cycle Initiative
concerning the legal status of any country, territory, city, or area or of
its authorities, or concerning delimitation of its frontiers or boundaries.
Moreover, the views expressed do not necessarily represent the decision
or the state policy of the UNEP/SETAC Life Cycle Initiative, nor does
citing of trade names or commercial processes constitute endorsement.
Although an EPA employee contributed to this article, the research pre-
sented was not performed or funded by EPA and was not subject to EPA’s
quality system requirements. Consequently, the views, interpretations,
and conclusions expressed in the article are solely those of the authors
and do not necessarily reflect or represent EPA’s views or policies.

References

Apte JS, Bombrun E, Marshall JD, Nazaroff WW (2012) Global
intraurban intake fractions for primary air pollutants from vehicles
and other distributed sources. Environ Sci Technol 46:3415–3423

Azevedo LB, De Schryver AM, Hendriks AJ, Huijbregts MAJ (2015)
Calcifying species sensitivity distributions for ocean acidification.
Environ Sci Technol 49:1495–1500

Azevedo LB, Henderson AD, van Zelm R, Jolliet O, Huijbregts MAJ
(2013) Assessing the importance of spatial variability versus model
choices in life cycle impact assessment: the case of freshwater eu-
trophication in Europe. Environ Sci Technol 47:13565–13570

Bare J (2011) TRACI 2.0: the tool for the reduction and assessment of
chemical and other environmental impacts 2.0. Clean Techn Environ
Policy 13:687–696

Boulay A-M, Bare J, Benini L, Berger M, Lathuillière MJ, Manzardo A,
Margni M, Motoshita M, Núñez M, Pastor AV, Ridoutt B, Oki T,
Worbe S, Pfister S (2018) The WULCA consensus characterization
model for water scarcity footprints: assessing impacts of water con-
sumption based on available water remaining (AWARE). Int J Life
Cycle Assess 23:368–378

Bulle C, Jolliet O, Humbert S et al (2012) IMPACTWorld+: a new global
regionalized life cycle impact assessment method. International
Conference on Ecobalance. Yokohama, Japan, In

Chaudhary A, Brooks TM (2018) Land use intensity-specific global char-
acterization factors to assess product biodiversity footprints. Environ
Sci Technol 52:5094–5104

Chaudhary A, Verones F, de Baan L, Hellweg S (2015) Quantifying land
use impacts on biodiversity: combining species–area models and
vulnerability indicators. Environ Sci Technol 49:9987–9995

de Baan L, Alkemade R, Koellner T (2012) Land use impacts on biodiver-
sity in LCA: a global approach. Int J Life Cycle Assess 18:1216–1230

de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013) Land use
in life cycle assessment: global characterization factors based on
regional and global potential species extinction. Environ Sci
Technol 47:9281–9290

Fantke P, Jolliet O, Apte JS, Hodas N, Evans J,Weschler CJ, Stylianou KS,
Jantunen M, McKone TE (2017) Characterizing aggregated exposure
to primary particulate matter: recommended intake fractions for in-
door and outdoor sources. Environ Sci Technol 51:9089–9100

FotheringhamAS,Wong DWS (1991) The modifiable areal unit problem
in multivariate statistical analysis. Environ Plan A Econ Sp 23:
1025–1044

Frischknecht R, Jolliet O (2016) Global guidance for life cycle impact assess-
ment indicators. UNEP/SETAC Life Cycle Initiative, Paris, France

Frischknecht R, Knöpfel S (2013) Swiss eco-factors 2013 according to the
ecological scarcity method. Federal Office of the Environment, Bern

864 Int J Life Cycle Assess (2019) 24:856–865



Fuglestvedt JS, Shine KP, Berntsen T, Cook J, Lee DS, Stenke A, Skeie
RB, Velders GJM, Waitz IA (2010) Transport impacts on atmo-
sphere and climate: metrics. Atmos Environ 44:4648–4677

Hanafiah MM, Xenopoulos MA, Pfister S, Leuven RSEW, Huijbregts
MAJ (2011) Characterization factors for water consumption and
greenhouse gas emissions based on freshwater fish species extinc-
tion. Environ Sci Technol 45:5272–5278

Hauschild M, Potting J (2005) Spatial differentiation in life cycle impact
assessment–the EDIP2003 methodology. Copenhagen

Helmes RJK, Huijbregts MAJ, Henderson AD, Jolliet O (2012) Spatially
explicit fate factors of phosphorous emissions to freshwater at the
global scale. Int J Life Cycle Assess 17:646–654

Hodas N, Loh M, Shin H-M, Li D, Bennett D, McKone TE, Jolliet O,
Weschler CJ, JantunenM, Lioy P, Fantke P (2016) Indoor inhalation
intake fractions of fine particulate matter: review of influencing fac-
tors. Indoor Air 26:836–856

Humbert S, Manneh R, Shaked S, Wannaz C, Horvath A, Deschênes L,
Jolliet O, Margni M (2009) Assessing regional intake fractions in
North America. Sci Total Environ 407:4812–4820

Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P,
McKone TE, Horvath A, Jolliet O (2011) Intake fraction for partic-
ulate matter: recommendations for life cycle impact assessment.
Environ Sci Technol 45:4808–4816

ISO (2006a) ISO 14040: environmental management—life cycle assess-
ment—principles and framework. Geneva, Switzerland

ISO (2006b) ISO 14044: environmental management—life cycle assess-
ment—requirements and guidelines. Geneva, Switzerland

Kounina A, Margni M, Henderson AD, Jolliet O (2018) Global spatial
analysis of toxic emissions to freshwater: operationalization for LCA.
Int J Life Cycle Assess. https://doi.org/10.1007/s11367-018-1476-2

Kounina A, Margni M, Shaked S, Bulle C, Jolliet O (2014) Spatial anal-
ysis of toxic emissions in LCA: a sub-continental nested USEtox
model with freshwater archetypes. Environ Int 69:67–89

Lam NSN, Quattrochi D (1992) On the issues of scale, resolution, and
fractal analysis in the mapping sciences. Prof Geogr 44:88–98

Motoshita M, Ono Y, Pfister S, Boulay AM, Berger M, Nansai K, Tahara
K, Itsubo N, Inaba A (2014) Consistent characterisation factors at
midpoint and endpoint relevant to agricultural water scarcity arising
from freshwater consumption. Int J Life Cycle Assess. https://doi.
org/10.1007/s11367-014-0811-5

Mutel CL (2017) Ecoinvent geography definitions. https://geography.
ecoinvent.org/. Accessed 1 Feb 2018

Mutel CL, Pfister S, Hellweg S (2012) GIS-based regionalized life cycle
assessment: how big is small enough? Methodology and case study
of electricity generation. Environ Sci Technol 46:1096–1103

Núñez M, Antón A, Muñoz P, Rieradevall J (2012) Inclusion of soil
erosion impacts in life cycle assessment on a global scale: applica-
tion to energy crops in Spain. Int J Life Cycle Assess 18:755–767

Núñez M, Civit B, Muñoz P, Arena AP, Rieradevall J, Antón A (2010)
Assessing potential desertification environmental impact in life cy-
cle assessment. Int J Life Cycle Assess 15:67–78

Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013)
Addressing geographic variability in the comparative toxicity poten-
tial of copper and nickel in soils. Environ Sci Technol 47:3241–3250

Pfister S, Bayer P (2014) Monthly water stress: spatially and temporally
explicit consumptive water footprint of global crop production. J
Clean Prod 73:52–62

Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental
impacts of freshwater consumption in LCA. Environ Sci Technol
43:4098–4104

Pfister S, Suh S (2015) Environmental impacts of thermal emissions to fresh-
water: spatially explicit fate and effect modeling for life cycle assess-
ment and water footprinting. Int J Life Cycle Assess 20:927–936

Pfister S, Bayer P, Koehler A, Hellweg S (2011) Projected water con-
sumption in future global agriculture: Scenarios and related impacts
Science of The Total Environment 409:4206–4216. https://doi.org/
10.1016/j.scitotenv.2011.07.019

Potting J, Hauschild M (2006) Spatial differentiation in life cycle impact
assessment: a decade of method development to increase the envi-
ronmental realism of LCIA. Int J Life Cycle Assess 11:11–13

Roy P-O, Azevedo LB, Margni M et al (2014) Characterization factors for
terrestrial acidification at the global scale: a systematic analysis of spatial
variability and uncertainty. Sci Total Environ 500–501:270–276

Roy P-O, Huijbregts M, Deschênes L, Margni M (2012) Spatially-
differentiated atmospheric source–receptor relationships for nitro-
gen oxides, sulfur oxides and ammonia emissions at the global scale
for life cycle impact assessment. Atmos Environ 62:74–81

Scherer L, Pfister S (2015) Modelling spatially explicit impacts from phos-
phorus emissions in agriculture. Int J Life Cycle Assess 20:785–795

Scherer L, Venkatesh A, Karuppiah R, Pfister S (2015) Large-scale hy-
drological modeling for calculating water stress indices: implica-
tions of improved spatiotemporal resolution, surface-groundwater
differentiation, and uncertainty characterization. Environ Sci
Technol 49:4971–4979

Sharp R, Tallis HT, Ricketts T et al (2014) InVEST user’s guide. Nat Cap
Proj Stanford, CA, USA

Sonderegger T, Pfister S, Hellweg S (2015) Criticality of water: aligning
water and mineral resources assessment. Environ Sci Technol 49:
12315–12323

United Nations Statistics Division (2018) Standard country or area codes
for statistical use (M49). https://unstats.un.org/unsd/methodology/
m49/. Accessed 1 Feb 2018

van Zelm R, Preiss P, van Goethem T, van Dingenen R, Huijbregts M
(2016) Regionalized life cycle impact assessment of air pollution on
the global scale: damage to human health and vegetation. Atmos
Environ 134:129–137

van Zelm R, Schipper AM, Rombouts M et al (2011) Implementing
groundwater extraction in life cycle impact assessment: characteri-
zation factors based on plant species richness for the Netherlands.
Environ Sci Technol 45:629–635

Verones F, Bare J, Bulle C, Frischknecht R, Hauschild M, Hellweg S,
Henderson A, Jolliet O, Laurent A, Liao X, Lindner JP, Maia de
Souza D, Michelsen O, Patouillard L, Pfister S, Posthuma L, Prado
V, Ridoutt B, Rosenbaum RK, Sala S, Ugaya C, Vieira M, Fantke P
(2017a) LCIA framework and cross-cutting issues guidance within
the UNEP-SETAC life cycle initiative. J Clean Prod 161:957–967

Verones F, Hanafiah MM, Pfister S, Huijbregts MAJ, Pelletier GJ, Koehler
A (2010) Characterization factors for thermal pollution in freshwater
aquatic environments. Environ Sci Technol 44:9364–9369

Verones F, Hellweg S, Huijbregts MAJ (2016) LC-impact: overall frame-
work Trondheim, NO

Verones F, Pfister S, van ZR, Hellweg S (2017b) Biodiversity impacts
from water consumption on a global scale for use in life cycle as-
sessment. Int J Life Cycle Assess 22:1247–1256

Verones F, Saner D, Pfister S, Baisero D, Rondinini C, Hellweg S (2013)
Effects of consumptive water use on biodiversity in wetlands of
international importance. Environ Sci Technol 47:12248–12257

Wannaz C, Fantke P, Jolliet O (2018a) Multiscale spatial modeling of
human exposure from local sources to global intake. Environ Sci
Technol 52:701–711

Wannaz C, Fantke P, Lane J, Jolliet O (2018b) Source-to-exposure as-
sessment with the Pangea multi-scale framework—case study in
Australia. Environ Sci Process Impacts 20:133–144. https://doi.
org/10.1039/C7EM00523G

Wegener Sleeswijk A, Heijungs R (2010) GLOBOX: a spatially differ-
entiated global fate, intake and effect model for toxicity assessment
in LCA. Sci Total Environ 408:2817–2832

Int J Life Cycle Assess (2019) 24:856–865 865

https://doi.org/10.1007/s11367-018-1476-2
https://doi.org/10.1007/s11367-014-0811-5
https://doi.org/10.1007/s11367-014-0811-5
https://geography.ecoinvent.org/
https://geography.ecoinvent.org/
https://doi.org/10.1016/j.scitotenv.2011.07.019
https://doi.org/10.1016/j.scitotenv.2011.07.019
https://unstats.un.org/unsd/methodology/m49/
https://unstats.un.org/unsd/methodology/m49/
https://doi.org/10.1016/j.scitotenv.2011.07.019
https://doi.org/10.1016/j.scitotenv.2011.07.019

	Overview and recommendations for regionalized life cycle impact assessment
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methodology
	Recommended nomenclature
	Survey of current practice
	Formulation of recommendations

	Results
	Summary of survey results
	Choice of native spatial resolution
	Desirability of finer native spatial resolutions

	Aggregation of characterization factors
	Selection of appropriate aggregation techniques
	Definition of aggregation regions
	Handling of no data values


	Discussion
	Spatial archetypes
	Uncertainty and variability
	Value choices in aggregation

	Recommendations
	Overall recommendations
	Recommendations for IA method developers
	Recommendations for inventory databases
	Recommendations for software developers

	Conclusions
	References


