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Abstract

Purpose The aquaculture sector is the fastest growing food production industry. Life-cycle assessment (LCA) can be a useful tool
to assess its environmental impacts and ensure environmentally sustainable development. Years ago, critical reviews of LCA
methodology have been conducted in that field to evaluate methodological practice. However, how effective were these reviews
in improving LCA application? Are there any remaining issues that LCA practitioners should address in their practice?
Methods We tackle the above questions by critically reviewing all LCA cases applied to aquaculture and aquafeed production
systems from a methodological point of view. A total of 65 studies were retrieved, thus tripling the scope of previous reviews. The
studies were analysed following the main phases of the LCA methodology as described in the ISO standards, and the authors’
choices were extracted to identify potential trends in the LCA practice.

Results and discussion We identified five main methodological issues, which still pose challenges to LCA practitioners: (i) the
functional unit not always reflecting the actual function of the system, (ii) the system boundary often being too restricted, (iii) the
multi-functionality of processes too often being handled with economic allocation while more recommendable ways exist, (iv)
the impact coverage not covering all environmental impacts relevant to aquaculture and (v) the interpretation phase usually
lacking critical discussion of the methodological limitations. We analysed these aspects in depth, highlighting trends and
tendencies.

Conclusions For each of the five remaining issues, we provided recommendations to be integrated by practitioners in their future
LCA practice. We also developed a brief research agenda to address the future needs of LCA in the aquaculture sector. The first
need is that emphasis should be put on the construction of aquaculture life-cycle inventory databases with a special need for
developing countries and for post-farming processes. Additionally, method developers should develop and/or refine character-
isation models for missing impact pathways to better cover all relevant impacts of seafood farming.

Keywords Aquafeed - Fish - Life-cycle assessment - Food production - LCA methodology - Review - Seafood

1 Introduction

Because of a growing global population, food demand current-
ly faces a significant increase, which is expected to intensify in
the future (UN 2017). As a main diet component in many
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countries and a healthy source of protein, seafood demand is
no exception to that trend. Historically, fisheries were the main
source of producing seafood, but with a majority of the fish
stocks now fished at maximum capacity or at unsustainable
levels, seafood production has progressively transitioned to
aquaculture, for which production has boomed over the last
decades (FAO 2016). However, the aquaculture industry re-
mains associated with a number of impacts on the environ-
ment, such as climate change, aquatic eutrophication or loss of
biodiversity due to escapes of farmed animals (Naylor et al.
2000; Diana 2009; Ottinger et al. 2016). It is therefore crucial
to ensure that the fast development of the aquaculture sector
happens in the most sustainable way possible.

A common tool to assess environmental sustainability of
products or systems is life-cycle assessment (LCA; ISO
2006a, b). It has already been widely applied to assess
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aquaculture systems since the early 2000s. The number of LCA
studies published in scientific literature has intensified in the last
few years now reaching over 50 publications (Fig. 1; Bohnes et
al. 2018). Previous critical reviews have been made, looking at
the findings of the LCA studies as well as the methodological
choices of LCA practitioners (Henriksson et al. 2012; Parker
2012; Aubin 2013; Cao et al. 2013; Pahri et al. 2015). For
instance, Henriksson et al. (2012) analysed methodological
practices from 12 LCA studies of aquaculture systems. The
authors concluded on a lack of transparency in the data used,
and reported a limited coverage in the number of impacts
assessed by the studies and too narrowly scoped system bound-
aries, for which they provided a number of recommendations to
future studies. The aforementioned past reviews have provided
similar messages to improve LCA practice based on other lim-
ited sets of studies (see Fig. 1). However, now that the number of
publications has more than quadrupled, how have these mes-
sages been taken up by LCA practitioners in the aquaculture
sector? For example, has system boundary completeness and
environmental impact coverage been improved in recent LCA
studies conducted since critical reviews were published?

Here, we conducted a follow-up critical review of all existing
LCA studies in the aquaculture sector to address how LCA
practice has evolved since previous reviews and recommenda-
tions were released and identify potential points that still remain
to be addressed by practitioners. In the subsequent sections, we
use this review basis to (i) critically evaluate the methodological
choices of LCA studies in the aquaculture sector and provide a
new set of recommendations wherever needed (Sect. 3) and (ii)
outline a research agenda to address the requirements for more
consistent LCA practice in the aquaculture sector (Sect. 4).

2 Material and methods
2.1 Identification of the studies

To enter the scope of this review, LCA studies had to comply
with the following requirements: (i) assessing at least one pro-
duction system of aquaculture or aquafeed (i.c. feed for aquatic
organisms farmed in aquaculture); (ii) focusing on seafood pro-
duction for direct human consumption; and (iii) including at least
two impact categories (therefore, we excluded, e.g. stand-alone
carbon footprinting studies). Only articles in peer-reviewed
journals and publicly available peer-reviewed LCA reports pub-
lished up to June 2017 and written in English were considered.
The studies were found using Web of Science online database
(http://webofknowledge.com) and Google Scholar research tool
(https://scholar.google.dk/), with the keywords “Life-cycle
assessment” + “Aquaculture”, “Life-cycle analysis” +
“aquaculture”, “LCA” + “aquaculture”, “Life-cycle
assessment” + “aquafeed” and “Life-cycle assessment” +
aquaculture” + “feed”. Additional studies were identified by
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Fig. 1 Number of LCA studies conducted on aquaculture systems per
year since 2004 (extracted from Bohnes et al. 2018), and number of these
LCA studies included in previous critical reviews (Henriksson et al. 2012;
Parker 2012; Aubin 2013; Cao et al. 2013; Pahri et al. 2015)

cross-referencing existing reviews in that field (Henriksson et
al. 2012; Parker 2012; Aubin 2013; Cao et al. 2013; Clark and
Tilman 2017). For further details on the identification and selec-
tion of the studies, the readers are referred to Bohnes et al.
(2018), who used the same pool of LCA studies to analyse
trends and patterns of environmental impacts from different
aquaculture systems.

2.2 Review criteria

Studies were analysed following the main phases of the LCA
methodology as described by the ISO standards (ISO 2006a, b),
i.e. goal definition, scope definition, life-cycle inventory (LCI),
life-cycle impact assessment (LCIA) and life-cycle interpreta-
tion. Table 1 presents the list of the main methodological choices
retrieved. Data quality was categorised as poor, medium or good
following the same criteria than Laurent et al. (2014). They were
then compiled and analysed to identify potential trends and pat-
terns in practice, and their relevance was critically considered in
the context of the ISO14040-4 standards (ISO 2006a, b). Based
on this analysis and the recommendations made in previous
reviews of LCA methodology (Henriksson et al. 2012; Parker
2012; Aubin 2013), we identified and prioritised five important
methodological issues. These mainly relate to the scope
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Table 1 List of the methodological choices retrieved from the reviewed LCA studies
Category Information extracted from the studies

General information
Goal definition Intended use of the study; decision context.

Scope definition
method;

Mention of the ISO standards; objectives of the studies.

Object of the study; functional unit; Life-cycle inventory framework modelling; multi-functional processes handling

elements entering and excluded from the system boundary; scale of the study
(e.g. number of farms, country studied etc.); impact coverage.

Life-cycle inventory

List of data sources; data quality (Laurent et al. 2014); existence of a critical discussion regarding data

representativeness; software used for modelling.

Life-cycle impact
assessment
Interpretation
quantitative uncertainty analysis.

Life-cycle impact assessment methodologies used; normalisation (if applicable); weighting (if applicable).

Existence of a sensitivity analysis; elements tested in the sensitivity analysis (if applicable); existence of a

definition of the study (one also addresses interpretation of the
results), which is an essential phase to ensure consistency and
reliability in the LCA results. Using ISO standards, we then
established a set of recommendations to LCA practitioners to
potentially improve the quality of future LCA studies.

3 Past LCA practices and improvement
potentials

We retrieved and reviewed a total of 65 LCA studies on aqua-
culture and aquafeed systems; 51 of them assessed aquaculture
production systems, 10 assessed aquafeed production systems
and 4 included the assessment of both types of systems. An
exhaustive list of all the LCA studies included in the review is
available in Table 2 for the studies assessing aquaculture pro-
duction and Table 3 for the ones assessing aquafeed production.

3.1 Making the functional unit reflect the actual
function of aquaculture systems

More than 70% of the LCA practitioners assessing aquaculture
systems have adopted a functional unit (FU) based on a mass of
live-weight seafood (see Fig. 2a; Table 2). This particularly high
proportion reflects the focus of many LCA studies on the pro-
duction side, assessing a function based on the needs and ben-
efits of the producer. It contrasts with the few authors (e.g. Avadi
and Fréon 2015) that selected a mass of edible or processed
product, hence basing their reference on the consumer needs,
which convey a consumption approach. With regard to the 14
studies that assessed aquafeed production systems, 11 of them
adopted a FU based on mass of aquafeed, while the remaining
ones followed a different approach and used a mass of protein
(Strazza et al. 2015), a surface of cultivation (Seghetta et al.
2017) or an energy content (Taelman et al. 2013)—see Fig.
2a; Table 3. It should be highlighted that 14% of the studies
had not explicitly defined and reported a FU, which thus had
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to be deduced from the text and tables/figures of the articles.
This lack of transparency only slightly decreased since the last
review of LCA methodologies, from 16% in the studies prior to
2013 to 12% in the more recent studies.

The FU is particularly important for comparative assess-
ments because of the need to quantify an identical function
for both systems to allow a fair comparison. Defining different-
ly the FUs may lead to different ranking of the assessed solu-
tions, as illustrated by Avadi et al. (2015), who tested two dif-
ferent FUs based on either the mass of live-weight product or
the mass of edible product. Furthermore, when assessing the
life-cycle of a food product, using a FU based on the product
total mass does not reflect the actual function of that product,
i.e. to provide nutritional benefits to the consumer (Sala et al.
2017; Sonesson et al. 2017). Most past critical reviews in the
field already pointed out practitioners’ preference to define a
mass-based FU. They highlighted that the lack of consensus on
the way to define the FU reduces the possibility of comparison
between studies (Aubin 2013; Cao et al. 2013) and stressed the
risk that the choice of the FU might change the results of the
study (Henriksson et al. 2012; Parker 2012).

To ensure consistency, it is therefore recommended to define
the FU of aquaculture LCA studies based on nutritional criteria
of the product, such as protein or energy content, as already
emphasised by Sala et al. (2017) and Sonesson et al. (2017). A
consensus should be reached in the LCA food community to
determine which nutritional criteria the defined FU should rely
on as a function of the goal of the LCA, so that future studies can
align with this same basis and become more comparable. Such
recommendation also applies to aquafeed systems. Indeed, the
primary function of the aquafeed is to feed the fishes, that func-
tion is only captured properly when a nutritional reference is
used. For instance, comparing plant-based ingredients with
fish-based ingredients based on a mass alone, as done in several
past studies (see Table 3), might be highly misleading, because
the amount required to fulfil the needs of the fish is highly dif-
ferent for the two ingredients. To prevent such situation, we
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Fig. 2 Distributions of the 65 reviewed LCA studies (a) between the different types of functional units (FU) for aquaculture and aquafeed, (b) between
the different methods for handling multi-functionality, and (c) between covered impact categories in the assessments

recommend to compare full diets to ensure comparability of the
aquafeeds’ function.

3.2 Including all relevant life-cycle stages
of aquaculture production

Several processes constitute the life-cycle stages of an aquacul-
ture production system. As illustrated in Fig. 3, they can be
divided as feed production, energy supply, chemical inputs,
infrastructures and equipment, seafood production, processing,
packaging, distribution, consumption and seafood end-of-life.
All these elements need to be included in an LCA to ensure a
complete life-cycle. However, 69% of the studies reviewed
herein did not consider the last five aforementioned processes
and ended their assessments at farm gate, conducting therefore
“cradle-to-farm-gate” LCAs. Additionally, the production and
use of chemicals and the infrastructures and equipment were
often neglected, with only 64% of the studies including the first
and 60% considering the latter. The reason stated by the authors
for not including these stages are the expected negligible im-
pacts these may have or the lack of primary data and available
databases to support a consistent modelling.

Including all elements that may have important environmental
impacts is necessary to conduct a comprehensive LCA and avoid
burden shifting from one environmental impact to another

@ Springer

(Hellweg and Mila i Canals 2014; Ziegler et al. 2016). Some
post-farming processes have been demonstrated to be of poten-
tially great importance on the final impact scores and can increase
impacts (e.g. transport to distribution; Seves et al. 2016) or de-
crease them (e.g. reuse or recycling at end-of-life; Iribarren et al.
2010a). Parker (2012) already introduced the benefits of a larger
system boundary than cradle-to-farm gate. Additionally, by
conducting a detailed contribution analysis (i.e. hotspot analysis)
from the documented results, Bohnes et al. (2018) found out that
78 and 84% of the existing studies that adopted a complete life-
cycle reported a non-negligible contribution of 5% or more for
the production and use of chemicals and for the infrastructures
and equipment, respectively. Henriksson et al. (2012) had already
highlighted the need of a broadly encompassing system bound-
ary and the importance of including infrastructures. We reiterate
this still ignored recommendation to consider a complete life-
cycle when performing LCAs of aquaculture systems, using
the processes in Fig. 3 as guidance to ensure a comprehensive
assessment of the environmental impacts.

3.3 Using system expansion instead of allocation
for handling multi-functional processes

It is common in LCA that a single process produces multiple
outputs or functions, called therefore a multi-functional
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Fig. 3 Different stages and processes of aquaculture production and types of system boundaries (adapted from Bohnes et al. 2018). The thick arrows
represent the stages between which transport can occur (dependent on case study)

process. Usually, only one of the functions needs to be includ-
ed in the assessment, hence the necessity of methodologies to
solve process multi-functionality. From the retrieved studies,
58% of them selected allocation, 13% system expansion, and
3% used both, while 26% of the studies did not explicitly state
which method they used—see Fig. 2b. A difference is
witnessed between the studies published until 2012 and the
more recent ones: the use of system expansion increased from
7 to 16%, and the proportion of studies not stating which
method they used dropped from 36 to 19%. The use of allo-
cation did not change considerably. As evidenced in the sen-
sitivity analyses of numerous LCA studies included in the
current review (e.g. Winther et al. 2009; Kluts et al. 2012;
Wilfart et al. 2013; Aubin et al. 2015; Jonell and Henriksson
2015; McGrath et al. 2015; Nhu et al. 2016; Medeiros et al.
2017), the choice of method to solve process multi-
functionality is of great importance for the LCA results.

Past general reviews already noted the lack of consensus re-
garding the approach to be used for handling multi-functionality
and, without providing explicit recommendations, they highlight-
ed the need for a better argumentation to justify the choice of the
approach applied (Henriksson et al. 2012; Parker 2012; Aubin

2013). According to ISO 14044, it is recommended to prioritise
sub-division of the system whenever possible (ISO 2006b).
However, the cases when this approach is possible are rare, and
the second most recommended method is then system expansion,
and, if that is not possible, the LCA practitioner should apply
allocation and prioritise physical allocation keys over other types
such as, e.g. economic allocation (ISO 2006b).

Considering that more than half of the studies applied al-
location, it is therefore legitimate to question whether or not
system expansion is applicable in aquaculture systems. By
analysing the studies that applied system expansion, it appears
that this method can be applied in handling the outputs of
several co-products related to aquaculture systems. Natural
fertilisers can thus fulfil the same function as synthetic
fertilisers (see, e.g. Ayer and Tyedmers 2009; Kluts et al.
2012), seafood or agricultural co-products are equivalent to
the same products from conventional production ways, usual-
ly from monoculture (e.g. Boxman et al. 2016; Medeiros et al.
2017), aquafeed co-products can be functionally equivalent to
the marginal corresponding ingredients (see, e.g. Samuel-
Fitwi et al. 2013a), and waste products can generally be
valorised, e.g. mussels shells used to produce calcium, thus
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replacing conventional means (Iribarren et al. 2010a). The
above examples cover most of the secondary functions arising
from aquaculture and aquafeed production systems and dem-
onstrate that using system expansion is possible in that area for
most multi-functional processes.

However, some LCA practitioners have argued that some
of the multi-functionality cited above are not solvable by
using system expansion. We observed that usually this comes
from a difference in the definition of the function to isolate.
For instance, the production of fish meal always has fish oil as
a co-product, and some LCA practitioners would isolate the
fish oil production by expanding the system and include the
production of other oils, e.g. vegetal ones, whereas other au-
thors would argue that this is not reasonable because of the
different nutritional compositions that make fish oil unique,
hence the use of allocation. This is a legitimate decision of the
LCA practitioner, but it is not always well justified in the
articles under review and allocation often seems to be the
default solution. Therefore, we recommend to explain in more
details the reason why allocation cannot be avoided and to
state explicitly the function considered, which has no alterna-
tive processes. Once allocation have been selected, Fig. 2b
shows that a third of the LCA studies chose an economic
allocation key over a physical one, which should be consid-
ered as a last resort according to the ISO hierarchy to solve
process multi-functionality (see above: ISO 2006a, b). Indeed,
economic allocation keys are not stable because of market
fluctuations, which leads to constantly changing LCA results
(Ayer et al. 2007). In most cases when system expansion can-
not be applied, the multi-functionality concerns the production
phase and therefore physical allocation such as energy content
or mass allocation can be used instead of economic criteria.
This was already recommended by Ayer et al. (2007) in their
critical review of co-product allocation in fisheries and aqua-
culture, where they argued that gross-energy allocation is the
most scientifically accurate solution for the cases when system
expansion is not applicable.

We therefore recommend that LCA practitioners follow
more rigorously the hierarchy specified in the ISO standards
to handle multi-functionality of processes. In particular, sys-
tem expansion should be more prioritised over allocation as it
is often applicable. Practitioners are thus encouraged to check
previous LCA studies that used system expansion (see above
examples) and when allocation cannot be avoided, to use
physical allocation keys instead of economic ones.

3.4 Covering all environmental impacts
of aquaculture

Figure 2c shows that a majority of studies included climate
change, aquatic eutrophication, acidification and cumulative
energy demand (all four categories covered in more than 50%
of studies), but that all other impact categories are rarely
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included. Only a few studies included toxicity impacts
(25% for human toxicity and 28% for ecotoxicity) or land
use (38%), and less than half included net primary pro-
duction use (NPPU) and water dependence, two impact
categories specific and of high relevance to food produc-
tion systems (Aubin et al. 2009; Cashion et al. 2016).
Overall, the spectrum of included impact categories was
limited, their selection was poorly justified and exclusive-
ly based on the argument that previous LCA studies on
aquaculture systems had similarly limited impact cover-
age. Rare were the authors, who justified the selection
of their impact assessment on scientific foundations about
the potential relevance of different impact categories (see
as example of good practice Avadi and Fréon 2015).

In their critical reviews, Henriksson et al. (2012) and Aubin
(2013) already highlighted the limited impact coverage of
LCA studies on aquaculture. Together with the life-cycle per-
spective, the impact coverage is a key element in LCA to
ensure a holistic dimension and reduce the risk of environ-
mental burden-shifting (Laurent et al. 2012). When some cat-
egories for which the system has high environmental impacts
are omitted, the results might be biased and the decisions
based on the conclusions might lead to suboptimisation, i.e.
decreasing some impacts while increasing others as relevant.
For instance, toxicity impacts may be of high relevance in
aquaculture systems, as showed by Kluts et al. (2012), who
found a different ranking in their comparative study for fresh-
water ecotoxicity than for most of the other impact categories
assessed. Other impacts are as relevant. The inclusion of land
use impact category thus has been recommended by several
authors (Bosma et al. 2011; Kluts et al. 2012; Samuel-Fitwi et
al. 2013b; Dekamin et al. 2015; Jonell and Henriksson 2015),
although it has until now mainly been assessed at an inventory
level (i.e. total area of land occupied or transformed) without
impact assessment. Additionally, indicators specific to bio-
mass extraction that also account for the pressure exerted on
wild fish stocks have been developed, and a number of ap-
proaches have been proposed although no consensus have yet
been reached on a specific LCIA method (see, e.g. Lost
Potential Yield (LPY) in Emanuelsson et al. 2014 or Biotic
Natural Resource Depletion (BNRD) in Langlois et al. 2012).
Therefore, we recommend the assessment of a broad variety
of relevant impact categories in future LCA studies, including
toxicity impacts and land use, as well as NPPU, water depen-
dence and overfishing related impacts, which are not common
to LCA applications, albeit relevant to aquaculture systems.
LCIA methods for these categories exist and should be used,
including, but not limited to, the USEtox model for toxicity
impacts (Bijster et al. 2017), land use assessment method de-
veloped by Chaudhary et al. (2015) and recommended in
Jolliet et al. (2018), the NPPU method described in
Papatryphon et al. (2004a) and water dependence introduced
and developed by Aubin et al. (2009).
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3.5 Discussing the results with critical thinking
and highlighting the limitations of the studies

Out of the 65 reviewed studies, an overall good quality of
the data sources used in the studies was observed, with
85% of the studies relying on primary data and adequate
literature sources with respect to data specificity and
scope (see Sect. 2.2). However, only half of the studies
critically discussed the representativeness of the data,
which consists of data that are appropriate in terms of
their geographical, temporal and technological aspects.
To support the interpretation of LCA results, uncertainty
and sensitivity analyses are recommended as part of the
sensitivity check (ISO 2006a, b; Laurent et al. 2018).
However, only 49% of the studies conducted a sensitivity
analysis and 28% ran a quantitative uncertainty analysis.

The accuracy and hence the reliability of the LCA
results are highly dependent on the quality of the data
collected and the sensitivity and uncertainty underlying
in the model. Therefore, these matters need to be
critically analysed in the interpretation phase of the
assessment during the completeness, consistency and
sensitivity checks to support the conclusions from the
results as well as the recommendations based on them.
The review conducted by Henriksson et al. (2012)
emphasised a lack of sensitivity analyses in the LCA stud-
ies, and the results of the current study also showed a lack
of critical analysis, regardless of the time of publication of
the studies (problem encountered in recent studies too).
This prevents the reader from putting the results in per-
spective and assessing the robustness of the results.

Therefore, we recommend future LCA practitioners to
critically discuss their LCI and include a detailed descrip-
tion of the limitations of study in the interpretation. We
also recommend to systematically perform a sensitivity
analysis of a large selection of criteria covering the input
data and the modelling choices, and to conduct a quanti-
tative uncertainty analysis such as a Monte Carlo simula-
tions (available in most LCA software), wherever possi-
ble, to complement a default qualitative analysis.
Guidance for performing interpretation of LCA results is
available in Laurent et al. (2018).

4 Research needs in LCA for aquaculture

From the critical review of 65 LCA studies, we additionally
identified two main research needs that should be addressed to
improve LCA applications to the aquaculture sector: con-
structing comprehensive LCI data sets and developing miss-
ing relevant impact pathways. Both are developed in the fol-
lowing subsections.

4.1 Increasing the pool of LCI data sets
for aquaculture

Several studies reported a lack of available LCI for modelling
processes within the life-cycle of aquaculture systems, hence
preventing them from including these elements in their assess-
ments. Data regarding all post-farming stages (e.g. transport,
processing, distribution, consumption and end-of-life) are thus
extremely scarce, if not inexistent, as highlighted previously
by Abdou et al. (2017a). For primary data collection, LCA
practitioners are usually in contact with the seafood farmers,
who often know little about the processes occurring to their
seafood after farm gate. Therefore, the processing, packaging,
transport and distribution steps are almost always missing
from the assessment because of the lack of information,
which might have an important impact on the final results.
For instance, Winther et al. (2009) found that transport can
be a main contributor to the final scores depending on the
distribution zone of the product, and Iribarren et al. (2010b)
highlighted the importance that processing and packaging
may have on the results. Specific processes of aquaculture
are also poorly documented. Infrastructures for instance are
problematic because some parts, such as the water filtration
systems, are difficult to model by the LCA practitioners due
their high complexity in term of number of components and
variety of materials.

Additionally, there is a general lack of databases
concerning developing countries, leading to only a few LCA
studies performed in these regions and to less robust assess-
ments when some have been attempted (Dekamin et al. 2015;
Bohnes et al. 2018). This is especially problematic in aqua-
culture assessments as more than 95% of the world production
of seafood from aquaculture takes place in Asia, where only
few general LCI are publicly available (Bohnes et al. 2018). In
the Ecoinvent database (Weidema et al. 2013), which is the
most widely used LCI database in our review (used in 74% of
the studies), only few processes are specific to, e.g. Indonesia
(35 processes), Vietnam (14 processes) or the Philippines (17
processes), which are the 2nd, 4th and 5th most important
aquaculture producers in the world, respectively (FAO 2016).

We therefore encourage all aquaculture stakeholders to
share data for enabling the construction of LCI data sets,
which would improve the overall quality of future LCA stud-
ies and facilitate their applications to relevant systems and
locations.

4.2 Missing impact pathways

Several studies have pointed out that the current LCIA meth-
odologies do not cover all the environmental impacts relevant
to aquaculture, as highlighted by Ellingsen and Aanondsen
(2006), Samuel-Fitwi et al. (2013b), Aubin et al. (2015),
Avadi and Fréon (2015), Henriksson et al. (2015, 2017a),
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Nhu et al. (2016) and Abdou et al. (2017a). Below, two major
gaps are highlighted: impacts from escapes and damages re-
lated to use of antibiotics and medicine treatment.

The impacts of escapes on the local environments are thus
not addressed, albeit being a well-documented issue in that
sector (Naylor et al. 2000; Diana 2009). If the escaped species
are invasive, they can affect the balance of the local ecosystem
because of the introduction of new predators, which can have
important consequences as the extinction of local species
(Arismendi et al. 2009; Peeler et al. 2011). If the farmed spe-
cies are already present in the local ecosystems, it can be as
problematic because of breeding that changes the genetics of
farmed specimens and make them different from the wild
ones, thus altering the natural balance of species present in
the ecosystem and potentially contributing to biodiversity
losses and/or changes in ecosystem functioning (Youngson
and Saroglia 2001; Naylor et al. 2005). Some authors already
highlighted the need of including that issue in life-cycle im-
pact assessment and proposed ways of accounting for it (Ford
et al. 2012). However, no actual impact pathways have been
developed yet, and escapes are only suggested to be consid-
ered at inventory level (i.e. accounting the number of fish that
escaped per year; Ford et al. 2012).

Another uncovered impact pathway is the effect of antibi-
otics and other medicine used in seafood farms, and their
subsequent impacts on human health through, for example
antimicrobial resistance. Indeed, the use of antibiotics in food
production as growth promoter or medical treatment leads to
the development of resistant microorganisms, which will not
be treatable by that antibiotic anymore, thereby inducing
higher rates of infections by that microorganism in the human
population (Cabello et al. 2013). This has recently been
highlighted by the World Health Organisation, which recom-
mended addressing this topic urgently (WHO 2018). The use
of antibiotics should also be included in the modelling of
impact pathways for ecotoxicity because of the potential im-
pacts of these products on natural ecosystems. Antibiotics are
designed to affect microorganisms in general and are there-
fore a threat for bacteria but also fungi and microalgae
(Kiimmerer 2009). Similarly, the impacts of cleaning prod-
ucts used during the farming stage are not included in some
toxicity impact methodologies because these products are
usually inorganics and their environmental fate is not al-
ways well known. For instance, the USEtox model, which
covers 27 inorganics (mainly metals) and 3077 organic
substances (Huijbregts et al. 2015a, b), does not include
some of the common bleach such as sodium hypochlorite,
thus calling for extending the substance coverage in its
characterisation factor database.

For the two above methodological gaps, we recommend
new method developments in LCIA to complement existing
impact pathways and develop characterisation model to inte-
grate these new cause-effect chains.
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5 Conclusions

Based on the review of 65 LCA studies in the aquaculture
sector, five major issues were identified and analysed. For each
of them, recommendations were provided aiming to improve
the quality and reproducibility of future LCAs in that sector. In
summary, LCA practitioners should (i) choose a functional unit
based on nutritional qualities, (ii) prefer system expansion over
allocation and seek inspiration and assistance in published stud-
ies that applied this rule, (iii) assess a life-cycle as complete as
possible in line with the goal of the study, (iv) include an envi-
ronmental impact coverage as broad as possible and (v) pay
special attention to the consistency/completeness check and
the sensitivity and uncertainty analysis during the interpretation
of the results. Drawing on these, we also identified two key
research needs that method developers in LCI and LCIA should
undertake, namely expanding LCI database with aquaculture-
specific processes and characterising missing impact pathways,
respectively. It is also worth noting that as highlighted in Sects.
3.1to 3.5, a lack of transparency in the methodological choices
is latent in many studies, with a non-negligible proportion of
them not even stating their choices and assumptions. These not
only refer to old studies, i.e. prior to previous critical reviews
but also to a number of recent studies. Such poor practice is a
great impediment to the credibility and reuse of the LCA results
for large-scale analysis or comparative assessments.

We therefore recommend to future practitioners that they
undertake these above messages. A few of our recommenda-
tions are not new and have already been indicated in previous
critical reviews, be it within the field of aquaculture or in other
fields. Recent studies have however showed that these key rec-
ommendations are not implemented by LCA practitioners. This
demonstrates that there is a need for LCA practitioners to better
inform themselves on the conduct of LCA in their specific fields
of applications, e.g. by reading critical reviews, to integrate
consistent guidance and overcome methodological challenges
in their cases. Peer reviewers of scientific articles should also be
aware of these critical reviews and of the methodological issues
indicated therein to prevent studies with insufficient documen-
tation and/or inconsistencies—as some identified in the current
review—ifrom being published. Such practice should eventually
contribute to bring more consistency and reliability in LCA
studies to support decision- and policy-making processes in
fields as important and relevant as the aquaculture sector.
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