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Abstract
Purpose Some LCA software tools use precalculated aggregated datasets because they make LCA calculations much quicker.
However, these datasets pose problems for uncertainty analysis. Even when aggregated dataset parameters are expressed as
probability distributions, each dataset is sampled independently. This paper explores why independent sampling is incorrect and
proposes two techniques to account for dependence in uncertainty analysis. The first is based on an analytical approach, while the
other uses precalculated results sampled dependently.
Methods The algorithm for generating arrays of dependently presampled aggregated inventories and their LCA scores is described.
These arrays are used to calculate the correlation across all pairs of aggregated datasets in two ecoinvent LCI databases (2.2, 3.3 cutoff).
The arrays are also used in the dependently presampled approach. The uncertainty of LCA results is calculated under different assump-
tions and using four different techniques and compared for two case studies: a simple water bottle LCA and an LCA of burger recipes.
Results and discussion The meta-analysis of two LCI databases shows that there is no single correct approximation of correlation
between aggregated datasets. The case studies show that the uncertainty of single-product LCA using aggregated datasets is
usually underestimatedwhen the correlation across datasets is ignored and that the magnitude of the underestimation is dependent
on the system being analysed and the LCIA method chosen. Comparative LCA results show that independent sampling of
aggregated datasets drastically overestimates the uncertainty of comparative metrics. The approach based on dependently
presampled results yields results functionally identical to those obtained by Monte Carlo analysis using unit process datasets
with a negligible computation time.
Conclusions Independent sampling should not be used for comparative LCA. Moreover, the use of a one-size-fits-all correction
factor to correct the calculated variability under independent sampling, as proposed elsewhere, is generally inadequate. The
proposed approximate analytical approach is useful to estimate the importance of the covariance of aggregated datasets but not
for comparative LCA. The approach based on dependently presampled results provides quick and correct results and has been
implemented in EcodEX, a streamlined LCA software used by Nestlé. Dependently presampled results can be used for stream-
lined LCA software tools. Both presampling and analytical solutions require a preliminary one-time calculation of dependent
samples for all aggregated datasets, which could be centrally done by database providers. The dependent presampling approach
can be applied to other aspects of the LCA calculation chain.
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1 Introduction

Life cycle inventory (LCI) datasets available to practitioners
can be separated in two types: unterminated datasets and ter-
minated datasets. What distinguishes them is the presence of
links to other activities. Unterminated datasets, also referred to
as unit process datasets, contain information on the links be-
tween the activity modelled by the dataset and other activities.
Terminated datasets, also referred to as (vertically) aggregated
datasets or system process datasets, represent cradle-to-gate
product systems that have been traversed. Aggregated datasets
contain information on the cradle-to-gate LCI of a given
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product and contain no information on the links between the
activities that make up this cradle-to-gate product system.

Mathematically, unit process datasets are individual col-
umns in theA andBmatrices, respectively, representing direct
technosphere and elementary inputs and outputs of activities.
Life cycle calculations for a given functional unit f require that
all activities be traversed or, otherwise stated, that the system
of (often thousands of) linear equations As = f be solved
(Heijungs and Suh 2002). The result of this solution (the scal-
ing vector s) quantifies how much each activity must be pro-
duced. It can then be used to calculate the life cycle inventory
g as g =Bs or the life cycle impact score h for a given impact
category as h = cBs, where c is a vector of characterisation
factors.

Aggregated datasets are based on the solution to the system
of linear equations. Aggregated datasets can be LCI datasets,
i.e. the inventory calculated by g =BA−1 f for a given output f,
or life cycle impact assessment (LCIA) scores, calculated by
h = cBA−1f. In either case, an LCA carried out with aggregat-
ed datasets linearly combinesmultiple aggregated datasets: for
a metric x of interest (an inventory vector or an impact score),
the metric on a life cycle basis is given as:

x ¼ ∑
i
αixi ð1Þ

where αi is a scaling factor (how much of an input i is re-
quired) and xi is the metric per unit of product i (e.g. CO2

emissions per unit product i).
The relative advantages of using both types of datasets are

well documented in a chapter dedicated to this issue in the
“Shonan Guidance Principles” for LCI database (Broadbent
et al. 2011). Aggregated datasets have the disadvantage of
masking information, which prevents analysts from gaining
an understanding of the structure of the product systems they
model and of adapting unit process datasets to better represent
the activities they wish to model. Despite these disadvantages,
there are many reasons why a database provider or a user may
wish to use aggregated LCI data, such as to ensure confiden-
tiality, to preserve data integrity, and for efficiency of calcula-
tions (see Table 3.1 of the Shonan Guidance Principles for a
full list).

Of specific interest in this paper is the use of aggregated
datasets in eco-design tools that analyse the relative environ-
mental performance of design options and that do not need to
do in-depth analyses of product systems, for which unit pro-
cess data would be needed. Key characteristics of this type of
eco-design tool are ease of use, given that the users are not
LCA experts, and calculation speed, as the need to solve a
large system of linear equations is avoided.

The use of aggregated datasets makes uncertainty analyses
more difficult. While it is possible to represent the inventory
flows or LCIA scores of aggregated datasets as probability
distributions that account for the uncertainty of underlying

parameters in the A and B matrices, using these distributions
to calculate the uncertainty of an LCA result implies that the
distributions of the aggregated datasets are independent. They
are usually not—when aggregated datasets are built on the
same underlyingA andBmatrices, eachMonte Carlo iteration
should be based on the same sampled values of the parameters
of the A and B matrices. Having one Monte Carlo iteration
using aggregated datasets where the cradle-to-gate CO2 emis-
sions for electricity production would represent the value of
the 99th percentile (i.e. a very high value) but that the cradle-
to-gate CO2 emissions for a product dominated by electricity
consumption would represent the first percentile (i.e. very low
value) would not make any sense and yet would be completely
possible if the values for both datasets were independently
sampled.

Recent publications have shown that there is still some
disagreement concerning the effect of dependent sampling
on the uncertainty of LCA results. Notably, Qin and Suh
(2017) argue that aggregated datasets with probability distri-
butions can be used for fast uncertainty analysis and extend
this conclusion to comparative LCA in Suh and Qin (2017).
Heijungs et al. (2017) disagree, stating that this approach
“cannot” be used for comparative LCA and that the uncertain-
ty values generated using independent sampling from aggre-
gated datasets would be largely overestimated.

That uncertainty analysis in comparative LCA should ac-
count for the correlation in input data used across compared
options has often been explained, demonstrated and dealt with
using dependent sampling (e.g. Huijbregts et al. 2003; De
Koning et al. 2010; Mattila et al. 2011; Henriksson et al.
2015). To our knowledge, however, no author, before the dis-
cussion initiated by Qin and Suh (2017), specifically deal with
the correlation that may occur between aggregated datasets.

The premise of this paper is that eco-design tools should
indeed simply linearly combine aggregated datasets rather
than attempt to solve large systems of linear equations but that
the users of these tools should have access to rapid and valid
information on the uncertainty of the LCA scores they are
obtaining. The objectives of this paper are (1) to show the link
between the correlation of aggregated datasets and the error
introduced in uncertainty analysis using independent sam-
pling of aggregated datasets in single-product LCA; (2) show
that independent sampling of aggregated datasets is simply
incorrect in comparative LCA; and (3) propose two methods
to overcome the limits imposed by the use of aggregated
datasets: the inclusion of covariance terms in the approximate
analytical approach based on a limited Taylor series expansion
and the use of dependent, precalculated samples.

The paper is structured as follows. First, a simple addition
of two standard lognormal probability distributions is present-
ed to exemplify the difference in uncertainty when indepen-
dent and dependent sampling methods are used. Second, an
example LCA of an aluminium water bottle is used to show
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the link between the correlation of aggregated datasets and the
influence of independent sampling in single-product LCA and
to show the importance of independent sampling in compara-
tive LCA. Third, having shown the role of correlation in
determining whether or not independent sampling of ag-
gregated datasets yields inaccurate uncertainty results
with the water bottle example, the correlation between
all pairs of aggregated datasets in ecoinvent 2.2 and 3.3
is calculated, helping determine whether high correlation
between datasets is frequent. Fourth, two approaches that
allow the use of correlated aggregated datasets are pre-
sented: an approach based on the use of stored
precalculated Monte Carlo simulation results (rather than
the use of distributions based on these Monte Carlo sim-
ulation results) and the inclusion of the covariance term in
the analytical approach to uncertainty propagation. Then,
the proposed approaches are used for a case study com-
paring beef, vegetarian and vegan burger patties. Finally,
other uses of the approach based on the use of presampled
Monte Carlo results in LCA are also discussed.

2 Illustrative examples

2.1 Illustrating the problemwith the simplest possible
case

To illustrate that dependent and independent sampling in a
Monte Carlo simulation can indeed change results, one can
take the simplest possible case: the sum of two identical dis-
tributions. Let us take two standard lognormal distributions
(i.e. lognormal distributions whose underlying normal distri-
butions have a mean μ = 0 and a standard deviation σ = 1), ln1
and ln2. The two distributions are assumed to represent the

same object (e.g. CO2 emissions for a given aggregated
dataset), which means that the same value should be sampled
for each iteration. Notebooks detailing calculations used in
this paper are provided in the Electronic Supplementary
Material (ESM); the sampling and analysis of results are de-
tailed in SI1.

In dependent sampling, the same value is sampled for
each Monte Carlo iteration. To simulate this, 1,000,000
random samples of a standard lognormal distribution
were generated and multiplied by two to simulate two
inputs. The large number of samples was used to elim-
inate the possibility of any observed results being due
to sampling artefacts.

In independent sampling, different values of ln1 and ln2 are
sampled for each iteration. To simulate independent sampling,
two arrays of 1,000,000 random samples for ln1 and ln2 were
generated and added together.

While the resulting means of the two distributions (pre-
sented in Fig. 1) are the same (2 × e(0 + 1 / 2) = 3.29), their
median and dispersion are not. The dispersion of the sum
of dependently sampled lognormal distributions is appre-
ciably higher than that of the independently sampled log-
normal distributions: the variance is twice as high (18.6
vs. 9.3), and the square of the geometric standard devia-
tion (GSD2) is 1.64 times as high (7.4 vs. 4.5). This is to
be expected, as the probability of sampling two very low
or two very high values in the same iteration is lower than
that of sampling just one such value. Following Qin and
Suh (2017), the similarity of the two resulting distribu-
tions is represented using Overlap Ratio (OVL), which
measures the area the distributions’ density curves share
and is given by OVL(f, g) = ∫min {f(x), g(x)}dx. The OVL
of the two distributions in Fig. 1 is 0.84, meaning the
histograms share 84% of their surface.
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Fig. 1 Distribution of the sum of
samples from two standard
lognormal distributions, based on
a 1,000,000 iteration Monte Carlo
simulation



2.2 Illustrating the problem with a simple product
system (water bottle)

2.2.1 Presentation of the product system

To illustrate that independent sampling in Monte Carlo can
indeed lead to a faulty estimation of the dispersion of LCA
results, a simple example of an LCA of a fictive reusable water
bottle is analysed. The production of the water bottle has two
inputs: 0.15 kg of recycled aluminium from new scrap and
0.15 kg of one-stroke cold impact extrusion, both modelled
using ecoinvent version 2.2. Since they are modelled using the
same database, the product systems for recycled aluminium
and impact extrusion will contain many unit processes in com-
mon. Notably, both products rely directly on medium voltage
electricity from the UCTE grid, and this electricity contributes
substantially to the scores of both inputs for most impact cat-
egories (see SI2 for code and SI3 for detailed results).

2.2.2 Sampling in single-product LCA

Because they share unit processes in their background, the
inventory and LCIA scores for recycled aluminium and im-
pact extrusion will be correlated. To calculate this correlation,
a 10,000 iteration Monte Carlo simulation was carried out
where the cradle-to-gate inventory of each product was calcu-
lated using the same sampled values for the A and B matrices
(dependent sampling), and the Pearson product-moment cor-
relation coefficients was calculated between the resulting
LCIA scores for all 17 ReCiPe 1.08 hierarchist midpoint

categories (Table 1). Two other 10,000 iteration Monte Carlo
simulations were carried out where the scores for aluminium
and impact extrusion were calculated independently.

Finally, lognormal distributions were fitted to the indepen-
dent samples, and new samples were generated from these
fitted distributions, to simulate the use of fitted distributions
for LCA (see SI2 for the shape parameters of these
distributions). While the overlap ratio between (1) the samples
generated from the fitted lognormal distributions and (2) the
original samples on which the fitted distributions were based
are higher than 0.90 for two-thirds of the samples, they are
sometimes as low as 0.26 (Table 2), indicating a very poor fit.

The actual correlation coefficients for dependent sampling
vary from close to zero (urban land occupation) to very low
(metal depletion = 0.05) to very high (Ionising radiation =
0.98), with the average being 0.35. The scores of recycled
aluminium and impact extrusion are of course uncorrelated
when based on independent sampling or sampling of the fitted
distributions.

In this paper, three measures of dispersion are used: the
mean absolute deviation (MAD) (Eq. (2)), the interquartile
range (Q3–Q1) and the mid-99% interpercentile range (per-
centile 99.5% to percentile 0.5%).

MAD ¼ 1

n
∑n

i¼1 xi−x
¼j j ð2Þ

Figure 2 shows the ratio of these measures of dispersion for
LCIA scores calculated using independent and dependent
sampling. As expected, independent sampling results in small-
er dispersion (values are smaller than 1 on the y-axis). Also,

Table 1 Pearson product-
moment correlation coefficients
between secondary aluminium
and impact extrusion at LCIA
score level (ReCiPe hierarchist
midpoint categories), based on
10,000 iteration Monte Carlo
simulations

Impact category Dependent
sampling

Independent
sampling

Independent sampling
of fitted distributions

Agricultural land occupation 0.30 0.00 0.00

Climate change 0.40 0.01 − 0.01
Fossil depletion 0.56 0.01 0.02

Freshwater ecotoxicity 0.20 0.00 0.00

Freshwater eutrophication 0.23 0.01 0.01

Human toxicity 0.39 − 0.01 0.00

Ionising radiation 0.98 0.01 0.00

Marine ecotoxicity 0.22 0.00 0.00

Marine eutrophication 0.27 0.03 0.00

Metal depletion 0.05 0.01 − 0.01
Natural land transformation 0.48 − 0.01 0.01

Ozone depletion 0.79 0.01 0.00

Particulate matter formation 0.18 0.01 0.01

Photochemical oxidant formation 0.33 0.01 0.02

Terrestrial ecotoxicity 0.12 0.00 0.01

Urban land occupation 0.00 0.00 0.00

Water depletion 0.40 0.00 0.00
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there is a general tendency for the difference in dispersion
between sampling approaches to be greater when the scores
of the two inputs are more correlated, i.e. the higher the cor-
relation of inputs, the greater the risk that independent sam-
pling will underestimate the dispersion of the score. In the
most extreme case, for ozone depletion, the independent sam-
pling simulation does not cover 30% of the 99% confidence
interval covered by the dependent sampling simulation.

To show these differences in dispersion, distributions are
graphed for two impact categories: climate change that pre-
sents an average correlation of inputs (0.40) and ozone deple-
tion which presents a high correlation of inputs (0.79) (Fig. 3).
Visually, the climate change probability distributions are quite
similar, and those for ozone depletion are less so. The overlap
ratio for climate change is 0.96 and that of ozone depletion is
0.86.

The difference between independent and dependent sam-
pling of aggregated datasets is not constant—the difference
increases when the aggregated datasets are heavily correlated.
Correlation between datasets depends on the metric of interest
(i.e. on the specific impact category or inventory item). It is
therefore probably inappropriate to use a one-size-fits-all cor-
rection factor when carrying our uncertainty analyses with
aggregated datasets, as was suggested by Suh and Qin (2017).

2.2.3 Sampling in comparative LCA

To show that a correction factor is especially inappropriate in
comparative LCA, a second bottle was modelled. It also has
recycled aluminium and impact extrusion as inputs but is
heavier than the original bottle. Its static LCIA scores are
greater than the lighter bottle in exactly the same proportions
as the increase in mass, and our physical intuition tells us the
same conclusion should apply under uncertainty assessment.
The comparison of products under uncertainty is often done
by simply counting the share of Monte Carlo iterations where
one alternative has a lower LCIA score than that of another
product it is compared to, i.e. n(A < B) (Heijungs and Kleijn
2001; Huijbregts et al. 2003; Mattila et al. 2011). In a Monte
Carlo simulation using dependent sampling, all iterations re-
sult in the heavier bottle having a higher LCIA score, regard-
less of the magnitude of the increase in mass. Independent

Table 2 Overlap ratio between (1) the distribution of LCIA scores
resulting from a 10,000 iteration Monte Carlo simulation and (2)
10,000 samples drawn from a lognormal distribution fitted over the
Monte Carlo results

Impact category Bottle Aluminium Extrusion

Agricultural land occupation 0.96 0.96 0.96

Climate change 0.97 0.98 0.96

Fossil depletion 0.97 0.98 0.97

Freshwater ecotoxicity 0.96 0.94 0.97

Freshwater eutrophication 0.93 0.93 0.97

Human toxicity 0.93 0.93 0.95

Ionising radiation 0.93 0.94 0.94

Marine ecotoxicity 0.96 0.95 0.96

Marine eutrophication 0.60 0.94 0.56

Metal depletion 0.98 0.98 0.97

Natural land transformation 0.85 0.95 0.79

Ozone depletion 0.26 0.30 0.30

Particulate matter formation 0.64 0.34 0.96

Photochemical oxidant formation 0.87 0.67 0.95

Terrestrial ecotoxicity 0.93 0.88 0.97

Urban land occupation 0.49 0.94 0.32

Water depletion 0.33 0.34 0.32

Overlap ratios of 1 indicate that both distributions share 100% of their
surface
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Fig. 2 Ratios of dispersion of the
LCIA scores of bottle production
as calculated for 10,000 iteration
Monte Carlo simulations using
independent (numerator) and
dependent (denominator)
sampling, as a function of the
Pearson product-moment
correlation coefficient of the two
inputs to bottle production as
presented in Table 1. For a given
measure of dispersion, each point
represents a ReCiPe Midpoint
(hierarchist) impact category.
Three categories are singled out
as examples



sampling, however, gives more ambiguous results. Figure 4
shows the calculated probability the heavier bottle has a small-
er LCIA score that the lighter bottle for a given independently
sampled Monte Carlo iteration. At very small differences in
mass, there is no clear preference between the two bottles, and
even when the mass is doubled, there is some ambiguity: for
ionisation radiation, the Monte Carlo simulation indicates that
there is a 23% chance that the lighter bottle has a higher LCIA
score. The use of correction factors would not fix this
discernibility problem.

3 Method and data

3.1 Measuring correlation of activities in an LCI
database

The importance of dependent sampling is more pronounced
for higher correlation among inputs used in an LCA. It there-
fore behoves us to determine the level of correlation of
datasets (or, more precisely, cradle-to-gate product systems)
in LCI databases.

Int J Life Cycle Assess (2018) 23:2248–2265 2253

Fig. 3 Probability distribution
functions for two ReCiPe
Midpoint impact categories
(climate change and ozone
depletion impact categories)
resulting from dependent and
independent sampling, based on a
10,000 iteration Monte Carlo
simulation for the water bottle
example

Fig. 4 Probability under independent sampling that a heavier bottle is environmentally preferable to a lighter but otherwise equivalent bottle. The
intuitively correct probability, confirmed by dependent sampling, is 0% for any increase in mass



To do so, a suite of Python routines was built on top of the
Brightway2 LCA framework (Mutel 2017). Given a database
for which elements of the A and B matrices are described by
probability density functions (PDF), the routines calculate n
LCA results for a set ofm final demands and p LCIAmethods.
The steps to do so, represented in a simplified fashion in
Fig. 5, are as follows:

– 1) Select m products for which aggregated datasets are
required and convert into as many final demand vectors f.

– For n iterations:

& 2) Sample new values for the elements of the A and B
matrices based on their PDF.

& 3a) Calculate the cradle-to-gate LCI for each m final de-
mands. Inventories for a final demand j and aMonte Carlo

iteration i are given by gij ¼ BiA−1
i f j, although the actual

algorithm used does not actually invert the technosphere
matrix.

– 3b) The resulting LCI vectors for each iteration are stacked,
per final demand, resulting in m LCI arrays of dimensions
equal to the number of elementary flows in the database x n
iterations. The stacking order is always the same, ensuring
that the ith column in the LCI arrays of two different final
demands refers to the same underlying (ith) Monte Carlo
iteration and hence to the same underlying sampled values
for the elements of the A and B matrices.

– 4, 5) The resulting LCI arrays can be converted to LCIA
score arrays for p selected impact categories. The result is
a set ofm × p one-dimensional arrays containing n results.
Again, the ith results in any of the LCIA score arrays are
based on the same underlying ith Monte Carlo iteration.
Note that this characterisation step is not necessary: one
could very well simply use LCI results directly in subse-
quent calculations.

The sampling process is parallelizable, meaning iterations
can be calculated on multiple CPUs on a given computer or
even on multiple computers.

This procedure was applied to the ecoinvent 2.2 database
(m = 4087, i.e. the set of final demands covered all products in
the database) and the ecoinvent v3.3 database (m = 3545, i.e.
the set of final demands covered all products supplied by
market activity datasets). For both databases, the procedure
was carried out for n = 10,000 iterations. LCIA scores were
carried out for ReCiPe midpoint impact categories (p = 17).
For each database and each impact assessment method,
Pearson product-moment correlation coefficients were calcu-
lated for each pairs of final demands (over 8.3 million unique
pairs for ecoinvent 2.2, and about 6.3 million unique pairs for
ecoinvent 3.3). The code is given in SI4.

The results from this analysis can be used to deter-
mine whether the use of aggregated datasets in a partic-
ular LCA has the potential of leading to an important
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Fig. 5 Graphical representation of the database-wide Monte Carlo
algorithm. For each iteration, new samples are drawn from probability
distributions in theA and Bmatrices. These are then used to calculate the
LCIA scores for a set of unit demands. The result is a set m (number of

final demands) × p (number of LCIA methods) one-dimensional arrays
containing n (number of Monte Carlo iterations) results. The ith element
of any of these arrays stems from the same Monte Carlo iteration



underestimation of the dispersion of the results. If all
inputs to a product system are largely uncorrelated for
the impact categories of interest, the risk of introducing
large discrepancies in the measure of dispersion when
carrying out a Monte Carlo simulation using aggregated
datasets is limited.

3.2 Uncertainty analysis and aggregated datasets
using presampled results

The database-wide Monte Carlo simulation presented in
Section 3.1 results in a set of ordered arrays of cradle-to-gate
LCIA scores where the ith element of any array corresponds to
the same ith Monte Carlo iteration. It is proposed in this paper
that these precalculated results can be stored and reused directly
to conduct Monte Carlo simulations for LCA using aggregated
datasets.

Take an LCA defined as a linear combination of datasets:
result ¼ ∑m

1 α jx j where m is the number of aggregated datasets
used in the system andα and x are, respectively, the scaling factor
and the aggregated result for dataset j. If one has arrays with n
dependently sampled aggregated dataset results, one can simulate
a Monte Carlo simulation by constructing a result array of
dimension nwhere each of its elements i is based on the elements

i of the aggregated dataset LCIA score arrays, i.e. result array

¼ ∑m
j¼1α jx j

� �
1
; ∑m

j¼1α jx j
� �

2
;…

h
; ∑m

j¼1α jx j
� �

i
;…; ∑m

j¼1α jx j
� �

n
�.

Note that the same approach could be used with
precalculated arrays of LCI results rather than LCIA scores.

3.3 Uncertainty analysis and aggregated datasets
using the analytical approach

Another method for propagating the uncertainty of in-
put terms in an LCA is the approximate analytical ap-
proach based on a limited Taylor series expansion.
This approach has been used in various LCA studies
(Hong et al. 2010; Imbeault-Tétreault et al. 2013) and
compared to sampling approaches like Monte Carlo
simulations in Heijungs and Lenzen (2014). The ap-
proximate analytical approach is always presented or
used in the context of LCA conducted with unit pro-
cess datasets. In those cases, the sensitivity and vari-
ance of all elements of the A and B matrices are con-
sidered. The covariance terms, which would describe
the covariance of values in the A and B matrices, are
usually assumed to be zero. Note that this covariance
is different than that discussed previously, which was
the covariance between values in the calculated inven-
tory results (aggregated datasets).

In the simple water bottle example, the analytical
approach with disaggregated datasets would need to ac-
count for the sensitivity and variance of the over 90,000
uncertain parameters in ecoinvent version 2.2. The
equations for calculating the sensitivity of these terms
are presented in Heijungs (2010).

The use of aggregated datasets, by transforming the
set of linear equations to a simple linear combination of
terms (Eq. (3)), simplifies the analytical approach
drastically:

Where,

y is some metric of interest (e.g. an inventory item, an
LCIA score) for the LCA

n is the number of aggregated datasets i in the LCA
i (or j) is an aggregated dataset
xi is the corresponding metric (an inventory item, an

LCIA score) for a given aggregated dataset i
αi is the scaling factor for aggregated dataset i

var refers to the variance of a term
cov refers to the covariance of a term

Looking in detail at each term of the equation:

– ∑N
i α2

i var xið Þ accounts for the uncertainty of the aggre-
gated datasets. Note that the sensitivity term is simply the
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of aggregated datasets and 
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associated scaling factor. The variance of the aggregated
datasets can be computed ad hoc from a separate Monte
Carlo iteration or precalculated using the database-wide
Monte Carlo approach presented above.

– 2∑N−1
i¼1 ∑

N
j¼iþ1αiα jcov xix j

� �
accounts for the covariance

of the aggregated datasets. As was shown above, this
covariance is sometimes far from being negligible and
hence should not be discarded without a prior verification
of its importance. However, it can easily be computed ad
hoc from a separate Monte Carlo simulation or
precalculated using the database-wide Monte Carlo ap-
proach presented above.

– ∑N
i¼1x

2
i var αið Þ accounts for the uncertainty of the scaling

factors, if relevant. This uncertainty is contextual (i.e.
specific to an LCA study) and cannot be precalculated.
Note that the sensitivity term is simply the value of the
associated aggregated dataset.

– 2∑N−1
i¼1 ∑

N
j¼iþ1xix jcov αiα j

� �
accounts for the covariance

of the scaling factors, if relevant. Again, this covariance is
contextual.

– 2∑N
i¼1∑

N
j¼iαix jcov αix j

� �
accounts for the covariance be-

tween aggregated datasets and scaling factors. In most
circumstances, these should be equal to zero given that
scaling factors refer to the foreground and aggregated
datasets refer to the (normally independent) background.

Except the terms associated with the uncertainty of scaling
factors, all the terms can be precalculated (for a given back-
ground database) using the procedure outlined above.

Despite the simplicity of the analytical approach, it suffers
from two notable disadvantages: the distribution of the result
cannot be known (only its variance), and, in comparative
LCA, it cannot be used to determine whether the difference
between two product systems is significant (Heijungs and
Lenzen 2014). Some authors have proposed comparison indi-
cators whereby the significance can be calculated (Hong et al.
2010; Imbeault-Tétreault et al. 2013), but these are based on
two assumptions: the parameters are lognormally distributed
and, more problematic, that the two systems are independent.

3.4 Case study

One eco-design tool that uses aggregated datasets is the
EcodEX software, produced by Selerant (2017). EcodEX is
specifically focused on the LCA of food products. It is simple
enough to be used by non-LCA experts and is meant to be
used early in the design process, while design freedom is still
high. It provides estimates of the environmental hotspots in a
product’s value chain and can compare the environmental per-
formance of different design alternatives. The software is no-
tably used by Nestlé R&D community to gain insights into the

environmental performance of food products early in the de-
sign phase (Schenker et al. 2014).

Calculations in EcodEX use three types of information:
Nestlé-specific recipe data, modeller-supplied information
such as distances and electricity consumptions, and back-
ground LCI data, principally on ingredients, energy vectors,
transport and packaging. The majority of background LCI
data are taken from public sources: ecoinvent 2.2
(Frischknecht et al. 2005), World Food LCA Database
(Quantis 2017) and Agribalyse (ADEME 2017; Quantis
2017). The background data is stored as aggregated datasets,
and the calculations are simply linear combination of these
aggregated datasets expressed as LCIA scores for five impact
categories.

Uncertainty analysis in LCA using precalculated ag-
gregated datasets is presented for an LCA of three fic-
tional but nonetheless reasonable burger patty recipes
(Table 3). This type of study is representative of what
would be done with the EcodEX tool, though it omits
transport and packaging. First, the procedure for approx-
imating the variance of the scores of individual burgers
using the Taylor series expansion analytical approach is
presented. It is also shown how considering the covari-
ance between aggregated datasets influences the total
variance. The uncertainty of both single-product and
comparative LCA results is then calculated with Monte
Carlo sampling using four sampling approaches: depen-
dent sampling using unit process datasets, independent
sampling, sampling of fitted distributions and reuse of
stored samples.

4 Results and discussion

4.1 Correlation between all pairs of aggregated
datasets in ecoinvent databases

Pearson product-moment correlation coefficients were calcu-
lated for each pair of aggregated datasets from ecoinvent

Table 3 Burger patty recipes

Ingredients Beef Vegetarian (veggie) Vegan

Beef 68 g – –

Onion 6 g 12 g 12 g

Wheat 6.5 g 21 g 21 g

Egg (chicken) 6 g 3 g –

Water 3.5 g 7 g 7 g

Sunflower – 8 g 8 g

Soybean – 24 g 29 g

Total weight 90 g 75 g 76.5 g

Bold values represent the total weight
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version 2.2 and for all market datasets from version 3.3. These
are based on dependent samples and are calculated for 17
ReCiPe midpoint categories. The several million correlation
coefficients are presented in electronic SI5 (ecoinvent v2.2)
and SI6 (ecoinvent v3.3) and are plotted in histograms (Fig. 6)
to provide an overview of their values, per database and per
impact category. Three types of results can be discerned.

First, several impact categories such as climate change
show a majority of low correlations across pairs of aggregated
datasets. Correlation coefficients will be lower if the main
contributors in the supply chain to the LCIA scores and, more
precisely, to the contribution to variance in the LCIA scores
are different for the two compared datasets. These low corre-
lations are consistent with impacts distributed among many
unit processes and emissions.

Second, two impact categories (human toxicity and ionis-
ing radiation) show a majority of high correlation factors
across pairs of aggregated datasets. High correlation overmost

pairs of aggregated datasets indicates that there are relatively
few datasets which contribute to the variance of these impact
categories in the databases and that these datasets are in the
background of most aggregated datasets.

Finally, a few impact categories fall somewhere in between
these two extremes, with correlation coefficients distributed
across the spectrum.

Figure 6 also contains a histogram of the one exchange
concentration ratio of all product systems in the databases.
The concentration ratio is a concept borrowed from econom-
ics, where it is used to measure the relative weight of the
largest companies in a sector (Besanko et al. 2004). The con-
centration ratio represents the share of the LCIA score that is
attributable to the single elementary flow from a single activ-
ity that contributes the most to the LCIA score: a concentra-
tion ratio of 1 would represent a product system where 100%
of the score is attributable to a single elementary flow.
Generally, impact categories where many product systems
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Fig. 6 Histograms of (1) Pearson product-moment correlation coefficients for all pairs of datasets, in grey, and (2) the concentration ratio of all product
systems, in blue, for all products in ecoinvent v2.2 (a) and ecoinvent 3.3 (b) for 17 ReCiPe midpoint impact categories



have a high concentration ratio (e.g. ionisation radiation) also
have many pairs of aggregated datasets with high correlation
coefficients. Conversely, impact categories where many prod-
uct systems have a low concentration ratio (e.g. climate
change) also have many pairs of aggregated datasets with
low correlation coefficients.

It was shown above (Section 2.2.2) that the risk of
underrepresenting the dispersion of single-product LCA re-
sults in independent sampling of aggregated datasets increases
as the correlation among inputs increases. The results in Fig. 6
indicate that correlation among inputs can be high, and even in
impact categories where the average correlation is low, there
can be highly correlated datasets. For example, for the climate
change category, there are over 7000 ecoinvent 2.2 dataset
pairs for which the correlation coefficient is greater than 0.8
and over 1200 for which it is higher than 0.99. Having access
to a precalculated list of correlation coefficients can help de-
termine whether there is a risk of mischaracterizing the uncer-
tainty of an LCA result calculated with aggregated datasets.

Note that this type of calculation is exactly what would
provide the required input for use of the analytical approxima-
tion method, provided that the covariance between pairs of
datasets is calculated rather than the correlation.

4.2 Case study

4.2.1 Deterministic results and contribution analyses

The deterministic results for all three burgers, as well as the
relative contribution of the different ingredients, are presented
in SI7. The beef burger is unsurprisingly associatedwithmuch
higher scores per patty than the veggie or vegan alternatives,
from over 6.5 times more (natural land occupation) to over 60
times more (ionisation radiation). The results are much closer
for the comparison between the veggie and vegan options,
with more than half the impact categories being different by
less than 10%. The contributions of the various ingredients are
also very different: for the beef burger, impacts are dominated
by the meat, while for the veggie and vegan burgers, the im-
pacts come from a more diversified list of ingredients, such as
soybean, wheat and, for the vegetarian option, chicken egg.

4.2.2 Uncertainty of individual products—approximate
analytical approach

To estimate the variance using the analytical approach based
on a limited Taylor series expansion (Eq. (2)), 10,000 depen-
dent samples for each ingredient used in the various burgers
were generated. These were used to calculate both the vari-
ance of the unit scores of each ingredient (the var(xi) terms) as
well as the covariance across ingredients (the cov(xixj) terms).
It was assumed that the uncertainty in the amount of each
ingredient used in the making of the burgers was null, i.e.

var(αi) = 0, and by extension that any covariance term that
include scaling factors α is also null, i.e. cov(αixj) =
cov(αiαj) = 0.

The code implementation of Eq. 2 is presented in SI8. The
importance of including the covariance of aggregated datasets
in this evaluation was estimated by comparing the total vari-
ance (calculated with Eq. 2) to the total variance calculated
without the cov(xixj) terms. Detailed results for the Fossil de-
pletion category are presented in Table 4. For the beef burger,
the total variance is dominated by a single ingredient (beef),
and the covariance terms are relatively unimportant (1% of
total variance in total). For the veggie and vegan burgers,
however, the covariance terms collectively contribute more
to the total variance than the variance of the individual ingre-
dients. This indicates that ignoring the covariance across in-
gredients would largely underestimate the total variance. This
is not true of all impact categories assessed. The relative dif-
ferences between variance calculated with and without covari-
ance terms for all ReCiPe midpoint impact categories are pre-
sented in Table 5. Note that 0.5% of all calculated covariance
terms were negative, meaning that their inclusion actually
reduced the total estimated variance. However, in all these
cases, the actual contribution of the covariance term to the
total variance was small, and in only one case was the total
variance actually higher when covariance terms were left out
(vegan burger, marine eutrophication, − 1% difference). In
general, the analytical method to estimate variance of LCA
using precalculated results while ignoring the covariance
across aggregated datasets leads to an underestimation of the
total variance, and in some cases, this underestimation is very
substantial.

4.2.3 Uncertainty of individual products—sampling
approaches

The uncertainty of scores for individual burgers was calculat-
ed using a 10,000 iteration Monte Carlo simulation with four
sampling approaches: (1) dependent sampling (default, to
which other sampling approaches are compared); (2) indepen-
dent sampling of individual ingredients followed by linear
combination of sampled values; (3) linear combination of
values sampled from lognormals that were fitted on the sam-
ples for each individual ingredient; and (4) linear combination
of dependently presampled values for ingredients, which con-
stitutes the core of the proposed approach in this paper (see
SI8). The resulting dispersion for each burger and each of the
ReCiPe midpoint impact categories are compared using three
metrics: MAD, interquartile range (IQ) and mid-99%
interpercentile range. The dispersion results using the inde-
pendent sampling, fitted lognormals and dependently
presampled values are normalised by dividing by the corre-
sponding dispersion results for the dependent sampling ap-
proach (Fig. 7). Normalisation allows us to more easily
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see the relative changes in dispersion. The code used for
this analysis is available as Electronic Supplementary
Material (SI8).

The independent sampling approach results in lower dis-
persion than dependent sampling for all measures of disper-
sion, all burgers and most impact categories. This was expect-
ed, since dependent sampling accounts for the correlation
across aggregated datasets, and independent sampling does
not. The difference in dispersion between dependent and in-
dependent sampling is much less pronounced for the beef
burger: this is because the uncertainty of the beef burger scores
is dominated by the beef ingredient.

The use of fitted lognormals, as proposed in Qin and Suh
(2017), yields dispersions that are very often very different
from those from dependent sampling. Lognormal distribu-
tions were chosen for the fitting because all exchanges in the
product system that are from the WFLDB are either lognor-
mally distributed or have no uncertainty, and all the others are
from ecoinvent 2.2, whose exchanges are mostly also
lognormally distributed. The process used for fitting the
lognormals and the resulting shape parameters are presented
in SI8. It follows from this that the assumption in Qin and Suh
(2017) that lognormal distributions can be used with relative
confidence is not robust.

Finally, the use of dependently presampled arrays of values
yields, for all cases, ratios that are very close to one. Since a
linear combination of dependently sampled aggregated data is
mathematically equivalent to the dependent sampling of the
whole system, the small differences are attributed to the ran-
dom nature of Monte Carlo simulations.

Table 5 Percent difference between variance estimated with and
without covariance terms for ReCiPe midpoint scores of individual
burgers, as calculated by the analytical approach

Impact category Beef Veggie Vegan

Agricultural land occupation 1% 9% 2%

Climate change 0% 20% 11%

Fossil depletion 1% 58% 54%

Freshwater ecotoxicity 3% 46% 27%

Freshwater eutrophication 1% 77% 59%

Human toxicity 0% 76% 68%

Ionising radiation 2% 78% 71%

Marine ecotoxicity 0% 73% 67%

Marine eutrophication 1% 9% − 1%
Metal depletion 4% 64% 62%

Natural land transformation 11% 23% 0%

Ozone depletion 3% 74% 68%

Particulate matter formation 1% 67% 62%

Photochemical oxidant formation 1% 51% 48%

Terrestrial ecotoxicity 0% 1% 0%

Urban land occupation 3% 15% 45%

Water depletion 0% 4% 1%

The higher the percentage, the greater the error resulting from leaving out
the covariance terms

Table 4 Variance and covariance terms for the fossil depletion score as
estimated using the approximate analytical approach

Beef burger

Variance terms only

Beef, fresh meat, at slaughterhouse 5.1E-04

Other ingredients 1.2E-07

Total variance, variance terms only 5.1E-04

Covariance terms

All covariance terms 5.5E-06

Total variance, variance and covariance terms 5.2E-04

Difference between variance calculated with and without
covariance terms

1%

Veggie burger

Variance terms only

Wheat grains 5.9E-08

Chicken egg 2.8E-08

Soybean 1.2E-08

Other ingredients 1.0E-08

Total variance, variance terms only 1.1E-07

Covariance terms

Wheat grains—sunflower 3.3E-08

Wheat grains—chicken egg 3.3E-08

Wheat grains—soybean 3.2E-08

Sunflower—chicken 1.2E-08

Wheat grains—onion 1.0E-08

Other pairs of ingredients 2.7E-08

Total variance, variance and covariance terms 2.5E-07

Difference between variance calculated with and without
covariance terms

58%

Vegan burger

Variance terms only

Wheat grains 5.6E-08

Soybean 1.7E-08

Other ingredients 1.0E-08

Total variance, variance terms only 8.3E-08

Covariance terms only

Wheat grains—soybean 3.8E-08

Wheat grains—sunflower 3.3E-08

Wheat—onion 1.0E-08

Sunflower—soybean 9.4E-09

Other pairs of ingredients 7.3E-09

Total variance, variance and covariance terms 1.8E-07

Difference between variance calculated with and without
covariance terms

54%

“Variance terms only” refer to the α2
i var xið Þ terms that consider only the

variance of individual ingredients, and “covariance terms only” refer to
the αiαj cov(xixj) for i ≠ j terms that consider the covariance between
ingredients
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4.2.4 Comparison between the analytical approximation
and sampling approaches

The two previous sections showed that the dispersion of LCIA
results for individual burgers changes when correlation across
aggregated datasets is ignored, and that it is usually
underestimated. Figure 8 shows the relation between results
obtained by the analytical and sampling approaches: the x-axis
presents the fraction of total variance that is captured when
covariance terms are excluded from Eq. (2), and the y-axis
represents the ratio of dispersion indicator calculated using
independent sampling over that calculated by dependent sam-
pling. Although no simple relationship can be obtained from
this comparison, and even though the actual measure of dis-
persion is different, a rough agreement is observed: for most
burger-impact category combinations, when the analytical

approximation approach identifies that a fraction of the vari-
ance is unaccounted for, the sampling method finds the same.

4.2.5 Uncertainty in comparative results

Dependent sampling is especially important in comparative
LCA, as is well known (Henriksson et al. 2015) and as was
shown with the simple water bottle LCA above. In this case
study, the veggie burger is taken as the default product to
which the beef and vegan burgers are compared. The distribu-
tion of the difference between burgers for the climate change
and ozone depletion impact categories are presented in Fig. 9.
The rest of the results are presented in SI8. For the comparison
with beef, the sampling approach does not make much differ-
ence. This can be readily explained: the beef burger scores are
much larger than those of the veggie burger, and the sampling
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for ReCiPe midpoint scores of
individual burgers using different
sampling approaches. Values
lower than 1 indicate that the
sampling method (independent
sampling, sampling of fitted
lognormal distribution and using
dependently presampled results)
yield dispersion indicators lower
than dependent sampling
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Fig. 8 Comparison of fraction of
dispersion that is unaccounted for
when ignoring correlation across
aggregated datasets when using
the analytical approximation and
sampling approaches. The x-axis
values are derived from Table 5
and the y-axis values correspond
to the results presented in the first
column of Fig. 7

Fig. 9 Distribution of the
difference between the scores for
two burgers under different
sampling strategies



approach for the beef burger does not make much of a differ-
ence as it is dominated by one ingredient (beef). For the com-
parison with vegan patties, however, the sampling approach
does make a marked difference. Indeed, the uncertainty of the
comparison is overestimated by independent sampling. Suh and
Qin’s conclusion (2017) that uncertainty is underestimated
when independently sampling aggregated datasets therefore
may be true for individual product systems but is not the case
for comparative LCA.

Comparative LCA can also look at other metrics, such as
the results of hypothesis testing to determine whether product
systems A and B are significantly different (Henriksson et al.
2015) or the frequency at which an option A is preferable to
option B (e.g. Heijungs and Kleijn 2001; Huijbregts et al.
2003; Mattila et al. 2011). For the beef-veggie comparison,
the results are unambiguous: the burger scores are higher for
all iterations of all Monte Carlo simulations, regardless of the
sampling strategy used. In this circumstance, then, the sam-
pling approach is irrelevant. For the vegan-veggie compari-
son, though, the sampling strategy does change the number of
iterations for which one option is better than the other
(Table 6). Marked differences can occur between dependent
sampling and independent sampling or sampling of fitted log-
normal distributions, considerably lowering the confidence in
results. However, the results obtained using presampled de-
pendent scores for ingredients are almost exactly those yielded
from dependent sampling. Again, this indicates that Suh and
Qin’s conclusion (2017) that uncertainty is underestimated
when using aggregated datasets does not hold for comparative

LCA. Note that the difference in veggie and vegan burgers is
very small. Even if the confidence that one option is better
than the other is high, it does not mean that the magnitude of
this difference will be important enough to sway decisions.

5 Discussion

5.1 Using fitted distributions as proposed by Suh
and Qin (2017)

An interesting discussion between Suh and Qin (2017) and
Heijungs et al. (2017) was recently published on the issue of
dependent vs. independent sampling and the use of aggregated
datasets in uncertainty analysis. Qin and Suh (2017) argue that
aggregated datasets with probability distributions can be used
for fast uncertainty analysis. Heijungs et al. (2017) responded
by stating that this approach “cannot” be used for comparative
LCA and that the uncertainty values generated using
independent sampling from aggregated datasets would be
largely overestimated.

Suh and Qin (2017) provided a useful rebuttal where they
make two very important observations: dependent sampling is
relevant not only in comparative LCA, but for any LCA that
combines aggregated datasets, and calculating the uncertainty
for a given product system using precalculated distributions
underestimates rather than overestimates uncertainties. The
results presented above corroborate both points. However,

Table 6 Percentage of 10,000
Monte Carlo iterations where the
vegan burger had a score lower
than that of the veggie burger
under different sampling
strategies

Dependent
sampling—unit
processes

Combination of
dependently
presampled
results

Independent
sampling

Independent
sampling
from fitted
distributions

Agricultural land occupation 0% 0% 15% 16%

Climate change 87% 88% 70% 62%

Fossil depletion 100% 100% 100% 100%

Freshwater ecotoxicity 70% 70% 55% 54%

Freshwater eutrophication 100% 100% 67% 56%

Human toxicity 100% 100% 77% 77%

Ionising radiation 100% 100% 65% 66%

Marine ecotoxicity 100% 100% 88% 86%

Marine eutrophication 100% 100% 75% 53%

Metal depletion 100% 100% 100% 100%

Natural land transformation 0% 0% 38% 38%

Ozone depletion 100% 100% 89% 55%

Particulate matter formation 100% 100% 91% 90%

Photochemical oxidant formation 100% 100% 94% 64%

Terrestrial ecotoxicity 0% 0% 31% 40%

Urban land occupation 100% 100% 100% 96%

Water depletion 100% 100% 81% 59%
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Suh and Qin make three additional points that are not support-
ed with the findings of this paper.

First, they extend their conclusion regarding the uncertain-
ty of a product system (i.e. that independent sampling under-
estimates the uncertainty of a given product system, and that
this underestimation is usually small) to comparative LCA. As
the bottle case study demonstrated (Section 2.2.3), this is not
true. For bottles identical in all aspects except their total
weight, the heavier bottle is guaranteed to have larger impact
scores than the lighter bottle even for very small differences in
weight. While dependent sampling yields this expected con-
clusion, independent sampling cannot distinguish between
both bottles for very small mass differences and, for some
impact categories, still does not yield unequivocal results
when the mass of the heavier bottle is double that of the lighter
bottle.

Second, they state that if two aggregated datasets were
generated using the same Monte Carlo simulation (i.e. that
dependent sampling was used), then there is no independent
sampling problem. While this is true for each Monte Carlo
iteration result that was used to construct the aggregated
LCIs, it is certainly not true of Monte Carlo simulations that
will be carried out with the resulting fitted probability distri-
butions. Indeed, in subsequent Monte Carlo simulations, sam-
pling from the probability distributions that were fitted on the
originally sampled values will be independent.

Finally, they state that the uncertainty associated with the
linear combination of aggregated datasets can be adjusted by a
rule-of-thumb factor to account for the inability to do a depen-
dent sampling. While this proposal is attractive, and indeed
seems to fit the data for the LCI of the 100 ecoinvent unit
processes that they analysed, it does not account for the great
variability of the influence of independent sampling. Indeed,
as was shown in this paper, the influence of independent sam-
pling depends on the correlation between datasets used in an
LCA, and this correlation varies widely and depends on the
specific datasets used and on the metric compared (e.g. on the
impact categories of interest). The table with correlation fac-
tors for each pair of products in ecoinvent v2.2 and v3.3,
published as SI with this paper, could allow one to speculate
whether independent sampling will result in marked
underestimation of the scores.

5.2 Feasibility of the presampling approach

This paper suggested an alternative to the two approaches
being debated by Suh and Qin (2017) and Heijungs et al.
(2017): precalculating arrays of dependent results (LCI or
LCIA) that can then be linearly combined in LCAwork. The
difficulty of this approach is the time required for the initial
calculation of presampled arrays. Calculating, cleaning and
concatenating 1000 dependent LCI results for all datasets
from ecoinvent version 3.3 take about 24 h on a modern

eight-core desktop. Each such LCI array takes about
100 MB. Converting them to LCIA arrays reduces their size
to approximately 60MBper 1000 iterations. Once this work is
done, subsequent uncertainty analyses of LCA results using
the arrays can be carried out in real-time. For example, iden-
tifying, loading, scaling and adding the ingredients in a beef
burger in order to generate a 10,000 iteration score array for
one method take 0.014 s with the computer described above.
This speed makes it relevant for use in eco-design software
tools.

5.3 Use of the correlation factors

The approach based on the generation of dependent
precalculated results also yielded two useful coproducts: a
table with correlation factors for pairs of products in ecoinvent
databases (provided in Supporting Information) and a related
covariance matrix (not provided). With the former, the risk of
underestimating the uncertainty when using aggregated
datasets can be crudely evaluated, since it was shown that high
correlation between aggregated datasets leads to larger under-
estimations of uncertainty when independently sampling ag-
gregated datasets. The data in the covariance matrix makes it
possible to use the analytical approach to estimate the total
variance as well as to determine the contribution of different
aggregated datasets (variance) and pairs of datasets
(covariance) to the total variance.

5.4 Other applications

The approach of precalculating dependent samples can be
used in other spheres of the LCA calculation chain where
there is uncertainty and where dependent sampling is impor-
tant. Three examples are given below.

5.4.1 Presampling characterisation factors

Characterisation factors are calculated models using a variety
of uncertain parameters, and some LCIA methods present
characterisation factors as probability distributions (e.g. Roy
et al. 2014). If characterisation uncertainty has been used at
all, it has been approached in the same fashion as inventory
uncertainty, where parameters were assumed to be indepen-
dent. However, this assumption is invalid in LCIA and espe-
cially for regionalized LCIA. No LCIA method developer
would use different values for common model parameters
(e.g. different mean H+ concentration in a water body, differ-
ent runoff rates) used in the calculation of characterisation
factors for two different elementary flows, and yet this is ex-
actly what is simulated when characterisation factors are sam-
pled from independent distributions. Presampling and then
applying characterisation factors generated using dependent
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sampling of commonmodel parameters would be a substantial
advancement for LCIA.

5.4.2 Dependent technological parameters—case of mass
balances

Unit process datasets are often associated with inputs and
outputs of flows that should be physically balanced, such as
carbon or water (water directly input, water in moisture con-
tent of inputs, evaporation, water discharges, etc.). While unit
processes are normally water balanced, any Monte Carlo iter-
ation will break this balance if any of the water flows are
uncertain. Presampling balanced sets of water flow amounts
would allow water balances to be conserved across all Monte
Carlo iterations.

5.4.3 Dependent technological parameters—case of market
mixes

Similarly, independently sampling the quantity of different
inputs into a market mix where the inputs should sum to
one, such as electricity inputs into a grid mix unit process,
invariably results in market mixes that do not balance. It is
already known that standard functions, such as the normal or
lognormal, are poor fits for real electricity generation data,
which is often multi-modal or highly biased. Independent
sampling, which ignores why certain generators would be
positively or negatively correlated with other generators, only
adds insult to injury. A far superior approach would be to
sample from a time series of relative production volumes
and to associate each Monte Carlo iteration with one of these
presampled values.

5.5 Outlook

Given that the most time and resource-consuming step is the
calculation of dependent arrays for a database, centralising
their generation for the whole of the LCA community would
be relevant and useful. For example, a database provider like
the ecoinvent Center could sell arrays of Monte Carlo results
in quite the same way it now sells unit process datasets and
aggregated datasets. Centralised generation would also allow
many Monte Carlo iterations to be generated, as well as
allowing for investment in sampling strategies like space-
filling curves or Latin hypercubic sampling that would ensure
consistent coverage of the entire probability distribution of
each parameter. Covariance matrices could also be made
available, facilitating the use of the analytical approximation
approach. A whole ecosystem of software tools able to use
these directly could then be developed. The same can be true
for other parameters used in LCA, such as characterisation
factors and dependent technological parameters that are useful
for carrying our LCA.

6 Conclusions

Streamlined LCA tools have a strong incentive to continue
using aggregated LCA data. This traditionally posed a
problem for uncertainty analysis: the data in aggregated
datasets were normally only point values instead of uncer-
tainty distributions, and the proposed techniques to ac-
count for uncertainty in LCA using aggregated datasets
either did not consider correlation across datasets (Qin
and Suh 2017), or proposed correction factors that are not
generally applicable or relevant for comparative LCA (Suh
and Qin 2017). The findings in this paper confirmed Suh
and Qin’s statement (2017) that the uncertainty of LCA
results for individual products is underestimated when cal-
culated by independently sampling the distributions of ag-
gregated datasets and showed that the magnitude of this
underestimation can vary widely. It also corroborated the
findings of Henriksson et al. (2015) that independent sam-
pling in comparative LCA can lead to a severe overestima-
tion of the uncertainty in comparative metrics.

Two techniques were proposed to more correctly carry
out uncertainty analysis in LCA using aggregated datasets.
The first is based on the approximate analytical approach
based on a limited Taylor series expansion, which is useful
to estimate the variance of single-product LCA results and
to estimate the importance of the covariance of aggregated
datasets to this variance. However, it was not shown to be
useful for comparative LCA. The second is based on the
linear combination of dependently presampled Monte
Carlo results. This approach is shown to yield results sim-
ilar to those obtained by Monte Carlo analysis using unit
process datasets with a negligible computation time, mak-
ing it acceptable for streamlined or even mainstream LCA
tools. Indeed, this approach has already been implemented
by an existing tool, EcodEX. Both solutions require a one-
time calculation of dependent samples for all aggregated
datasets. This step is time-consuming, and could be done
centrally by database providers.

The dependent presampling strategy can also be applied to
improve other aspects of the LCA calculation chain, such as
market mixes, characterisation factors and flows that need to
balance or are otherwise correlated at the unit process level.
The implementation of such strategies would require modifi-
cations to the structure of LCA software, as was shown with
the adaptation of the EcodEX tool, but would bring a signif-
icant increase in realism.
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