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Abstract
Purpose Life cycle inventory (LCI) results are often assumed
to follow a lognormal distribution, while a systematic study
that identifies the distribution function that best describes
LCIs has been lacking. This paper aims to find the distribution
function that best describes LCIs using Ecoinvent v3.1 data-
base using a statistical approach, called overlapping coeffi-
cient analysis.
Methods Monte Carlo simulation is applied to characterize
the distribution of aggregate LCIs. One thousand times of
simulated LCI results are generated based on the unit
process-level parametric uncertainty information, from each
of which 1000 randomly chosen data points are extracted.
The 1 million data points extracted undergo statistical analy-
ses including Shapiro-Wilk normality test and the overlapping
coefficient analysis. The overlapping coefficient is a measure
used to determine the shared area between the distribution of
the simulated LCI results and three possible distribution func-
tions that can potentially be used to describe them including
lognormal, gamma, and Weibull distributions.
Results and discussion Shapiro-Wilk normality test for 1000
samples shows that average p value of log-transformed LCI
results is 0.18 at 95 % confidence level, accepting the null
hypothesis that LCI results are lognormally distributed. The

overlapping coefficient analysis shows that lognormal distri-
bution best describes the distribution of LCI results. The av-
erage of overlapping coefficient (OVL) for lognormal distri-
bution is 95 %, while that for gamma and Weibull distribu-
tions are 92 and 86 %, respectively.
Conclusions This study represents the first attempt to calcu-
late the stochastic distributions of the aggregate LCIs covering
the entire Ecoinvent 3.1 database. This study empirically
shows that LCIs of Ecoinvent 3.1 database indeed follow a
lognormal distribution. This finding can facilitate more effi-
cient storage and use of uncertainty information in LCIs and
can reduce the demand for computational power to run Monte
Carlo simulation, which currently relies on unit process-level
uncertainty data.

Keywords Ecoinvent 3.1 . Life cycle inventory . Lognormal
distribution .Monte Carlo simulation . Probability
distribution . Uncertainty analysis

1 Introduction

Assessing uncertainty in life cycle assessment (LCA) is im-
portant for understanding reliability and robustness of the re-
sults in the context of decision making (Finnveden et al.
2009). Traditionally, LCA studies only include deterministic
values in results. However, a sound decision making can ben-
efit from the understandings of the stochastic distribution of
LCA results (Geisler et al. 2004; Sugiyama et al. 2005). For
example, when making comparisons among products, ignor-
ing uncertainty may lead to a misleading decision if the dis-
tributions of the two LCA results significantly overlap, al-
though their deterministic values favor one versus another
(Heijungs and Kleijn 2001). Therefore, many LCA studies
have implemented uncertainty analysis for sound decision-
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support (Hertwich and Hammitt 2001; Huijbregts et al. 2003;
Basson and Petrie 2007; Cellura et al. 2011; Clavreul et al.
2012; Noshadravan et al. 2013).

The concept of uncertainty in LCAwas first discussed in a
workshop of Society of Environmental Toxicology and
Chemistry (SETAC) in 1992 in the context of data quality
(Fava 1994). Recognizing the significance of incorporating
uncertainty, the LCA community formed the SETAC LCA
working group on data availability and data quality in the
early 1990s. Heijungs (1996) illustrates how uncertainty is
propagated from input parameters of an LCA model to its
outputs. Weidema and Wesnæs (1996) addressed the problem
of data quality concerns by introducing the pedigree method,
which has been widely incorporated into various life cycle
inventory (LCI) databases to date. European Network for
Strategic Life Cycle Assessment Research and Development
(LCANET) has suggested making uncertainty quantification a
top research priority. During those early years, many efforts
were devoted to setting-up the scheme for data quality indica-
tors. Based on such efforts, Huijbregts (1998) established a
framework for parameter uncertainty analysis. Subsequently,
a framework for quantifying data quality in LCI was also
developed.

More recently, the literature focused more on the typolo-
gies of uncertainty and the approaches to treat uncertainty
(Björklund 2002; Huijbregts 2002; Baker and Lepech 2009).
In general, two types of uncertainties have been distinguished:
stochastic uncertainty (due to inherent randomness) and epi-
stemic uncertainty (due to lack of knowledge) (Clavreul and
Guyonnet 2013; Heijungs and Lenzen 2014). Among them,
stochastic uncertainty has been the focus of many LCA stud-
ies, while the literature on epistemic uncertainty in LCA is
scarce (Laner et al. 2014; Gavankar and Suh 2014).
Heijungs and Huijbregts (2004) presented a review of four
general uncertainty treatments for stochastic uncertainty and
Ciroth et al. (2004) proposed a method for uncertainty calcu-
lation. Two types of techniques have emerged: sampling
method and analytical approach (Ross et al. 2002; Heijungs
and Frischknecht 2004; Clavreul and Guyonnet 2013; Jung
et al. 2013). According to the survey of 24 LCA studies that
incorporated uncertainty analysis, parameter uncertainty is the
most addressed one compared with model and scenario uncer-
tainties, and sampling method is the most frequently used
technique to quantify uncertainty (Lloyd and Ries 2008).

In addition to the development of frameworks and
methodologies of uncertainty assessment, a number of
empirical studies have implemented uncertainty analysis in
LCA. Geisler et al. (2004) applied uncertainty assessment to
a case study of plant-protection products using generic uncer-
tainty factors for inventories. Huijbregts et al. (2003) per-
formed uncertainty quantification considering parameter, sce-
nario, andmodel uncertainties in a comparative study of build-
ing’s insulation options. Many studies included probability

distribution in uncertainty analysis through Monte Carlo
Simulation (Maurice et al. 2000; McCleese and LaPuma
2002; Sonnemann et al. 2003; Hung and Ma 2009;
Cucurachi and Heijungs 2014).

When using Monte Carlo Simulation (MCS), the shape of
distribution in the aggregate LCI results becomes an important
issue for efficient storage of such data. In the study of waste
incinerators by Sonnemann et al. (2003), the distribution of
aggregate LCI results from Monte Carlo simulations looks
like a lognormal distribution. Several reports suggest that log-
normal distribution could be an appropriate distribution type
in inventory data, risk assessment, and impact pathway anal-
ysis because lognormal distribution can avoid negative values
for emissions and impacts (Hofstetter 1998; Frischknecht et al.
2004). Many LCA studies following Sonnemann et al. (2003)
assumed that LCI results are lognormally distributed
(Rosenbaum et al. 2004; Hong et al. 2010; Ciroth et al.
2016; Imbeault-Tétreault et al. 2013; Heijungs and Lenzen
2014). However, such an assumption has not been empirically
tested in the LCA literature. In the literature, it was shown that
the product of lognormally distributed data result in a lognor-
mal distribution (Limpert et al. 2001). However, there is no
theoretical underpinnings on the types of distribution for the
product of two matrices of which the data are lognormally
distributed, which is basically a set of linear combinations of
products between lognormally distributed data (Hong et al.
2010). Furthermore, LCA data exhibit not only lognormal
distribution but also other types of distribution such as normal
and triangular distributions, of which distribution types of the
products cannot be determined analytically.

This study aims to determine the probability distribution
that best describes LCI results. The paper is the first attempt
to generate the distribution profiles for the entire aggregate
LCIs of Ecoinvent v3.1. In this study, we performed MCS to
simulate random samples of unit process data and to estimate
the distribution profiles of LCI results. We tested the hypoth-
esized distributions of LCIs using the overlapping coefficient
method and identified the most suitable distribution type to
present LCIs.

In the next section, the Bmethod and data^ used in this
study is presented, followed by Bresults and discussion^
(Sect. 3). In Sect. 4, the main findings are presented and a
set of recommendations are discussed.

2 Method and data

2.1 Monte Carlo simulation

In this study, MCS is used to create the distribution of each
aggregate LCI result from the entire Ecoinvent data v3.1.
MCS is a common sampling technique used in uncertainty
assessment to obtain randomly generated numbers (Lloyd
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and Ries 2008). With the help of advancement in computer
hardware and software, MCS of large datasets, such as the
Ecoinvent v3.1, became viable (Gentle 2013). Our approach
to MCS takes several steps: (1) extract distribution functions
of the raw data, which are the data on unit process-level inter-
mediate flows and elementary flows, (2) create random sam-
ples based on the probability distributions of the raw data, and
(3) iterate the process and collect the sample results. Figure 1
demonstrates the procedure for the statistical analysis used in
this study.

Each and every input parameter for calculating LCI results
is considered a stochastic parameter. For one iteration, every
unit process data in intermediate flowmatrixA and elementary
flow matrix B are reconstructed based on their distribution
functions. Aggregate LCI results are calculated through the
equation, M = BA−1 (Heijungs and Suh 2002).

This process can be summarized as in Eq.1:

M*
i ¼ Bþ δBið Þ Aþ δAið Þ−1 ð1Þ

δBi Randomly sampled deviation matrix for the elementary
flows

B Deterministic elementary flow matrix
δAi Randomly sampled deviation matrix for the

intermediate flows
A Deterministic intermediate flow matrix
i Number of simulation, i = 1 , . . . n (n = 1000)

The resultingMmatrix has the dimension of 1869 (elemen-
tary flows) × 11,332 (processes), and we have generated 1000
of them, M*

1;M
*
2; ::: M*

1000

� �
. To ensure efficiency, we fur-

ther sampled 1000 data points from each M*
i . To do so, we

have extracted 1000 randomly chosen elementary flow-
process pairs and used them to extract 1000 data points for
each run. The sampled 1000 elementary flow-process pairs
can be found in the Electronic supplementary material. The

number of data points that underwent the following statistical
analyses were therefore 1000 (elementary flow-process pairs)
by 1000 (runs) = 1,000,000. One whole iteration including
simulation, calculation of entire LCI results, and storage of
randomly chosen 1000 points takes about 1 min in Python
2.8 in Windows PC with 16 cores. The total time for complet-
ing 1000 times of simulations is 1000 times of it, which is
about 1000 min≈17 h.

2.2 Distribution functions

A probability distribution function f(x) is a function describing
the probability distribution of a random variable X. The most
frequently used statistical distribution for the unit process-
level inventory in Ecoinvent is lognormal distribution
(Table 1). Normal and triangular distributions are also consid-
ered as the input parameter distributions, though they are less
common as compared with lognormal distribution. The other
two distributions similar to lognormal distribution are gamma
and Weibull distributions, which will be used to test the dis-
tribution of aggregate LCI results in this study. Details about
the five distributions are presented in the SI.

2.3 Statistical analysis of fitting the distribution

After the 1,000,000 samples as described in the previous sec-
tion are obtained, statistical analysis is performed to discover
the probability distribution of the aggregate LCIs of Ecoinvent
v3.1. A general method of finding the best fitting distribution
involves the following three steps: (1) plot the data in frequen-
cy histogram or density plot to narrow down the list of possi-
ble distribution types (Singh et al. 1997); (2) to ensure that the
sample is not biased, run a normality test using Shapiro-Wilk
normality test following Razali and Wah (2011); and (3) gen-
erate LCIs based on the hypothesized distributions and test the
fitness of each distribution with the original data using over-
lapping coefficient method.

LCI results that follow a perfect lognormal distribution can
be generated by applying the log-mean and log-standard de-
viations of the LCI results. To estimate Weibull and gamma
distributions, shape and scale, and shape and rate of the LCI

Fig. 1 Monte Carlo procedure for uncertainty assessment of aggregate LCI

Table 1 Summary of probability distribution in Ecoinvent v3.1 unit
process data

A matrix B matrix

Number of columns 11,332 11,332

Number of rows 11,332 1869

Lognormal distribution 94.7 % 60.5 %

Normal distribution 0.5 % 0.07 %

Triangular distribution 0.05 % 0.002 %

Undefined 4.8 % 39.4 %
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distribution are calculated, respectively. The coefficient of
overlapping (OVL) is a measure to evaluate the similarity of
two probability distributions, which can be used to calculate
the percentage of overlapped area between the distribution of
LCI sample results and the expected distribution. The greater
the value of OVL, the more similar of the two distributions. In
Eq. (2),Δ is the OVL that represents the common area under
both density curves. If the two density functions are f(x) and
g(x), then

Δ f ; gð Þ ¼ ∫min f xð Þ; g xð Þf g dx ð2Þ

The OVL of the distribution estimate and the sample ag-
gregate LCI results are calculated in R program. Detailed ex-
planation of overlapping coefficient method can be found in
Ridout and Linkie (2009).

2.4 Data sources

We use the unit process inventory data obtained from the
Ecoinvent database v3.1 (default allocation method) as our
input data. The v3.1 contains more than 11,000 unit processes
and nearly 2000 types of environmental exchanges (Weidema
et al. 2013). Uncertainty information including uncertainty
type and corresponding distribution parameters are given for
each unit process data. The unit process data includes both
intermediate flow matrix (A) and elementary flow matrix (B)
and their distributions. For unit process data in lognormal
distribution, all the geometric standard deviations of them
are calculated based on their variance in pedigree uncertainty.

We also corrected a few extremely high uncertainty values
in the database, which are likely to be erroneous, into reason-
able values in order to make the A matrix invertible. For ex-
ample, one of the intermediate flow in the database follows a
lognormal distribution with GSD = 4.1E+22, which is highly
unlikely to be reflective of the reality. Furthermore, such high
GSDs will lead to extreme values in the (A + δAi) matrix that
will make it non-invertible. Therefore, we adjusted the GSDs
of those intermediate flows into reasonably high value
(GSD = 5), which is still about four times higher than average
GSD, 1.3. For consistency, we also corrected uncertainty
values in the B matrix. Because elementary flows have rela-
tively higher GSD values than intermediate flows in the data-
base, we assignGSD= 10 to those GSDs greater than 10 in the
B matrix (average GSD of the elements in B matrix is 1.8).

3 Results and discussion

As the first step of our analysis, we constructed frequency and
probability density plots of simulation results of LCIs to see
their distribution shapes. Figure 2 presents the histograms of
LCI results of nine random elementary flow-process pairs.

The distribution results are similar to the previous LCI simu-
lations in the literature (Sonnemann et al. 2003; Muller et al.
2016). The shape of the distributions in Fig. 2 can be visually
identified as lognormal, gamma, or Weibull distributions
(Holland and Fitz-Simons 1982). To further determine the
type of probability distributions for these results, normality
statistical test and overlapping coefficient method are applied.

By definition, if the logarithm of the data is in normal
distribution, then the data has a lognormal distribution. The
QQ-plots of log-transformed LCI results in the Electronic sup-
plementary material indicate the majority of LCI results are
very close to lognormal distribution. The normality of the data
can also be assessed through a variety of statistical tests. One
of the most common tests is Shapiro-Wilk normality test,
which is known to be the most powerful approach to normal-
ity test (Razali and Wah 2011). The results of Shapiro-Wilk
normality test of simulated LCI are provided in Table 2.

The results of normality test for the 1000 random elemen-
tary flow-process pairs are presented in Table 2. At 95 %
confidence level, p value less than 0.05 means we reject the
null hypothesis that the probability distribution of the data is
normal. About 99.8 % of the simulated LCI results showed
p values greater than 0.05, meaning that nearly all of the sim-
ulated LCI results are not normally distributed.

After we log-transformed the LCI outputs, the share of the
simulated LCIs that passed the test increased to 43 %
(Table 2), indicating that they more likely to be lognormally
distributed than normally distributed. At 95 % confidence lev-
el, average p value of log-transformed LCI results is 0.18,
accepting the null hypothesis that LCI results are lognormally
distributed. Still, 57 % of the 1000 samples of LCI results did
not passed the normality test after log-transformation. This
can be explained by the well-known observation that the pow-
er of Shapiro-Wilk test diminishes as the size of lognormally
distributed sample increases (Yazici and Yolacan 2007).
Therefore, we performed the Shapiro-Wilk normality test for
only 100 randomly chosen samples of simulated LCIs. The
results show that 81 % of the simulated LCIs passed the nor-
mality test in this case, confirming that simulated LCIs gener-
ally follow lognormal distribution.

The next step of fitting the distribution is to test how well a
lognormal distribution or other possible distributions actually
fit LCI simulations. As mentioned before, according to the
shape of the curves in histograms, some possible distributions
of LCI results include lognormal, gamma, and Weibull distri-
butions. The results are fitted by those distributions, and the
OVL are calculated to find the closeness of the results to those
distributions. The three types of distributions are generated
based on the corresponding distribution parameters of simu-
lated LCI results as described in the Sect. 2. Detailed descrip-
tion about the probability density functions for the three dis-
tributions is included in the Electronic supplementary materi-
al. Figure 3 represents nine typical comparisons among the
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results and the estimates of lognormal, gamma, and Weibull
distributions of random elementary flow-process pairs.

In the plots of the distribution comparisons (Fig. 3), log-
normal distribution estimates have the larger shared area with
simulated LCI data than gamma or Weibull distribution.
Figure 4 illustrates the distributions of OVL results from the
LCI results versus lognormal, gamma, and Weibull distribu-
tions. For example, the solid line in Fig. 4 shows the OVL
probability density of expected lognormal distribution and
LCI simulations. The average OVL for lognormal distribution
and LCI result is 95 %, while that for gamma and Weibull
distributions are 92 and 86 %, respectively. The result shows
that LCI samples are closest to a lognormal distribution

compared with other distribution types based on the coeffi-
cients of overlapping approach.

Graphically and numerically, therefore, we could conclude
that LCI results of Ecoinvent v3.1 are lognormally distributed.
This observation allows us to characterize the distribution of
aggregate LCI results more efficiently using GSD andmedian.
In other words, individual users do not need to perform aMCS
using unit process-level data, which can be highly time con-
suming given the dimensions of matrices involved.

4 Conclusions

In this study, the probability distribution type for aggregate
LCIs of the Ecoinvent v3.1 database is identified by compar-
ing the simulated LCIs with three possible distributions. The
results show that lognormal distribution has the highest over-
lapping coefficient (average 95 %) with simulated LCIs as
compared with gamma (average 92%) orWeibull distribution
(average 86 %). Our normality test results also confirm that
43 % of aggregate LCIs follow lognormal distribution.
Therefore, aggregate LCIs can be presented efficiently as log-
normal distribution (i.e., median and GSD).

Fig. 2 Histograms of nine random points in 1000 iterations of LCI results

Table 2 Shapiro-Wilk
normality test results of
simulated LCIs (p value)

1000 samples 100 samples

X log(X) X log(X)

Average p values

0.00 0.18 0.02 0.38

Percentage of p value >0.05

0 % 43 % 5 % 81 %
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Though the current database has uncertainty values for unit
process inventory, conducting uncertainty analysis starting
from the unit process level is neither time-efficient nor neces-
sary for most studies. Therefore, the determination of the

distribution that best fits the aggregate LCIs is needed. It
would help improve the efficiency of storing uncertainty data
and performing uncertainty analysis in LCA by saving com-
putation time and storage of LCI data.

By way of an example, 1000 times of LCI simulation using
unit process-level distribution information for a product sys-
tem that involves 30 inputs from Ecoinvent v3.1 would take
1000 min for a modern, average desktop computer (7 core
computer, 16 GB ram, 3.4 GHz). By using pre-calculated
distribution function for LCIs, this can be reduced to 15 s,
which is 1/4000th of the time needed for the unit process-
level computation.

Our study only considers the uncertainty information from
unit process data from Ecoinvent 3.1, which is mostly based
on the pedigree matrix. Pedigree method is a pragmatic ap-
proach to uncertainty in the absence of better uncertainty in-
formation. However, the theoretical and empirical grounds of
applying pedigree approach to quantify uncertainty itself are
questionable (Ciroth et al. 2016). The validity of pedigree
approach was not within the scope of our paper; the

Fig. 3 Density plots of LCI data, lognormal, gamma, and Weibull distribution estimates

Fig. 4 The coefficients of overlapping (OVL) of 1000 samples of LCI
results and lognormal, gamma, and Weibull distribution estimates
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methodology presented in this paper can be applied to any
uncertainty data regardless of how they are derived in the first
place. Though the majority of the unit process data in Amatrix
include uncertainty values in the current database, there is still
part of them lacking uncertainty information. The problem is
more severe when it comes to B matrix, where only about
60 % of the data contains uncertainty values in Ecoinvent
v3.1. The aggregate LCI results that we have calculated, there-
fore, does not reflect all the uncertainties, because some of the
uncertainty data, especially those in B matrix, were not con-
sidered. However, for the purpose of this study, adding addi-
tional uncertainty information for those that are missing in the
original data is unlikely to change the conclusions of our
study.

Aggregate LCI uncertainty is only one step in the analysis
of LCA uncertainty. Not only LCI uncertainty but also the
uncertainty from impact assessment should be assessed in
order to achieve the overall uncertainty of the final LCA re-
sults. Additional research is needed to understand the uncer-
tainties in LCA encompassing both LCI and LCIA.
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