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Abstract
Purpose Regional life-cycle assessment (LCA) is gaining an
increasing attention among LCA scholars and practitioners.
Here, we present a generalized computational structure for
regional LCA, discuss in-depth the major challenges facing
the field, and point to a direction in which we believe regional
LCA should be headed.
Methods Using an example, we first demonstrate that when
there is regional heterogeneity (be it due to environmental
conditions or technologies), average data would be inadequate
for estimating the life-cycle impacts of a product produced in a
specific region or even that of an average product produced in
many regions. And when there is such regional heterogeneity,
an understanding of how regions are connected through com-
modity flows is important to the accuracy of regional LCA
estimates. Then, we present a generalized computational
structure for regional LCA that takes into account interregion-
al commodity flows, can evaluate various cases of regional
differentiation, and can account for multiple impact categories
simultaneously. In so doing, we show what kinds of data are
required for this generalized framework of regional LCA.

Results and discussion We discuss the major challenges fac-
ing regional LCA in terms of data requirements and compu-
tational complexity, and their implications for the choice of an
optimal regional scale (i.e., the number of regions delineated
within the geographic boundary studied).
Conclusions We strongly recommend scholars from LCI and
LCIA to work together and choose a spatial scale that not
only adequately captures environmental characteristics but al-
so allows inventory data to be reasonably compiled or
estimated.

Keywords Commodity flow . Heterogeneity . Regional
life-cycle assessment . Spatial differentiation . Spatial scale

1 Introduction

Spatial differentiation in life-cycle assessment (LCA) arose
two decades ago in response to recognitions of the problems
with applying site-generic life-cycle impact assessment
(LCIA) models to evaluating non-global impact categories
such as human health respiratory illness (Potting and
Hauschild 2006). From a life-cycle perspective, a product is
linked to many processes located in different places with like-
ly different characteristics such as population density. Site-
generic LCIA neglects regional conditions and derives gener-
ic, global characterization factors (CFs) for chemicals released
anywhere within the geographic boundary studied (e.g., globe
or a country). When there is substantial environmental hetero-
geneity, however, using site-generic CFs may be highly prob-
lematic. It would be clearly erroneous, for example, to suggest
that releasing 1 kg of benzene in Hong Kong would cause the
same damage to human health as releasing it in rural Tibet.
Therefore, developing spatially differentiated CFs can im-
prove the relevance and accuracy of LCA results. Over the
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past two decades, many spatialized LCIA models have been
developed, and there seems to be a trend of increasingly re-
fined spatial scale toward grid-cell-based CFs (Heijungs 2012;
Yang 2016).

However, LCIA is not the only phase where spatial differ-
entiation is needed. It may also improve the relevance and
accuracy of life-cycle inventory (LCI) analysis. Similar to
generic CFs in LCIA, average data are often used in LCI
analysis. But average data do not provide an adequate basis
for either global or regional impact categories when there is
substantial spatial heterogeneity in technology. Such hetero-
geneity is evident across nations (Lenzen and Wachsmann
2004; Mutel et al. 2013), but may also exist at the subnational
level. This is especially true for agricultural systems (Yang
et al. 2012; Yang and Suh 2015). Technology variability
across regions within a country may be caused by many
factors, including differences in environmental conditions as
in the case of agriculture (Miller et al. 2006; Chiu et al. 2009)
and in the level of development as in the case of China (Du
et al. 2012). Recently, there has been a large body of LCA
research with spatial differentiation at the inventory level,
mostly focused on biofuel and agricultural products (Tessum
et al. 2012; Yang et al. 2012; Geyer et al. 2013; Yang and Suh
2015).

Basically there are two ways of spatial differentiation:
on the basis of geographical regions (e.g., states, prov-
inces, watershed, grid cells; see e.g., (Bare et al. 2003;
Wegener Sleeswijk and Heijungs 2010; Núñez et al.
2015) or on the basis of characteristics (e.g., urban vs.
rural, clay soil vs. peat soil; see e.g., (Frischknecht and
Rebitzer 2005; Rosenbaum et al. 2008)). In this paper,
we concentrate on the first form of spatial differentiation,
where a geographically defined boundary demarcates two
regions. We will use the term Bregional LCA^ to refer to
this form of spatial differentiation, and we emphasize at the
outset that it can be carried out at the inventory phase or
impact phase or both. Our first goal is to demonstrate that
there is a commonality between regional differentiation
due to environmental conditions and that due to technolo-
gies. That is, when there is regional heterogeneity—be it
due to technologies or the environment, average data
would be inadequate for estimating the life-cycle impacts
of a product produced in a specific region or even that of an
average product produced in many regions. And when
there is such regional heterogeneity, an understanding of
how regions are connected through commodity flows is
important to the accuracy of regional LCA estimates.

Our second goal is to present a generalized computational
structure for conducting regional LCA. It is generalized in the
sense that it takes into account interregional commodity flows,
can evaluate various cases of regional differentiation, and can
account for multiple impact categories simultaneously, as op-
posed to previous methods that can accommodate only a

single emission or a single impact category (see, e.g., (Yang
2016)) or evaluate only a single process instead of the whole
life cycle (see., (Mutel et al. 2011)). Also, we present data
requirements for this generalized framework of regional
LCA as compared to data requirements for the standard,
unregionalized LCA that the mainstream LCA community
has been working on so far. Next, we discuss in detail impli-
cations of this framework and the major challenges facing
regional LCA. Last, we point to a direction in which we
believe regional LCA should be headed.

2 A generalized framework for regional life-cycle
assessment

In this section, we use a simple, fictitious two-process exam-
ple of wheat-based beer production to show that there are
various cases of regional differentiation where regionalization
is needed and can improve the accuracy and relevance of
results. The regional differentiation may be due to heteroge-
neity of technology or environmental factors.We seek to dem-
onstrate that the different cases of regionalization can all be
modeled by a single framework that takes into account inter-
regional commodity flows. We are guided by two types of
research questions, namely, the life-cycle environmental im-
pacts of a product produced in a specific region or in all re-
gions within the geographic boundary studied. The relevance
of the first type of question is reflected in, e.g., policies in a
specific region that have affected other regions, and that of the
second type of question is reflected in, e.g., national policies
that have affected all regions in the country. The two types of
questions may be further categorized into global impacts such
as climate change or regional impacts such as human health
respiratory effect.

2.1 Unregionalized LCA

First, let us briefly review the standard procedure for LCA,
introducing a simple site-generic example of beer production.
For this we will resort to matrix-based notation (cf. (Heijungs
and Suh 2002)), as it is easily generalizable to regional LCA.
Suppose country X produces wheat beer, among many other
products, and the beer’s life cycle consists of beer and wheat
production, both of which are produced in country X. To esti-
mate the life-cycle environmental impacts of beer, data were
collected on how beer and wheat were made. We learned that
to make 1 liter of beer, 5 kg of wheat was used, and as a result
0.4 kg of CO2, 0.8 kg of NOx, and 1.7 g PM10 were released;
and to produce 1 kg of wheat, no inputs were used but 1.5 kg
of CO2, 2 kg of NOx, and 1 g of PM10 were released. There is
also a set of mid-point characterization factors (CFs) that has
been developed for the country showing that the climate
change impact of 1 kg CO2 is 1 kg CO2e, the acidification
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impact of 1 kg NOx in the country is 1.2 kg H+e., and the
human health respiratory impact of PM10 and NOx in the
country is 0.6 and 0.1 g PM2.5e, respectively. A standard
matrix-based formulation (Heijungs and Suh 2002) of the ex-
ample is as follows.

A ¼ 1 −5
0 1

� �
ð1Þ

B ¼
1:5 :4
2 :8
1 1:7

2
4

3
5 ð2Þ

f ¼ 0
1

� �
ð3Þ

Q ¼
1 0 0
0 1:2 0
0 :1 :6

2
4

3
5 ð4Þ

A is the technology matrix, in which columns represent
wheat and beer production and rows represent wheat (in kg)
and beer (in liter), respectively. B is the environmental matrix,
in which rows represent CO2 (in kg), NOx (in kg) and PM10

(in g) emissions, respectively. f represents the functional unit
of a study, which is 1 liter of beer in our example. AndQ is CF
matrix, with rows representing climate change, acidification,
and respiratory impact categories (in kg CO2e, kg H

+e, and g
PM2.5e respectively), and columns representing CO2, NOx,
and PM10 emissions (in the units mentioned before). Now
we can calculate the life-cycle emissions of beer as follows.

m ¼ BA‐1 f ¼
7:9
10:8
6:7

2
4

3
5 ð5Þ

wherem shows that the life-cycle CO2, NOx, and PM10 emis-
sions of 1 liter of beer are estimated at 7.9 kg, 10.8 kg, and
6.7 g, respectively. Then we can continue to calculate the life-
cycle impacts of beer with the following equation:

h ¼ Qm ¼
7:9
13:0
5:1

2
4

3
5 ð6Þ

where h shows that the life-cycle climate change, acidifica-
tion, and human health respiratory impacts of 1 liter of beer in
country X are estimated at 7.9 kg CO2e, 13.0 kg H+e, and
5.1 g PM2.5e. In summary, the data and LCA analysis above
reflect a typical country-based LCA study, where process data
are sectoral averages, there is little locational information on
the processes involved, and CFs are country-based without
considering regional environmental conditions. As we shall
show in next sections, such generic data and LCA analysis
falls short if there is technological or/and environmental het-
erogeneity within the geographic boundary studied.

2.2 Distinguishing technological and environmental
heterogeneity

Below, we use Fig. 1 to illustrate the different cases of hetero-
geneity due to either technology or the environment or both.
Again, our goals are to (1) demonstrate the inadequacy of
average data in the face of regional heterogeneity and show
the importance of understanding how regions are connected
through commodity flows, and (2) present a generalized com-
putational structure for regional LCA that addresses the vari-
ous cases of regional heterogeneity.

2.3 Environmental heterogeneity only

Suppose there is environmental heterogeneity in country X
while technologies are homogenous. For example, population
density varies significantly, and based on population density,

Fig. 1 A simple, fictitious two-process, three-region example of wheat
beer production. Note that in this example besides beer, wheat is also used
to make other products such as bread. a Technological homogeneity and
environmental heterogeneity, where wheat and bear production
technologies are identical in all regions but population density differs,
with region 3 having the highest density as reflected by the dark yellow
color. b: Technological heterogeneity and homogenous environment,
where population density is identical across regions but region 3 has
lower wheat yield and lower beer production efficiency than the other
two regions as reflected by the lighter colors. c Technological and
environmental heterogeneity, where both regions differ in population
density, wheat yield, and beer production efficiency
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the country can be divided roughly into 3 regions, with region
3 having the highest population density followed by region 2
and then region 1 (Fig. 1a). Suppose we are further given
location information on all wheat fields and beer distilleries
as mapped out in Fig. 1.

In this case, the original inventory we compiled and
CF model built (Eqs. 1–5) become inadequate for esti-
mating the life-cycle impact of beer produced in any
single region and even for the average beer in the country.
There are two dimensions of inadequacy that need to be
stressed. First, based on the original CF model, the im-
pact of beer production would be identical anywhere it
was produced. But because of the variation in popula-
tion density, beer made in region 3 is likely to have
generated higher life-cycle impacts than beer brewed
in region 2. This impact-related inadequacy has been
well recognized and facilitated regional LCA develop-
ment in the past two decades (Potting et al. 1998;
Potting and Hauschild 2006).

The other dimension of inadequacy is related to LCI.
The original inventory compiled is a portrayal of generic
wheat used by all industries not the wheat used
specifically by distilleries, and because population density
varies, an understanding of where wheat was purchased
from is important because it may change the results. For
example, the life-cycle impact of beer production in this
country would be lower if distillers purchased wheat from
region 1 than if they purchased wheat from region 3. This
inventory-related inadequacy was recently pointed out
(Yang 2016). The two inadequacies discussed, however,
are specific to NOx and PM10 only, because they contrib-
ute to regional environmental impacts and are subject to
regional conditions. For CO2, location does not matter:
wherever it was produced, it would generate the same
CO2 emissions (due to the assumption of technological
homogeneity) with the same climate impact.

To address the inadequacies, we need to collect data on (1)
wheat flows between regions, (2) regional output volume of
wheat, and (3) region-specific CFs. Suppose we found out that
80 % of wheat used in distilleries in region 3 was from within
the region and 20 % from region 1, 60 % of wheat used in
distilleries in region 2 was from within the region and 40 %
from region 1, and 100 % of wheat used in distilleries in
region 1 was from within the region. Also, we learned that
beer output was 20, 30, and 50 liters in regions 1–3. Further,
the acidification impact to the country due to NOx emissions
from regions 1–3 is 1.1, 1.2, and 1.6 kg H+e per kg NOx,
respectively; the respiratory impact to the country due to
NOx from regions 1–3 is 0.09, 0.12, and 0.15 g PM2.5e per
kg NOx respectively; and that due to PM10 from regions 1–3 is
0.5, 0.7, and 0.9 g PM2.5e per g PM10.

With such information, we can proceed to modify the site-
generic framework by creating submatrices that reflect region-
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specific processes, products, environmental emissions, and
CFs, shown as follows,

ð7Þ

ð8Þ

(9)

ð10Þ



where subscript r serves to distinguish the new matrixes
with regional differentiation from the original ones and
dashed lines in Eqs. 7–10 serve to partition and differen-
tiate regions. In Eq. 7, on-diagonal (e.g., A22) and off-
diagonal blocks (e.g., A23) partitioned by the dashed lines
indicate intraregional and interregional commodity flows,
respectively. For example, column 4 in Eq. 7 indicates
that to produce 1 liter of beer in region 2, 5 kg of wheat
was used, of which 3 kg was supplied from within the
region and 2 kg from region 1. Now we can calculate
the regional life-cycle emissions and impacts of beer in
this country as follows,

where mr indicates that the amounts of, e.g., NOx from
regions 1–3 are estimated at 4.4, 2.0, and 4.4 kg, and hr
indicates that regions 1–3 contribute 4.8, 2.4, and 7.0 kg
H+e to acidification impact in this country attributed to 1

liter of beer production. We can sum across emissions and
impacts from different regions as follows,

m¼Irmr¼
7:9
10:8
6:7

2
4

3
5 ð13Þ

h¼Irhr¼
7:9
14:3
6:1

2
4

3
5 ð14Þ

Ir¼ I I I½ � ð15Þ

where the submatrices in Ir are identity matrices, the di-
mension of which depends on the number of emissions
(as in Eq. 13) or impact categories (as in Eq. 14). The
results show that the total amounts of emissions attributed
to beer production remain unchanged as compared to the
unregionalized example, because of the assumption of
technology homogeneity. But because of environmental
heterogeneity, the life-cycle impacts of beer now are dif-
ferent from that calculated based on average data
(compare Eqs. 14 and 6). We can also adjust the final
demand vector and evaluate the life-cycle impacts of beer
produced in a single region, for example, in region 3.

m ¼
7:9
10:8
6:7

2
4

3
5 ð17Þ

h¼
7:9
16:3
7:1

2
4

3
5 ð18Þ

(11)

(12)

(16)
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2.4 Technological heterogeneity only

Suppose there is only technological heterogeneity in
country X while the environment is homogenous. Let
us assume, for example, that wheat yield varies greatly
with region 3 having the lowest yield and hence the
highest rates of emissions (Fig. 1b). Also, beer produc-
tion in region 3 is less efficient than in the other 2
regions, e.g., 6 gram of wheat used to produce 1 liter
of beer in region 3 (Fig. 1b). Details on the technolog-
ical and environmental aspects are provided below (cf.,
Eqs. 7 and 8).

In this case, the original inventory (Eqs. 1–3 and 5)
we compiled becomes inadequate also, for precisely the
same reason discussed above, namely, a lack of under-
standing of where wheat was supplied from. This is
because now where wheat was produced matters and
can change the results. Likewise, to address this inade-
quacy, we need to compile data on wheat flows between
regions.

Using assumptions regarding regional output percent-
ages as reflected in Eq. 9 in section 2.1., we can

calculate the life-cycle emissions of 1 liter of beer pro-
duced in country X using Eqs. 11 and 13.

m¼
12:1
16:7
9:8

2
4

3
5 ð22Þ

Note that the results are much higher than that in previous
two examples (cf., Eqs. 13 and 5). This is mainly due to the
fact that in our example region 3 is least efficient in producing
wheat and beer, while it has the largest market share of beer.
Of course, regionalized emissions could also have been lower
with other data. The same applies to the life-cycle impacts
(Eqs. 23–24), even given the assumption of environmental
homogeneity (Eq. 25).

h¼
12:1
20:1
7:5

2
4

3
5 ð24Þ

(19)

(20)

(23)

(21)
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Likewise, we can calculate the life-cycle emissions and im-
pacts of 1 liter of beer produced in region 3 only (Eqs. 26–27).
Note that the results are even higher than that of 1 average liter
of beer produced (Eqs. 22 and 24). Again, this is because of the
low wheat yield and low beer production efficiency in region 3
and because distilleries purchased wheat primarily from within
the region.

m¼
16:3
22:1
12:6

2
4

3
5 ð26Þ

h¼
16:3
26:5
9:7

2
4

3
5 ð27Þ

2.5 Both technological and environmental heterogeneity

Suppose there is heterogeneity of both technologies and envi-
ronmental conditions in country X. That is, population density,
wheat yield, and beer production efficiency all vary across
regions. This third case is the most general one, and in fact
the most likely in real-world case studies. In this case, as
discussed above, both the original built inventory and impact
model are inadequate. To address the inadequacies, we need
(1) a region-specific inventory, (2) regional output volumes of
beer, (3) interregional commodity flows, and (4) region-
specific CFs.

Using data from the previous sections (Eqs. 9, 10, 19, and
20), we can calculate the life-cycle emissions and impacts of 1
liter of beer produced in country X (Eqs. 28–29, and compare
with Eqs. 13, 14, 22, and 24).

m¼
12:1
16:7
9:8

2
4

3
5 ð28Þ

h¼
12:1
23:7
9:8

2
4

3
5 ð29Þ

2.6 A generalized framework for regional LCA

As mentioned, the third case of both technological and envi-
ronmental heterogeneity is the most likely in the real world,
and the former two can be considered special cases. Therefore,
a generalized framework we propose for regional LCA con-
sists of the following elements:

& Region-specific unit process data
& Regional process output volumes
& Interregional commodity flows
& Region-specific CFs

The generalized computational structure is as follows,

hr ¼ QrBrA
‐1
r fr ð30Þ

Qr ¼
Q1 0 ⋅⋅⋅ 0
0 Q2 ⋅⋅⋅ 0
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
0 0 ⋅⋅⋅ Qj

2
664

3
775 ð31Þ

Br¼
B11 B12 ⋯ B1j

B22 B22 ⋯ B2j

⋮ ⋮ ⋮
Bj1 Bj2 ⋯ Bj j

2
664

3
775 ð32Þ

Ar ¼
A11 A12 ⋅⋅⋅ A1j

A22 A22 ⋅⋅⋅ A2j

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
Aj1 Aj2 ⋅⋅⋅ Ajj

2
664

3
775 ð33Þ

fr ¼
f1

f2

⋅⋅⋅
f j

2
664

3
775 ð34Þ

where subscript j denotes j regions delineated within the
geographic boundary studied. Total impacts across re-
gions can be calculated as follows. Notice that each of
the elements of hr, Qr, Br, Ar, and fr is a vector or
matrix as well. Thus, even though Br might appear
square, B11, etc., may be non-square, from which Br

inherits a non-square structure. It is also worth stressing
that Br reflects emissions of origin such that off-
diagonal submatrices are all 0 s (see, e.g., Eq. 8), and
Qr reflects impacts of emissions from one region to the
entire country (or all regions delineated). This means
that the characterization matrix (Qr) accounts for the

(25)
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fate and transport of emissions across regions, in addition to
effects (Rosenbaum et al. 2007). The total can be calculsted by,

h¼Irhr ð35Þ
Ir ¼ I I ⋅⋅⋅ I½ � ð36Þ

3 Discussion and conclusions

Thus far, we have demonstrated how LCA has been done tradi-
tionally, how regionalization can improve the accuracy of results
when there is environmental and/or technological heterogeneity,
and how different circumstances of regionalization can all be
evaluated by a generalized framework that differentiates pro-
cesses, products, and CFs by region, and takes into account
interregional commodity flows. Part of the reason we present
such a generalized framework is to discuss its implications for
the choice of an optimal regional scale for regional LCA.

The major challenge facing regional LCA is a mismatch
between LCIA and LCI (Mutel et al. 2011; Hellweg and i
Canals 2014), that is, the two having different regional scales.
Such a mismatch, however, may take different forms. For
example, LCI and LCIA have roughly the same number of
regions, but region shapes may be drastically different
(Fig. 2a). The regional scale for LCI may be based on
geopolitical boundaries (e.g., state or province), whereas
that for LCIA may be derived from ecotypes such as
population density and watershed (Mutel et al. 2011;
Hellweg and i Canals 2014). Or LCIA has a much more
refined regional scale than LCI (Fig. 2c). An example

of the sort is grid-cell-based LCIA, which seems to
become increasingly popular (Heijungs 2012).

Before we elaborate on the challenge posed by this mis-
match, let us examine the easiest case where LCIA has the
same regional scale as LCI does, based on geopolitical divi-
sion such as state, as inventory data often exist at this level
(Fig. 2b) (Wegener Sleeswijk and Heijungs 2010). There are,
for example, data on agrichemical use by state collected by the
US Department of Agriculture (USDA) and also state-level
CFs for certain impact categories developed by the
Environmental Protection Agency (EPA) (Bare et al. 2003).
In this case, region-specific inventory can be easily connected
with region-specific CFs. However, this is not the end of the
calculation. Because none of the regions exist in vacuum and
instead they may be highly connected through trade as shown
in previous sections, we need data on interregional commodity
flows to fully understand a product’s supply-chain impacts
across regions. But as such interregional flows may not be
readily available at a fine resolution (e.g., county-level), nei-
ther may inventory data, our choice of regional scale in this
case is limited. We may, for example, do a state-level regional
LCA after collecting inter-state commodity flows data, but we
may not be able to do a county-level regional LCA because
neither county-level inventory data nor inter-county commod-
ity flows data are available even if county-specific CFs are
available or can be easily developed.

In the case of a mismatch between LCI and LCIA, there-
fore, it is evenmore challenging to conduct a complete region-
al LCA. In Fig. 2a, for example, what would be the direct
environmental impacts of product Y produced in region 4 if
the industry producing Y are scatted across region 4? The
difficulty multiplies as we begin to think about product Y’s
supply-chain emissions and impacts, which likely span all
regions. Even if we can map out all the industries, regroup
them, and approximate a new set of region-specific invento-
ries aligned with the regional scale of LCIA (i.e., blue lines in
Fig. 2a), we are still faced with the question of interregional
commodity flows. They may not be easily adapted to the
regional scale of LCIA (i.e., blue lines in Fig. 2a), even if such
data are available on the regional scale of LCI (i.e., dashed
lines in Fig. 2a). The challenge becomes extremely thorny
when LCIA takes a grid-cell-based regional scale (Fig. 2c).
It is of great difficulty to derive grid-cell-based inventory data
for all industries, and even if that could be done, there are no
data on inter-grid-cell commodity flows. The essence of life
cycle breaks down on this level of regional resolution even
though grid-cell-based CFs may bemore accurate than state or
county-based CFs from an impact analysis perspective. It is
telling that most grid-cell-based LCIA proposals do not con-
tain an illustrative example that includes even a part of a real
life cycle (cf. Heijungs 2012).

The idea of LCA is a powerful one, which provides us with
a holistic view of the problems at hand and allows us to

Fig. 2 Common regional scales used for LCI and LCIA, illustrated by an
example of a country consisting of six regions as delineated by the dashed
lines (i.e., geopolitical division). Inventory data exist at both the national
and regional level. aMismatch of regional scale between LCI and LCIA,
where blue lines reflect the regional scale for LCIA (based on, e.g.,
population density or watershed). b The same regional scale for LCI
and LCIA. l c Grid-cell-based regional scale for LCIA
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identify Bhotspots^ that are worthwhile focusing on. In fact,
however, what LCA does is split every industry, with their
emissions and environmental impacts, and attribute the pro-
portions to different functional units, or services in accordance
to input/output relationships. In regional LCA, therefore, the
task then becomes to puzzle out the proportion of every in-
dustry in every region that is attributable or related to the
functional unit being studied. Region-specific inventory and
interregional commodity flows are the key to estimating such
regional proportions, but the more regions defined, the harder
it becomes to collect data for these two, to store and make
available these data in supersized matrices, and to do the re-
quired calculations. Matrix inversion is typically a n2log(n)
process, which implies that a 10 times bigger A matrix re-
quires a >200 times longer computation time (Heijungs et al.
2015). For future work on regional LCA, we urge scholars
from LCI and LCIAworking together and choosing a regional
scale that not only adequately captures environmental charac-
teristics but also allows inventory data to be reasonably com-
piled or estimated.
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