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Abstract
Purpose Life cycle inventory (LCI) databases provide generic
data on exchange values associated with unit processes. The
Becoinvent^ LCI database estimates the uncertainty of all ex-
change values through the application of the so-called pedi-
gree approach. In the first release of the database, the used
uncertainty factors were based on experts’ judgments. In
2013, Ciroth et al. derived empirically based factors. These,
however, assumed that the same uncertainty factors could be
used for all industrial sectors and fell short of providing basic
uncertainty factors. The work presented here aims to over-
come these limitations.
Methods The proposed methodological framework is based
on the assessment of more than 60 data sources (23,200 data
points) and the use of Bayesian inference. Using Bayesian
inference allows an update of uncertainty factors by system-
atically combining experts’ judgments and other information
we already have about the uncertainty factors with new data.
Results and discussion The implementation of the methodol-
ogy over the data sources results in the definition of new
uncertainty factors for all additional uncertainty indicators
and for some specific industrial sectors. It also results in the

definition of some basic uncertainty factors. In general, the
factors obtained are higher than the ones obtained in previous
work, which suggests that the experts had initially
underestimated uncertainty. Furthermore, the presented meth-
odology can be applied to update uncertainty factors as new
data become available.
Conclusions In practice, these uncertainty factors can system-
atically be incorporated in LCI databases as estimates of ex-
change value uncertainty where more formal uncertainty in-
formation is not available. The use of Bayesian inference is
applied here to update uncertainty factors but can also be used
in other life cycle assessment developments in order to im-
prove experts’ judgments or to update parameter values when
new data can be accessed.

Keywords Bayesian statistics . Ecoinvent database . Life
cycle inventory . Pedigree approach . Uncertainty

1 Introduction

1.1 Uncertainty modeling in the ecoinvent database

Even if life cycle assessment (LCA) results are often presented
as single-point values, it is well known that these results have
uncertainty. Uncertainty can be divided into three classes:
model, scenario, and parameter uncertainty (Lloyd and Ries
2007; Reap et al. 2008), whereas model and scenario uncer-
tainties that arise during a LCA can be assessed through, for
example, sensitivity analysis; the effect of parameter uncer-
tainty on the final results can be assessed through uncertainty
propagation methods (by numerical methods as Monte Carlo
simulation or by analytical methods) (Heijungs and Lenzen
2014; Hong et al. 2010; Imbeault-Tétreault et al. 2013). These
uncertainty propagation techniques can however only be used
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if the uncertainty associated to the value of exchanges (ele-
mentary or intermediate flows) are quantified during the in-
ventory stage of an LCA.

The ecoinvent database is the only LCI database that sys-
tematically includes uncertainty on data modeled in the data-
base. It uses a semi-quantitative approach to estimate ex-
change value uncertainty. This approach is often referred to
as the pedigree approach because it is based on the use of a
pedigree matrix inspired by the NUSAP system (Funtowicz
and Ravetz 1990). It was originally developed for LCA by
Weidema and Wesnæs (1996) and has been used in the
ecoinvent database since 2005 (Frischknecht et al. 2005).

For a detailed description of the pedigree approach and the
way it is applied in the ecoinvent database, the reader can refer
to several papers (Ciroth et al. 2013; Frischknecht et al. 2005;
Muller et al. 2014). In short, the approach ascribes a basic
uncertainty value to exchanges, representing the intrinsic var-
iability and stochastic error of the parameter and increases this
uncertainty using additional uncertainty factors that represent
the use of imperfect data for the context of the study. By
default, exchange values are assumed to be lognormally dis-
tributed, with the geometric mean defined as the deterministic
value for the exchange and the geometric standard deviation
estimated based on the basic and additional uncertainty factors
that the pedigree approach provides. Distributions other than
the lognormal can now also be used with the pedigree ap-
proach, see Muller et al. (2014).

If sufficient information can be accessed to calculate de-
scriptive statistics and thus define the uncertainty, it should be
used. If this is not the case, ecoinvent proposes default basic
uncertainty values, expressed as GSD2 and classified by type
of exchange values and for three sectors: agriculture, combus-
tion, and process.

The additional uncertainty factors, also by default
expressed as GSD2, are derived from a scoring of the data
quality on five characteristics:

& Reliability of the data source, scoring the quality of the
sources and acquisition methods of the data used to quan-
tify the exchange

& Completeness, scoring the statistical representativeness of
the data

& Temporal , geographical , further technological
correlation, scoring the degree to which the data used is
representative of the time, area, and technology of interest

Using the cells descriptions of the pedigree matrix, scores
of 1 to 5 (where 5 is the worst score) are given to each ex-
change value. The pedigree matrix in use in the ecoinvent v3
database is presented in the Electronic Supplementary
Material. These scores are then converted into so-called addi-
tional uncertainty factors, expressed as Bcontributors to the
GSD2^ (Frischknecht et al. 2005; Muller et al. 2014). The

basic uncertainty and the additional uncertainty factors are
then compiled, leading to a measure of the total uncertainty
expressed as GSD2.

1.2 The need to develop new uncertainty factors

This semi-quantitative pedigree approach is convenient to
model the uncertainty on a large number of exchanges where
real uncertainty information is not available. It however has
several limitations. Three important limitations are (1) the im-
position of the lognormal to describe the uncertainty of ex-
change values, (2) the reliance on experts’ judgments rather
than on empirical data to quantify uncertainty factors, and (3)
the use of additional uncertainty factors that ignore the type of
exchange or industrial sector being assessed (Henriksson et al.
2014).

The first cited limitation was addressed by Muller et al.
(2014), who extended the pedigree matrix approach to other
types of distributions. The second limitation was partially ad-
dressed by Ciroth et al. (2013) who developed new additional
uncertainty factors based on a statistical assessment of seven
different data sources. The uncertainty factors they developed
were slightly different from the ones used in ecoinvent v2.
However, they did not address the case of the basic uncertain-
ty; they assumed that the factors are valid for all industrial
sectors and did not calculate factors for all Bpedigree
indicator-pedigree score^ couples.

If, in theory, perfect uncertainty factors should be derived
from empirical data only (i.e., data that are based on experi-
ences, experiments, and observations), such data are not, in
practice, widely available in LCI. New uncertainty factors will
also be derived based on known data and information.

1.3 Away to update uncertainty information:
the application of the Bayes theorem

Published uncertainty factors associated with the pedigree ma-
trix approach were either based on experts’ judgments
(Frischknecht et al. 2005; Weidema and Wesnæs 1996) or
on the assessment of a limited number of data sources
(Ciroth et al. 2013). While useful as first estimates of basic
or additional uncertainty of exchanges, the scientific basis for
these factors can be improved using more extensive data
sources. A way to update quantitative information using new
data sources is to use Bayesian inference, coming from Bayes
theorem as presented in a simple form in Eq. (1) (Qian et al.
2003).

p θjdð Þ ¼ p djθð Þp θð Þ
p dð Þ ð1Þ

with θ the random variable representing our variables of inter-
est (in this case, the uncertainty factors) and d the vector
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containing the new information. The elements of Eq. (1) can
be interpreted as follows:

& p(d│θ) is the likelihood function: it describes the assump-
tion that the data d were observed based on θ.

& p(θ) is the prior distribution: it represents the knowledge
(often subjective) that is available on θ.

& p(θ│d) is the posterior distribution: it represents all the
information we finally have on θ. The distribution’s mean
can become an estimate for θ and its confidence interval an
estimate on θ’s uncertainty.

& p(d) is the partition function. This denominator can be
considered as a standardization coefficient allowing the
posterior probability distribution to take its value in the
interval [0,1]. The Bayesian theorem can therefore be re-
written as p(θ|d) α p(d| θ)p(θ) or, in words, Bthe final
information (the posterior distribution) is proportional to
the prior belief (the prior distribution) modified by the
observation (the likelihood function).

While the use of Bayesian inference in LCA is mentioned
in several papers (Björklund 2002; Huijbregts 1998; Katz
2002), only few describe concrete applications. Ukidwe
et al. (2004) and Miller et al. (2013) used the Bayesian ap-
proach to refine their LCI models; Lo et al. (2005) used it to
better estimate the uncertainty of their systems by first identi-
fying the greater contributors to the uncertainty and then ap-
plying the Bayes theorem to these greater contributors to re-
fine their associated uncertainty.

The aim of this paper is to strengthen the pedigree approach
by refining existing uncertainty factors through the consider-
ation of new data sources, developing uncertainty factors that
are specific to industrial sectors, and defining new basic un-
certainty factors. In order to do so, Bayesian inference will be
used to both combine information already known—by ex-
perts’ judgments and data assessment—with new information
obtained through the assessment of a large data set.

2 Methods

2.1 General methodology

Table 1 is a summary of the three-step methodology devel-
oped to obtain updated basic and additional uncertainty fac-
tors. These three steps are detailed in the following
paragraphs.

First of all, a descriptor of the uncertainty factors should be
chosen. Weidema and Wesnæs (1996) used the coefficient of
variation (CV, ratio between the standard deviation and the
mean) to describe the uncertainty factors. In the ecoinvent
v2 database, the GSD2 is used as a descriptor of the uncertain-
ty factors; more specifically, the uncertainty factors are

described as Bcontributors to the GSD2^ (Frischknecht et al.
2005). Then, in the third version of the ecoinvent database,
they were expressed as Bsquare of the standard deviation of
the underlying normal distribution,^ i.e., the square of the
standard deviations of the variable’s logarithm (Weidema
et al. 2013). In this paper, to remain consistent with the previ-
ous work done by Ciroth et al. (2013), the GSD2 is chosen as a
descriptor of the uncertainty factors. The GDS2 can easily be
transformed in the descriptor used in ecoinvent v3 (σ2) using
Eq. (2).

σ2 ¼ ln GSDð Þð Þ2 ð2Þ

2.2 Identify initial estimate of uncertainty factors

The basic and additional uncertainty factors used in ecoinvent
v2 and v3 and as published in ecoinvent v3 data quality guide-
lines (Weidema et al. 2013) are coming from experts’ judg-
ments and expressed as the Bsquare of the standard deviation
of the underlying normal distribution^ (σ2). To express as
Bcontributors to the GSD2,^ the reverse transformation of
the one performed between ecoinvent v2 and ecoinvent v3
can be applied. Equation (3) can so be used and the uncertain-
ty factors (UF) can then be expressed by Eq. (4).

GSD ¼ exp σð Þ ð3Þ
U F ¼ exp σð Þð Þ2 ð4Þ
where UF is the value of the uncertainty factor.

When the pedigree matrix was first developed in 1996,
Weidema and Wesnaes also proposed uncertainty figures for
the additional uncertainty based on estimates and expressed as
CVs. These estimates are also used as prior information once
translated into GSD2. In order to perform this translation
Eq. (5) can be used. This use is based on the following:

& Uncertainty factors are expressed as contributors to the
GSD2

& The pedigree approach was developed for lognormally
distributed exchange values

& Equation (5) links the GSD and the CV for a lognormal
distribution

GSD ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln CV 2 þ 1
� �q� �

ð5Þ

Finally, the values developed by Ciroth et al. for the addi-
tional uncertainty, both in a published paper (2013) and in a
report delivered to the ecoinvent Centre (2012), will also be
used as prior information for this work.

These four data sources for prior information lead to one
datum for each component of the basic uncertainty and to 2 to
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26 for each component of the additional uncertainty. These
data can be found in the Electronic Supplementary Material.
In order to remain consistent, one outlier from the work of
Ciroth et al. (2012) was removed from the analysis.

2.3 Collecting new information

2.3.1 Data harvesting and preparation

The selection of the data sources used in this assessment is
based on the following points:

& The typologies of data that arise in LCI must be consid-
ered: the harvested data must represent both intermediate
and elementary flows (together referred to as exchanges)

& It must be possible to normalize data to a reference flow,
i.e., a unit output from an activity

& The data sources must cover a large spectrum of industrial
sectors, years, geographical areas, and types of sources to
have a sufficient set of data for each assessed Bpedigree
indicator-pedigree score^ couple

Based on these points, data from publicly available LCA
reports, published LCA papers, emissions factors databases,
and sector-specific LCI databases were collected. The 68 dif-
ferent data sources used, listed in the Electronic
Supplementary Material, yielded 23,200 data points for
analysis.

These data are compiled in a single database that contains
all the information needed to perform the assessment:

& The type and the name of the datum, its value, and its
corresponding unit.

& The reference flow to which the datum is normalized, its
value, and its corresponding unit.

& The industrial sector from which the data was generated.
The industrial sectors classification used is based on the
2012 North American Industry Classification System
(NAICS) and on the 1997 Selected Nomenclature for
sources of Air Pollution (SNAP97) for the combustion
sector.

& The other information useful to classify the data into a
specific Bpedigree indicator-pedigree sector^ couple: the
year and the geographic area where the data were generated
and how it was generated (e.g., estimated or calculated).

The compiled data have, at this point, different units and
are linked to different reference flows. All data were converted
to SI units and normalized to a unit amount of reference flow.

Finally, this compilation into a single database allows the
classification of the different data into specific subsets for the
basic uncertainty and the different Bpedigree indicator-
pedigree score^ couples for different industrial sectors (based
on the NAICS—level 2) for the additional uncertainty. The
basic uncertainty is defined as the uncertainty that remains
when all pedigree scores equal 1; in each created subgroup,
the data are coming from a same technology, a same year, and
a same country, and their reliability score equals 1. The data
classification for the additional uncertainty is based on the
pedigree matrix cell description (as described in Weidema et
al. (2013)). The way the pedigree matrix’s cells were
interpreted to create the different subgroups is available in
the Electronic Supplementary Material.

In practical considerations, for all pedigree indicators (ex-
cept for the completeness indicator which case is described in
Section 2.3.3), the creation of subgroups is based on what is

Table 1 The three steps
methodology used to develop
updated uncertainty information

1. Identify initial estimate of
uncertainty factors

1.1 Census of formerly published uncertainty figures

1.2 Translation of these figures into uncertainty factors

2. Collect new information 2.1 Data harvesting and preparation

-Data source selection

-Data harvesting

-Data classification into subgroups that isolate basic uncertainty and the
different components of additional uncertainty

2.2 Estimation of data-based uncertainty factors

-GSD2 calculations for each pedigree indicator, for specific industrial sectors
and for the subgroups created for the basic uncertainty

-GSD2 transformation to Bcontributors to the GSD2^ (i.e., uncertainty
factors)

3. Update uncertainty
information

3.1 Estimation of the prior distribution based on the formerly published
uncertainty factors

3.2 Estimation of the likelihood function based on the obtained data-based
uncertainty factors

3.3 Application of Bayes theorem to obtain new uncertainty factors that
combine expert judgements and data
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named here the BRussian dolls^ principle, as described in
Fig. 1 and in Ciroth et al. (2013) (see Ciroth et al. (2013) for
a description of the principle using the temporal correlation
indicator as an example). This principle is here applied to
remain consistent with the work done by Ciroth et al.
(2013). Moreover, this principle of data classification into dif-
ferent subgroups followed a majority of the pedigree matrix
cells’ descriptions (especially for the completeness, the tem-
poral correlation, and the further technological correlation in-
dicators). In order to remain consistent in the whole method-
ology, this same principle is also followed for the reliability
and the geographical correlation indicators. If the pedigree
matrix cells’ descriptions are literally followed for these two
indicators, all the subgroups created (from a score 1 to a score
5) will totally be independent, leading to GSD possibly greater
in the subgroup for a score 1 than the GSD in subgroups for
other score (see Eq. (6)). The approach used in this paper
allows us to overcome this possible problem.

2.3.2 Estimation of uncertainty factors derived from the data

The estimation of uncertainty factors derived from the data are
based on the formulas proposed by Ciroth et al. (2013). In the
first place, the GSD2 for each created subgroup is calculated
based on Eq. (6). For the additional uncertainty, these GSD2

must be converted into uncertainty factors using Eq. (7). The
basic uncertainty factor is directly defined as the calculated
GSD2.

GSD ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ln
xi

xg

 !2
vuut

0
@

1
A ð6Þ

,where n is the number of data in the sample and xg the geo-
metric mean of the sample.

U Fi ¼

GSD2
i; j

GSD2
i;1

if GSD2
i;1≤GSD

2
i; j

GSD2
i;1

GSD2
i; j

else

8>>><
>>>:

ð7Þ

where UFi is the uncertainty factor for the ith pedigree
indicator;

GSDi,1
2 is the geometric standard deviation for the ith ped-

igree indicator and the score 1
GSDi,j

2 is the geometric standard deviation for the ith ped-
igree indicator and a score j.

Example 1: how the uncertainty factors are calculated—case of the
temporal correlation indicator

Following the Russian dolls principle illustrated in Fig. 1, subgroups are
created based on the industrial sector (based on two-digit NAICS
codes) and the type of exchange (e.g., specific emission, specific type
of intermediary input). For example, all the CO2 emissions for the
primary metal manufacturing sector were classified into a specific
subgroup.

In this subgroup, the GSD2 of all data having a pedigree score of 1 is
calculated (using a reference year of 2013). The same is done for the
data having scores from 2 to 5. Then, Eq. (7) is used to calculate the
uncertainty factors for CO2 emissions of the primary metal
manufacturing sector.

2.3.3 The completeness indicator case

For Weidema and Wesnæs (1996), the completeness indicator
expresses the variability due to Bthe number of data collection
points, the period of collection and the representativeness to
the total population^; in ecoinvent v3, the completeness indi-
cator expresses the representativeness of the data regarding
the relevant sites of the considered market (Weidema et al.
2013). This indicator can also be directly linked to the repre-
sentativeness of the used sample to describe the entire popu-
lation (and so here, to produce a representative LCI datum).
The question of the effect of sampling on the variability can be
answered statistically by building a confidence interval for the
population variance knowing the size of the sample regarding
the whole population and under the assumption that the size of
the entire population is known (as it is done for opinion sur-
veys for example).

Confidence interval estimation for a population is well
known when the population is assumed to be normally dis-
tributed. For normally distributed data, the ratio n.s2/σ2 (where
n is the size of the population, s the sample standard deviation,
and σ the standard deviation of the population) follows a chi-
square distribution with n−1 degrees of freedom. For a 95 %
confidence level, the confidence interval estimation for the
population variance can be obtained through Eq. (8).

ns2

χ2
α1

≤σ2≤
ns2

χ2
1−α1

ð8Þ

As before, Eq. (3) can be used to transform σ2 into GSD2.
Equation (7) is then used to derive uncertainty factors for the
completeness indicator. In Eq. (8), χ2α1 and χ21 −α1 can be
found in the table of the χ2 distribution; α1 is linked to the

Data 

with a 

score 3

Data with 

a score 2

Data 

with a 

score 1

Data with 

a score 5

Data with 

a score 4

Fig. 1 Illustration of the BRussian dolls^ principle used to classify data
into subgroups for the additional uncertainty
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confidence level that need to be reached; for a symmetric
confidence interval estimation and a confidence level of
95 %, α1 is then equal to 0.025.

Concerning the value of s, it can be directly linked to the
basic uncertainty as it represents the value of the sample stan-
dard deviation that can be calculated by the person that defines
the LCI datum with its uncertainty. For the rest of the paper, it
will be assumed that s2 equals 1. It must be here underlined
that the value can be changed by the user if necessary.

The factors developed through this method will not directly
fit the pedigree matrix cell descriptions for the completeness
indicator but the ones in Table 2. Supposing that the whole
population is represented by 100 sites, a perfect data set is
obtained when the 100 sites are represented, so n=100 for a
score 1. For the score 2, 75 % of the sites must be represented,
so n=75 (respectively, 50 and 25 % of the sites lead to n=50
and n=25 for scores 3 and 4). The score 5 is linked to data for
which the completeness is unknown, so in theory, n should be
equal to 0, but in practice, n=0 leads to an infinite uncertainty
factor. In order to avoid this situation of an infinite uncertainty
factor, n is here fixed to 5.

2.4 Updating uncertainty information

Theoretically, the data used to derive new uncertainty factors
that can be applied to all LCI exchanges should cover all types
of exchanges and all types of industrial sectors. In reality, the
available sample is not representative of the whole
technosphere. Rather than using only partial information to
define new uncertainty factors, the initial estimates of uncer-
tainty factors will be updated using the new, quantitative but
partial information and the Bayes theorem as described in Eq.
(1). Before applying the theorem, the parameter of interest
(i.e., the information that will be refined thanks to the theo-
rem) needs to be defined. Here, this parameter is theUF. Then,
and in order to apply the Bayes theorem for basic uncertainty
and each Bpedigree indicator-pedigree score^ couple, three
more components are needed:

& The prior distribution of UF:UF needs to be defined as a
random variable whose prior distribution represents all the
information we have on the uncertainty factor. Defining

UF as a random variable means that variability on the
uncertainty factor itself is introduced.

& The data d: d is here the vector containing the new data-
based estimation of the uncertainty factors based on the
newly assessed data sources.

& The likelihood function f:f links the data to the parameter
of interest. It is here assumed that the data can be described
by f(UF)where the random variableUF is the mean of the
likelihood function.

The application of the Bayes theorem depends on the na-
ture of the prior distribution and the likelihood function. If the
numerator in Eq. (1) can always be calculated analytically, it’s
not the samewith the denominator that needs to be determined
numerically using Bayesian Monte Carlo or Markov chain
Monte Carlo when the prior distribution and the likelihood
function are not conjugate (Ben Letham 2012; Qian et al.
2003).

In this application of the Bayes theorem, the information
we have on the prior distribution of the uncertainty factors is
very limited. In order to define the prior distribution, and also
the likelihood function, the distribution of the newly obtained
uncertainty factors is plotted. When graphically representing
the distribution of the new obtained uncertainty factors for the
basic uncertainty and all Bpedigree indicator—pedigree
score^ couples, two observations can be noted:

& All the factors are positive (by definition).
& For a majority of the factors, their distributions are right-

tailed.

Given these two characteristics, the lognormal distribution
is chosen to represent both the prior distribution and the like-
lihood function. This assumption of lognormally distributed
uncertainty factors is tested on the new data-based uncertainty
factors (see Electronic Supplementary Material). A lognormal
distribution is not directly conjugate to another lognormal dis-
tribution. However, two normal distributions are, and they
result in a normally distributed posterior distribution. In order
to perform the Bayesian application, we use the fact that, if X
is a lognormally distributed random variable with parameters
μ and σ, then ln(X) is normally distributed with the same
parameters (see Eqs. (9) and (10)). Figure 2 makes a census

Table 2 Representative data

1 2 3 4 5

Representative data from
all sites relevant from
the market considered.

Representative data from
>75 % of the sites
relevant from the
market considered.

Representative data from
>50 % of the sites
relevant from the
market considered.

Representative data from
>25 % of the sites
relevant from the
market considered.

Unknown representativeness
or representative data from
less than 25 % of the sites
relevant from the market
considered
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of all the assumptions needed to derive the prior distribution
and the likelihood function, as well as the calculation per-
formed to obtain the posterior distribution. The most subjec-
tive assumptions are made on the parameters of the prior dis-
tribution due to the lack of available information. In order to
derive these parameters, the mean of the prior distribution is
set as the value of the uncertainty factor as found in ecoinvent
v3. These uncertainty factors are the ones that need to be
updated as they are the ones currently in use. We therefore
supposed here that they are Bthe best^ available prior infor-
mation. The definition of the standard deviation for the prior
distribution is based on the 95th interval if sufficient data are
available (see Fig. 2).

LN x;μ;σð Þ ¼ 1

xσ
ffiffiffiffiffiffi
2π

p exp −
lnx−μð Þ2
2σ2

 !
ð9Þ

and

N x;μ;σð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp −
x−μð Þ2
2σ2

 !
ð10Þ

,where LN(x,μ,σ) stands for the lognormal PDF and N(x,μ,σ)
for the normal PDF.

Once the parameters of the posterior distribution have been
derived, it is possible to determine the updated uncertainty

factors. The updated uncertainty factor is defined as the mean
of the posterior distribution that can be defined using Eq. (11)
(which is the equation linking the mean of a lognormal distri-
bution to the logarithmic parameters that defines the distribu-
tion).

U FP ¼ exp μP þ 0:5σ2P
� � ð11Þ

Example 2: how the information is updated—case of the temporal
correlation indicator.

Take the temporal correlation indicator for a score 2. The uncertainty
factor for this case is notedUFTC2. To update the information, the prior
distribution of UFTC2 and the likelihood function need to be defined.

For the prior distribution, all the uncertainty factors published in both
previous papers and ecoinvent report (Ciroth et al. 2012, 2013;
Weidema et al. 2013; Weidema and Wesnæs 1996) are used to define
the distribution based on the assumptions presented in Fig. 2 and in
paragraph 2.4.

The likelihood function is obtained by calculating the logarithmic mean
and the logarithmic standard deviation of all uncertainty factors
calculated by subgroups for a score 2 (uncertainty factors obtained in
the case of the CO2 emissions for the primary metal manufacturing
sector are among them). This logarithmic mean and this logarithmic
standard deviation define the lognormal distribution used as likelihood
function.

Fig. 2 Assumptions used to apply the Bayes theorem—Notations log. (logarithm), min. (minimum), max. (maximum)
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3 Results

3.1 The case of the additional uncertainty factors

The results obtained for the additional uncertainty factors are
presented in Fig. 3 and Table 3. Figure 3 shows the values of
the generic factor for all Bpedigree indicator-pedigree score^
couples. These generic values can also be found in Table 3 that
adds the additional uncertainty factors obtained by industrial
sectors. Generally, the likelihood values are greater than the
prior values. That can be explained by the large variability
present in the subgroups of assessed data. Even if these data
are grouped according to specific industrial sectors, these sec-
tors remain large (for example, the manufacturing sector con-
tains both cement production and pulp and paper production),
explaining large variability and large additional uncertainty
factors especially for pedigree scores equal to 5. The fact that
the posterior values lay between the prior and the likelihood
can be explained by the application of the Bayes theorem that
gives a weighted compromise between the prior knowledge
and the data.

Some of the calculated uncertainty factors are counter-in-
tuitive. First, for some pedigree indicators, the likelihood val-
ue is the same for two consecutive pedigree scores (see for
example the scores 4 and 5 for the geographical correlation
indicator in the manufacturing sectors). These cases arise
when the same data constitute the subgroup for each score,
due to a lack of data. One exception is the equality of scores 4
and 5 for the generic factor in the further technological indi-
cator, which is not a real equality and comes from the expres-
sion of the uncertainty factor using only three digits. Second,
some uncertainty factors are greater for a score 4 than for a
score 5 (see for example the temporal correlation indicator for
the transportation sector or the geographical correlation indi-
cator for the combustion and agricultural sectors. This arises
when a subgroup with more data (for a score 5) is less variable
than the subgroupwith a score 4.More precisely, the subgroup
for a score 5 (noted here S5) contains all the data of the equiv-
alent subgroup for a score 4 (here noted S4) and some other
data points. In certain cases, the variability in S5 is smaller
than the variability in S4; this is due to the definition of the
GSD (see Eq. (6)). If, in general, individual data points in S5
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Fig. 3 Additional uncertainty
factors representation for the five
pedigree indicators and the four
pedigree scores. The value of
Posterior 1 is obtained using σ1UF
for the prior distribution, the value
of Posterior 2 is obtained using
σ2UF (see Fig. 2)
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are closer to the geometric mean of S5 than the data points in
S4 are from the geometric mean of S4, then the GSD for S5 will
be smaller than the GSD of S4. Ideally, with a better access to
more data, this situation would not arise. In this specific case
(where the factor for a score 4 is greater than the one for a
score 5), it is recommended to use the generic factors rather
than the sector-specific factors.

One should also note that the results are sensitive to the
assumption made on the prior standard deviation (see Fig. 2).
The effect on the assumption for the additional uncertainty
factors expressed by industrial sector can be found in the
Electronic Supplementary Material.

The values calculated using the Bayesian approach are
more complete than those calculated by Ciroth et al. (2013),
i.e., there are uncertainty factors for each Bpedigree indicator-
pedigree score^ couple. They are also generally greater for the
higher scores.

3.2 The case of the basic uncertainty factors

The subgroups created for the basic uncertainty factors leads
to the development of fewer factors than the ones originally

present in the basic uncertainty table in the ecoinvent data-
base. The results can be found in Table 4. The obtained like-
lihood values and the uncertainty values for all obtained sub-
groups are available in the Electronic Supplementary
Material. As for the additional uncertainty factors, the poste-
rior values are sensitive to the assumptions made on the stan-
dard deviation of the prior distributions.

While for most values, the posterior values are only slightly
different from their priors, differences are more marked for the
particulates emissions (PM10 and PM2.5). This can be ex-
plained by the large number of subgroups (respectively, 9,
and 19, on 64 subgroups assessed to derive basic uncertainty
factors) were used to determine the likelihood function, sub-
groups that represent different type of technologies (from
battery manufacturing to steel foundries, see Electronic
Supplementary Material).

3.3 What if new data are available?

Using Bayesian inference allows updating the uncertainty fac-
tors when new data are available. Three different cases for the
update can be cited. All of them use the posterior values found

Table 3 Updated additional uncertainty factors obtained by using σ1UF for the prior distribution (see Fig. 2), the results for σ2UF can be found in the
aupporting information

Pedigree
indicator

Prior Generic Agriculture Combustion Utilities Manufacturing
(other)

Chemical
products
manufacturing

Metal
manufacturing

Transportation

L P L P L P L P L P L P L P L P

Reliability UF2 1.05 1.01 1.01 1.00 1.00 1.06 1.06 1.00 1.00 1.00 1.00

UF3 1.10 1.75 1.21 1.05 1.05 1.18 1.12 2.26 1.20 1.00 1.00

UF4 1.20 1.82 1.25 1.05 1.07 1.18 1.18 2.26 1.25 1.40 1.21

UF5 1.50 4.52 2.36 1.98 1.60 4.61 1.69 6.20 2.60 1.64 1.51

Completeness UF2 1.02 1.02 1.02

UF3 1.05 1.07 1.05

UF4 1.10 1.18 1.10

UF5 1.20 3.09 1.63

Temporal
correlation

UF2 1.03 1.73 1.08 3.41 1.03 1.47 1.08 1.00 1.00 3.58 1.05 1.18 1.07 1.20 1.16

UF3 1.10 3.69 1.55 3.41 1.13 2.33 1.27 5.66 1.22 7.60 1.38 1.44 1.22 1.32 1.26

UF4 1.20 4.23 2.22 5.03 1.80 2.68 1.72 9.52 1.87 6.34 2.12 1.44 1.32 1.27 1.26

UF5 1.50 4.33 2.49 5.03 4.07 3.12 1.75 9.53 2.52 6.12 2.47 1.58 1.49 1.15 1.15

Geographical
correlation

UF2 1.01 1.78 1.14 1.00 1.00 1.29 1.08 3.12 1.09

UF3 1.02 1.90 1.23 1.72 1.10 1.29 1.11 3.12 1.16

UF4 1.05 9.45 2.36 4.14 1.57 4.73 1.66 23.60 1.98

UF5 1.10 9.49 2.30 4.38 1.55 4.73 1.65 23.60 1.92

Further
technological
correlation

UF2 1.05 2.37 1.19 1.00 1.00 1.04 1.04 1.00 1.00 8.58 1.16

UF3 1.20 6.17 1.52 3.33 1.32 1.03 1.04 4.62 1.29 14.47 1.44

UF4 1.50 8.23 1.95 3.73 1.59 1.54 1.50 8.13 1.62 14.69 2.04

UF5 2.00 8.23 2.23 3.72 2.03 1.54 1.89 3.03 2.00 35.02 2.21

The prior is the ecoinvent value; L stands for the likelihood value and P for the posterior value
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in the previous section and the posterior distributions that are
described in the Electronic Supplementary Material. For an
update, the posterior distribution becomes the new prior
distributions.

Case 1 Data are available to update generic factors; the data
are used to define the likelihood function that, combined to the
new generic prior distribution, leads to an updated generic
posterior distribution of the uncertainty factor.

Case 2 Data are available for a specific industrial sector i for
which a new prior distribution is available. The data are used

to define the likelihood function for the sector i that, combined
to the prior distribution for the sector i, lead to an update
posterior distribution of the uncertainty factor for the specific
industrial sector i.

Case 3 Data are available for a specific industrial sector j for
which there is no specific new prior distribution available. The
data are used to define the likelihood function for the sector j,
and this likelihood function is combined to the generic prior
distribution, leading to an updated posterior distribution for
the specific industrial sector j. These data can also be added
to the original data (as the sector j was not represented): this

Table 4 Obtained posterior value for the basic uncertainty factors

Combustion Process Agriculture

Prior Posterior 1 Posterior 2 Prior Posterior 1 Posterior 2 Prior Posterior 1 Posterior 2

Thermal energy, electricity, semi-finished
products, material, waste

1.05 1.05 1.11 1.05 1.05 1.06 1.05 1.05 1.05

Transport 2.00 2.00 2.00

Infrastructure 3.00 3.00 3.00

Primary energy carriers, metals, salt 1.05 1.05 1.05

land use occupation 1.50 1.50 1.10

land use transformation 2.00 2.00 1.20

Water

BOD, COD, TOC, DOC, inorganic compounds 1.50 2.13 2.13

Individual hydrocarbons, PAH 3.00 3.25 3.57

Heavy metals 5.00 1.80

Pesticides 1.50

NO3, PO4 1.50

land use occupation

land use transformation

SOIL

Oil, hydrocarbons 1.50

Heavy metals 1.50 1.50

Pesticides 1.50

AIR

Carbon dioxide 1.05 1.06 1.15 1.05

SO2 1.05

NMVOC total 1.50

Nox, N2O 1.50 1.40

CH4, NH3 1.50 1.20 1.20 1.26

Individuals hydrocarbons 1.50 2.00

PM>10 1.50 1.50

PM10 2.00 2.00 2.12 5.46

PM2.5 3.00 3.00 3.74 18.74

PAH 3.00

CO, Heavy metals 5.00

Inorganic emissions 1.50 1.56 3.32

Radionucleides 3.00

The posterior 1 values were obtained using σ1UF (see Fig. 2) and the posterior values using σ2UF
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new group of data allows one to define a new generic likeli-
hood function that, combined to the generic prior distribution,
leads to an updated generic posterior distribution of the uncer-
tainty factor.

The following example illustrates a case 3 situation. Using
the data of the INIES database (a French database for the
residential sector (INIES 2013)) and, more specifically, the
data regarding the manufacturing of boards for walls and ceil-
ing, a likelihood function for the manufacturing sector and the
further technological indicator can be defined. The data used
to derive the likelihood function can be found in the Electronic
Supplementary Material. The new obtained uncertainty fac-
tors for the manufacturing sector can be found in Table 5 and
is illustrated in Fig. 4 for the pedigree score 4. The data used
here do not allow the calculation of an uncertainty factor for a
score 5 (these factors developed here, in this specific case,
should also be only considered as an example.)

4 Discussion and conclusion

4.1 Limitations due to the methodology

The results described in the preceding section permit to have
updated additional uncertainty factors for some specific sec-
tors and new updated based basic uncertainty factors. These
results rely on some assumptions, some of which are directly
linked to the application of the Bayes theorem.

A first assumption is the definition of the fifth pedigree
score for the completeness indicator (see Section 2.3.3). In
order to assess the effect of this choice, the case where n=1
was assessed leading to an uncertainty factor greater than
3×109. To avoid this situation, the value n=5 is here kept.

Another assumption is the choice of the logarithm distribu-
tion as the distribution for modeling the uncertainty factors
(for both the prior distribution and the likelihood distribution).
This choice is only based on data representation and was test-
ed (the assumptions of lognormally distributed uncertainty
factors is at 95 % true for one third of the assessed uncertainty
factors, see Electronic Supplementary Material). This choice
is also made to simplify the use of the Bayes theorem by using
conjugate distributions. Nonetheless, the specific distribution
of the uncertainty factors is not, per se, the parameter of inter-
est here; the mean of the posterior distribution is here the
parameter used to describe the uncertainty factors.

The definition of the distribution parameters, especially for
the prior distribution for the basic uncertainty factors, are also
based on assumptions that affect the results, since the standard
deviation of the prior distribution is used to derive the mean of
the posterior distribution (see Fig. 2). Ideally, these values
should have been derived when the experts defined the uncer-
tainty factors themselves (as the standard deviation can be
linked to the experts’ level of confidences when defining the
uncertainty factors).

This last assumption can be overcome by only using the
uncertainty factors coming from the data assessment to derive
specific and generic uncertainty factors and so without apply-
ing the Bayes theorem. This can be done by simply determin-
ing the mean of the uncertainty factors for each subgroup.
However, the data harvested for this study don’t represent
the entire technosphere and this lack of representativeness
isn’t assessed. Using the Bayes theorem permit to insert a
generic information (the experts’ judgments); by not using
the Bayes theorem, specific information (the one coming from
the data assessment) are used to derive generic uncertainty
factors that raises the question of representativeness.

Table 5 Updated additional uncertainty factors for the further
technological correlation indicator for the manufacturing sector using a
new data source

UF_2 UF_3 UF_4 UF_5

Prior value 1.19 1.52 1.95 2.23

Likelihood value 1.95 2.22 2.40 NA

Posterior value 1.26 1.69 2.07 NA
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Fig. 4 Representation of the
further technological correlation
indicator for the manufacturing
sector updated two times: once
using the master data table used in
this study, the second by
accessing a new data sources from
the INIES database
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Finally, if an access to more data is possible, it will allow
the calculation of more refined uncertainty factors, i.e., uncer-
tainty factors more representative of a given sector and for
more specific industrial sectors.

4.2 How to use these new uncertainty factors?

These updated uncertainty factors can directly be used in stud-
ies in which uncertainties on LCI parameters need to be de-
fined. Specifically, when sector-generic basic uncertainty fac-
tors and sector-specific additional uncertainty factors are
available, they should be preferred to ecoinvent default fac-
tors. If they are not available, then the ecoinvent default fac-
tors should be used.

Finally and as mentioned in Section 3.3, these updated
uncertainty factors (and their specific distribution, see
Electronic SupplementaryMaterial) can also be used to devel-
op new uncertainty factors. Depending on the available data,
existing factors can be updated, or new sector-specific factors
can be defined using the presented methodology (see Table 1
and Fig. 2) and the different underlying assumptions presented
above.

4.3 Updating data other than uncertainty factors

Despite the limitations, the developed methodology allowed
the calculation of new scientific based uncertainty factors for
both the basic and the additional uncertainties that can be
directly used or that can be updated as new data become
available.

Bayesian inference could also be used in the models used
in LCA (whether it is a model to obtain new input parameters
for the inventory or models to derive life cycle impact assess-
ment characterization factors). The inference can especially be
used when the parameters are based on temporal series.
Updating parameters using inference rather that starting over
again the derivation of new parameters allows developers or
practitioners to save both computing space (only the posterior
information needs to be kept rather than all initial data) and
time once the Bayesian model is defined and ready to use,
even if Bayesian Monte Carlo or Markov chain Monte Carlo
need to be performed to apply the theorem. Depending on the
models, a 5000-step Monte Carlo simulation takes only few
seconds.
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