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Abstract
Purpose Bioplastics are a growing field, but with their expan-
sion come unique environmental issues associated with the
cultivation and processing of feedstocks. Availability of ap-
propriate, high-quality data is a problem in life cycle assess-
ment (LCA) of biopolymers and other bio-based materials that
limits the accuracy and usefulness of study results. It is there-
fore critical that these data gaps be closed. To determine what
data is needed to close these gaps, this study reviews currently
available life cycle inventory data for biopolymer feedstocks
and assesses the data quality for the selected feedstocks of
corn, sugarcane, and soy.
Methods Life cycle inventory databases and relevant publica-
tions were searched for appropriate data, and the results col-
lected into a summary table. The quality review was conduct-
ed using a pedigree matrix type scoring system which was
adapted from the ILCD handbook, and an overall quality
score for each dataset was calculated based on the matrix
scores.

Results A total of 287 datasets were collected during the re-
view for a total of 22 different feedstocks. The majority of
these datasets are from Europe and the USA, with most of
Asia, the Middle East, and Africa having very limited data
available.
Conclusions From the quality analysis, it was determined that
more datasets that capture regional variations in crop cultiva-
tion are needed, as well as more data on land use change.

Keywords Bio-based polymers . Corn . Data quality .

Feedstocks . LCA . Soy . Sugar cane

1 Introduction

Life cycle assessment (LCA) is an objective method of eval-
uating the sustainability of a system and assessing its impacts
on the environment (ISO 14040 2006). One of the strengths of
LCA is its ability to quantify and categorize the individual
impacts of a system and facilitate comparisons. It is an effec-
tive tool for this purpose because of the level of detail and
complexity it is able to convey; but like any method, it has
its limitations. The quality of information available from an
LCA study is largely limited by the quality and completeness
of the data on which it is built. Without complete, high-quality
data, one cannot be confident that the results of an LCA study
accurately represent the situation. Therefore, the quality of the
data used in a study affects the quality of the recommendations
that come out of the study (ISO 14044 2006).

Bioplastics and biomaterials are a growing field, often
heralded as a sustainable alternative to traditional products;
yet their environmental impacts remain uncertain and vari-
able. This is perhaps even truer for a related product—
biofuels. In a 2012 comparative analysis, Álvarez-Chávez
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et al. (2012) state “A bio-based plastic is not necessarily a
sustainable plastic; this depends on a variety of issues, includ-
ing the source material, production process, and how the ma-
terial is managed at the end of its useful life.” In other words,
to correctly assess a biopolymer’s environmental footprint one
must have accurate and representative data about many as-
pects of the polymer’s life cycle, including the production of
that polymer. A particular challenge of LCA studies of bio-
polymers is understanding the impact of growing the polymer
feedstock since, as discussed by Nemecek et al. (2012), “En-
vironmental impact data for crops in the literature and the
LCA databases are scarce.” Since bioplastics and biofuels
are often derived from the same feedstocks, one can infer that
they likely suffer from the same data quality issues as
bioplastics. However, while there is a significant overlap in
the cultivation and processing phases for bioplastics and
biofuels, this critical data quality analysis is focused on
bioplastics. Therefore, there may be other significant quality
issues in biofuels data that are not captured here.

This means LCA data for biopolymers must be obtained;
but what type of data should be collected? Before more infor-
mation can be sought out, it is necessary to identify what types
of data are most needed. Identifying critical data gaps for LCA
of biopolymers will provide a foundation for future research.
By indicating what areas are weak in data availability, re-
searchers can identify the types of data that should be focused
on when collecting primary data. Understanding the quality
and completeness of currently available data also has the
potential to clarify the strengths and limitations of existing
studies that use this data, as it may shed new light on how
representative the study is of the system it is trying to model.

The first step in the quest to solve data issues in LCA is
addressed by van der Voet et al. (2010) in a review of the state
of LCA for the related field of biofuels: “The way forward to
remedy data problems is clear: identify data needs, collect
more and better data and make them accessible.” A review
of the state of currently available LCA data is the first step to
improving the quantity and quality of available data, because
without being aware of what is already published it is impos-
sible to know where future efforts in data acquisition should
be focused. The goal of this project was to identify the critical
data gaps present in LCA data for biopolymer feedstocks in
order to illuminate the next steps in the path to more sustain-
able bioplastics.

2 Methods

In order to identify critical data gaps for bio-based plas-
tics, a review of currently available data was conducted.
Information was collected from the LCA databases
Ecoinvent, GaBi-PE (Ecoinvent data modified by GaBi),
USLCI, LCA Food DK, and LCA Commons. The

software programs SimaPro and GaBi were used to access
all of these databases except LCA Commons, which has
not been integrated into the software programs. The
websites of LCA Food DK and USLCI were also searched
for information. Additionally, publications were searched
for relevant data that had not yet been integrated into the
databases. Since it is not feasible to search all publica-
tions, a critical selection of publications was chosen based
on the likelihood that they would contain relevant infor-
mation. Table 1 contains the list of publications and
timeframes searched.

All data pertaining to feedstocks that are viable for use in
the production of bio-based plastics were considered in the
search; in total, 287 datasets were collected during the review
for a total of 22 different feedstocks. These data relate to many
aspects of bioplastic production, including raw agricultural
feedstocks (e.g., corn, soybeans) through processing steps
(e.g., sugar, oil), platform chemical production (e.g., ethanol,
biodiesel), and polymer production.

Because of the large number of data sources amassed, it
was necessary to narrow the focus of the project to conduct a
deeper analysis of the data. Corn, sugarcane, and soy were the
feedstocks selected to be analyzed in more detail. These feed-
stocks were chosen because they are the most common feed-
stocks used to produce both bioplastics and biofuels (e.g.,
Evans 2010; Smith 2013). The first step was to conduct a
completeness check on the available data for these crops. In-
formation from ISO 14044 (2006) and the ILCD handbook
(EC 2010) was used to inform this process. The completeness
check involved searching each data file in detail and noting
what inputs were considered and, when possible, how they
were accounted for. For the database files, this meant looking
through the data directly, at the flow level. For the data
contained in journal articles, it involved searching for infor-
mation within the article and looking up data source informa-
tion from the references. An effort was made to include all
significant input categories for these feedstocks in the check.
The input categories included are as follows: carbon

Table 1 List of publications searched

Publication name Time frame

Journal of Cleaner Production 2013–2005

International Journal of LCA 2012–2000

Bioresource Technology 2012–2005

Biomass and Bioenergy 2012–2005

Environmental Science and Technology Selected

Packaging Technology and Science Selected

Journal of Industrial Ecology 2012–2008

Sustainability 2012–2005

Science 2012–2008

PNAS 2012–2005
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sequestration, seed production, soil preparation, transport of
materials to the farm, fuel used on the field, power for farm
activities, machines, machine shelter, sowing, tilling, fertilizer,
pesticides, herbicides, lime, crop residue management, irriga-
tion, harvesting, grain drying, direct field emissions, crop stor-
age, land occupation, and land use change.

Not all inputs were relevant to all datasets. For example, a
study that only considered GHG emissions would not include
water use. It was noted in the completeness check results when
an input was specifically excluded from a study because it was
not within the study scope.

Next, a pedigree matrix scoring system was used to evalu-
ate the datasets for corn, soy, and sugarcane. The data were
evaluated on their technological, geographical, and temporal
representativeness on a scale from 1–5. When information
was available, data uncertainty was also considered in the
evaluation. From this evaluation and the completeness evalu-
ation, a data quality rating (DQR) was calculated. Agricultural
data was considered separately from processing data. Some
datasets therefore have two DQRs, one for agricultural data
quality and one for processing data quality. The evaluation
criteria and the formula used to calculate the overall score
were adapted from the ILCD handbook (EC 2010) and van
der Berg et al. (1999). Table 2 explains the different categories
considered in the evaluation of the data, and Tables 3 and 4
explain the ranking of the quality ratings.

It was necessary to consider the quality ranking recommen-
dations of both the ILCD (EC 2010) and van den Berg et al.

(1999) to complete a consistent analysis. The ILCD rankings
are described in general terms and do not have category-
specific requirements. Therefore, the criteria put forth by van
der Berg et al. were used to supplement the ILCD recommen-
dations. Specific category ranking requirements from van den
Berg et al. were applied. For example, data that was less than
3 years older than the study date was given a score of 1 in
temporal correlation. It should be noted that the category “re-
liability” from van den Berg et al. and the category “precision/
uncertainty” from the ILCD handbook are equivalent. The
ILCD handbook also includes another evaluation category,
methodological appropriateness and consistency, which was
not used in this evaluation. This category was excluded be-
cause it is dependent on the goal and scope of the intended
application of the dataset.

Data was examined in the greatest detail possible when
scoring each category since most datasets have multiple
sources of information that can be of varying quality.
These differences are accounted for by scoring each
source of data and then resolving their respective scores
into a single category score. Background process data
were weighted less heavily when resolving scores, as
were data that are not sensitive to a specific category.
For example, using a US electricity mix for sugar produc-
tion in Brazil is a significant difference because Brazilian
sugarcane processing is generally powered by the burning
of bagasse, a sugarcane co-product. This substitution
therefore represents a significant technological difference.
However, if US diesel tractor emissions were substituted
for Brazilian diesel tractor emissions, the difference is not
as significant since the technology is nearly identical.

Additionally, half scores were given to categories
when deemed appropriate. For example, a dataset pub-
lished in 2010 for which half of the relevant data was
from 2009 (less than 3 years difference) and half was
from 2005 (less than 6 years difference) would be given
an overall score of 1.5 in the category of temporal cor-
relation. The individual justifications for scores are
available in the report “LCA studies for bio-based plas-
tics: Closing critical data gaps and agreeing on repre-
sentative generic datasets” (Patel et al. 2014).

Equation 1 was used to calculate the DQR for each
dataset (EC 2010). Note that the lowest criteria score is
weighted in the formula by fivefold. This is done be-
cause the weakest quality indicator significantly
weakens the overall quality of the dataset being evalu-
ated. The Precision (P) quality indicator was only in-
cluded in the calculation of the DQR for Ecoinvent
data. This was necessary due to the lack of information
about precision for most datasets. When evaluating the
precision of the Ecoinvent data, the Ecoinvent uncer-
tainty scoring criteria were used to interpret the uncer-
tainty scores for each flow (Ecoinvent 2007). Then, a

Table 2 Definition of evaluation categories adapted from the ILCD
handbook (EC 2010)

Indicator/component Definition/comment

Technological
representativeness
(TeR)

“Degree to which the data set reflects the true
population of interest regarding technology,
including for included background data sets,
if any.”

Geographical
representativeness
(GR)

“Degree to which the data set reflects the true
population of interest regarding geography,
including for included background data sets,
if any.”

Time related
representativeness
(TiR)

“Degree to which the data set reflects the true
population of interest regarding time/age of
data, including for included background
data sets, if any.”

Completeness (C) “Share of (elementary) flows that are
quantitatively included in the inventory.
Note that for product and waste flows this
needs to be judged on a system’s level.”

Precision/uncertainty
(P)

Measure of the variability of the data values for
each data expressed (e.g., low variance =
high precision). Note that for product and
waste flows, this must be judged on a
system level.
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single uncertainty score was chosen for the file based
on this interpretation.

A dataset with DQR less than or equal to 1.6 is considered
high quality, while a dataset with a DQR between 1.6 and 3 is
considered to be of basic quality. Any dataset with a DQR
between 3 and 4 is considered to be an estimate (EC 2010).

DQR formula and definitions modified from the ILCD
handbook

DQR ¼ TeRþ GRþ C þ P þ 4Xw

iþ 4
ð1Þ

Table 3 Quality rating definitions adapted from the ILCD handbook (EC 2010)

Quality level Quality rating Definition

Very good 1 “Meets the criterion to a very high degree, having no relevant
need for improvement. This is to be judged in view of the
criterion’s contribution to the data set’s potential overall environmental
impact and in comparison to a hypothetical ideal data quality.”

Good 2 “Meets the criterion to a high degree, having little yet significant need for improvement.
This is to be judged in view of the criterion’s contribution to the data set’s potential
overall environmental impact and in comparison to a hypothetical ideal data quality.”

Fair 3 “Meets the criterion to still sufficient degree, having the need for improvement. This is to
be judged in view of the criterion’s contribution to the data set’s potential overall environmental
impact and in comparison to a hypothetical ideal data quality.”

Poor 4 “Does not meet the criterion to a sufficient degree, having the need for relevant improvement.
This is to be judged in view of the criterion’s contribution to the data set’s potential overall
environmental impact and in comparison to a hypothetical ideal data quality.”

Very poor 5 “Does not at all meet the criterion, having the need for very substantial improvement. This is
to be judged in view of the criterion’s contribution to the data set’s potential overall
environmental Impact and in comparison to a hypothetical ideal data quality.”

Not applicable 0 Criteria could not be applied

Table 4 Pedigree matrix data quality rating level definitions adapted from van den Berg et al. (1999)

Indicator score 1 2 3 4 5

Reliability Verified data based on
measurements

Verified data partly
based on
assumptions or
non-verified data
based on
measurements

Non-verified data
partly based on
assumptions

Qualified estimate (e.g.,
by industrial expert)

Non-qualified
estimate

Completeness Representative data
from a sufficient
sample of sites over
an adequate period
to even out normal
fluctuations

Representative data
from a smaller
number of sites
but for adequate
periods

Representative
data from
adequate
number of sites
but from shorter
periods

Representative data but
from a smaller number
of sites and shorter periods
or incomplete data from
an adequate number of sites
and periods

Representativeness
unknown or incomplete
data from a smaller
number of sites and/or
from shorter periods

Temporal
correlation

Less than 3 years
difference to year
of study

Less than 6 years
difference

Less than 10 years
difference

Less than 15 years difference Age of data unknown or
more than 15 years
difference

Geographical
correlation

Data from area
under study

Average data from
larger area in
which the area
under study is
included

Data from area
with similar
production
conditions

Data from area with slightly
similar production conditions

Data from unknown area
or area with very
different production
conditions

Technological
correlation

Data from enterprises,
processes, and materials
under study

Data for processes
and materials
under study but
from different
enterprises

Data from
processes and
materials under
study but from
different
technology

Data on related processes
or materials but same
technology

Data on related processes
or materials but
different technology
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DQR Data quality rating of the LCI dataset
TeR GR, TiR, C, P: see Table 2
Xw Weakest quality level obtained (i.e., highest numeric

value) among the data quality indicators
i Number of applicable data quality indicators

3 Results

3.1 Quantitative analysis

Figure 1 describes the collected datasets. Of the 287 datasets
found, 110 are for raw agricultural feedstocks, 114 are for
processing of agricultural feedstocks, and 56 are for produc-
tion of platform chemicals (mainly ethanol and biodiesel).
Only seven datasets were found for the complete production
of biopolymers.

The feedstock with the largest amount of datasets is wood,
with a total of 60. However, this is largely because the same
base data is available in multiple iterations. For example, data
for board trimmings, sawdust, and woodchips in the US Pa-
cific Northwest are all available and build from the same base
data. Therefore, the high total is somewhat misleading. Agri-
cultural residue is the feedstock with the second highest
amount of datasets collected at 42. This category includes
things like corn stover, sugarcane bagasse, and wheat straw.
This number is almost exclusively made up of Ecoinvent files.
Ecoinvent has separated the data associated with the co-
products of crop production into separate files, which means
that for each crop Ecoinvent has data available, it also has data
for the associated agricultural residue. Here, all of these resi-
dues are collected into a single category, which is why they are
so numerous.

The crop with the next largest amount of available data is
corn (22), which is closely followed by wheat (21), rapeseed
(20), and soy (18). The category “other” is mostly composed
of data for ethanol from mixed feedstocks, which is available
from Ecoinvent, and generic data for unspecified biomass.
Sugarcane (13) has slightly less data available in relation to
the other commodity crops commonly used to produce bio-
polymers. It should also be noted that over half (4 of 7) of the
polymer datasets are based on corn.

The table and figure show that eight datasets are available
for raw corn. However, the 131 datasets available for corn
from the US database LCA Commons are represented by a
single entry in the summary table. This was done for reasons
of practicality, since datasets in LCA Commons are state spe-
cific for a single harvest year. The short data collection time
period is a quality issue, but 18 of the 131 datasets are aggre-
gated over multiple years. These aggregated datasets are still
state specific; LCA Commons does not have a file meant to
represent averages for the entire USA. LCA Commons’
datasets are also included for soy (137), oats (12), rice (6),
and wheat (155). They are represented in the table as de-
scribed above.

Geographically, the data is skewed to Europe and North
America with about 60 % of the datasets (175 of 287) from
one of the two regions (105 for Europe and 70 for North
America). Additionally, about half of the European data (58
of 106) is for Switzerland. This is likely related to the fact that
the Ecoinvent project is based in Switzerland. Likewise, near-
ly all of the North America data is for the USA. Only one of
the 70 datasets for North America is explicitly for another
country, a study about biodiesel production in Costa Rica.
There are a number of USLCI datasets whose region is de-
scribed in general as “North America” but these files are more
reflective of the USA than of North American averages, being
mainly built fromUS data and modeling technology typical of
the US. Figure 2 describes the geographic distribution of the
datasets.

As illustrated by Fig. 2, the most obvious geographical data
gap is that zero datasets were found that represent anywhere
on the continent of Africa. Additionally, the category “Asia
and the Middle East” covers a very large amount of area in

Fig. 1 Summary of data collected by crop and category. Note: wood is
excluded from the figure for reasons of convenience Fig. 2 Geographical distribution of datasets
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theory, but in reality the datasets are focused on Southeast
Asia and China. Only one dataset, potato production in Iran,
breaks this pattern. The data designated Oceania is composed
of one dataset for New Zealand with the remainder
representing Australia. The South American data consists of
entries from Brazil and Argentina and is mostly for sugarcane
and soybeans. In general, the geographical concentration of
the datasets is in line with the demand for LCA data in each
region. It makes sense that Europe and the USA, which both
have strong policies in place that promote biofuels and LCI
database projects, have more data available. Furthermore, the
pattern of data concentration is consistent with areas that pro-
duce large amounts of commodities that are commonly used
to produce biofuels and biopolymers.

A notable exclusion is that neither Canada nor Russia is
represented in the datasets. The two largest countries
(geographically) in the world, Canada and Russia are both
also major producers of grains that are commonly used to
produce biodiesel and ethanol. Canada is consistently the larg-
est producer of canola (Canola Council of Canada 2011), and
Russia was the third largest producer of wheat in 2013 (USDA
2014). The largest producer of wheat in 2013, India, is also
underrepresented in data availability (USDA 2014). There are
four datasets for India, but none of them are for wheat. Three
are for agricultural residues suitable for cellulosic ethanol pro-
duction (jute and kenaf stalks), and the fourth is for jatropha
(an oilseed crop that can be grown on degraded land)
(Arvidsson et al. 2011).

3.2 Qualitative analysis

A data quality evaluation was undertaken for cultivation of
corn, soy, and sugarcane. Figure 3 illustrates the composition
of the corn DQRs by breaking them down into their constitu-
ent categories of completeness, uncertainty, and technological,
geographical, and temporal representativeness. Figures 4 and
5 illustrate the equivalent for sugarcane and soy, respectively.
Tables 5, 6, and 7 match the identifiers in the figures with the
corresponding dataset names for each feedstock.

Overall, the DQRs for the corn datasets ranged from 1.4 to
2.6, with five of the datasets ranked in the high-quality range
and the remaining eight datasets in the basic quality range.
Selective comparisons of two corn datasets (i.e., corn, produc-
tion average, US 2012 (NREL 2012) (N) DQR=2.6 and corn,
at farm (Ecoinvent 2013) (G) DQR=1.7) were conducted
using ReCiPe Midpoint (H) V1.09/World ReCiPe H impact
assessment method. Figure 6 shows that a large difference is
encountered between the two selected datasets which results
in a large difference in many ReCiPe midpoint impact indica-
tors. It is important to notice the lack of numerical values for
freshwater eutrophication, ionizing radiation, agricultural and
urban land occupation, natural land transformation, and metal
depletion for the NREL 2012 dataset.

The sugarcane datasets ranged from 1.8 to 3.7, with
seven of the datasets in the basic-quality range and the
remaining two classified as estimates. Sugarcane has no
datasets with a DQR in the high-quality range. These less

Fig. 3 Corn data quality ratings
and component scores by dataset
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desirable DQRs for sugarcane are mainly a result of
p o o r e r s c o r e s i n t h e c a t e g o r y o f t em p o r a l

representativeness. The soy datasets have the largest range
of DQRs, from 1.6 to 4.5. Two of the datasets are

Fig. 4 Sugarcane data quality
ratings and component scores by
dataset

Fig. 5 Soy data quality ratings
and component scores by dataset
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classified as high quality, with the majority (eight) in the
basic-quality range.

The dataset “soy bean, from farm,” available from the LCA
Food DK database, was the lowest scoring of all the datasets
assessed with a DQR of 4.5. This rating is outside the range
defined by the ILCD handbook for the lowest quality level of
estimate (3.0 to 4.0). The low DQR is a product of receiving
the undesirable score of 5 in the categories of both complete-
ness and temporal representativeness. The temporal score was
given because the age of the data is unknown, and the com-
pleteness score reflects the fact that very few flows are present
in the dataset and major omissions were found in both the
inputs and the emissions. Another selective comparison was
conducted for two soybean datasets (i.e., soybean, from farm,
LCA Food 2007 (HH) DQR=4.5 and soybeans, at farm/US
(Ecoinvent 2013) (BB) DQR=2.3) using the ReCiPe Mid-
point (H) V1.09/World ReCiPe H impact assessment method.
Figure 7 shows that most of the ReCiPe midpoint indicator
values are lower for the LCA Food DK dataset, or missing
entirely. Climate change and ozone depletion are exceptions.
Additional comparisons are presented in the online available
Electronic Supplementary Material (Tables S1 to S3).

3.2.1 Technological representativeness

The datasets for all three feedstocks consistently scored the
best in the technological representativeness category. This
means that data from a different process than the one under
study rarely had to be used as a substitute to fill a data gap. A
technology aspect of corn and soybean cultivation that war-
rants attention is tilling practices. The method of tilling can
have a large effect on the environmental impacts of a system
as it affects the use of fossil fuels and soil degradation, among
other issues (EPA 2013). Conventional till, reduced/

Table 5 Corn dataset names and identifiers

Corn dataset name Identifier

Annual report: life cycle assessment to improve the
sustainability and competitive position of biobased
chemicals: a local approach (Kim and Dale 2009a)

A

Grain maize organic, at farm (Ecoinvent 2013) B

Silage maize organic, at farm (Ecoinvent 2013) C

Corn grain, at harvest in (year), at farm 85–91 % moisture
(state) (LCA Digital Commons 2013)

D

Regional variations in GHG emissions of bio-based products
in the United States—corn based ethanol and soybean oil
(Kim and Dale 2009b)

E

Corn, at farm (Ecoinvent 2013) F

Grain maize IP, at farm (Ecoinvent 2013) G

Silage maize IP, at farm (Ecoinvent 2013) H

Measuring ecological impact of water consumption by
bioethanol using life cycle impact assessment
(Chiu et al. 2012)

I

Life cycle assessment of various cropping systems
utilized for producing biofuels: bioethanol and
biodiesel (Kim and Dale 2005)

J

Improvements in life cycle energy efficiency and
greenhouse gas emissions of corn-ethanol
(Liska et al. 2009)

K

LCA of cropping systems with different external
input levels for energetic purposes (Goglio et
al. 2012)

L

Corn, whole plant, at field (NREL 2012) M

Corn, production average, US, 2012 (NREL 2012) N

Table 6 Sugarcane dataset names and identifiers

Sugarcane dataset name Identifier

Life cycle assessment of fuel ethanol from sugarcane in Brazil
(Roberto Ometto et al. 2009)

O

A comparative life cycle assessment of PE based on sugar cane
and crude oil (Liptow and Tillman 2012)

P

An environmental life cycle assessment comparing Australian
sugarcane with US corn and UK sugar beet as producers of
sugar for fermentation (Renouf et al. 2008)

Q

Carbon footprint of sugar produced from sugarcane in eastern
Thailand (Yuttitham et al. 2011)

R

Bioproduction from Australian sugarcane: an environmental
investigation of product diversification in an agro-industry
(Renouf et al. 2013)

S

Sugarcane, at farm/BR (Ecoinvent 2013) T

Life cycle assessment of Australian sugar cane production
with a focus on sugarcane growing (Renouf et al. 2010)

V

A decision support tool for modifications in crop cultivation
method based on LCA: a case study on GHG emissions
reduction in Taiwanese sugarcane cultivation (Fukushima
and Chen 2009)

V

Life cycle assessment of sugarcane ethanol and palm oil
biodiesel joint production (Souza et al. 2012)

W

Table 7 Soy dataset names and identifiers

Soy dataset name Identifier

Soy beans organic, at farm/CH (Ecoinvent 2013) X

Soy beans IP, at farm/CH (Ecoinvent 2013) Y

Soybeans; at harvest in (year); at farm; 85–92 % moisture
(state) (LCA Digital Commons 2013)

Z

Life cycle assessment of soybean based biodiesel production
in Argentina for export (Panichelli et al 2008)

AA

Soybeans, at farm/US (Ecoinvent 2013) BB

Substitutable biodiesel feedstocks for the UK: a review of
sustainability issues with reference to the UK RTFO
(Upham et al. 2009)

CC

Soybean grains, at field (1998–2000)/kg/US (NREL 2012) DD

Soybeans, at farm/BR (Ecoinvent 2013) EE

Soybean grains, at field/kg/US (NREL 2012) FF

Biogenic greenhouse gas emissions linked to the life cycles of
biodiesel derived from European rapeseed and Brazilian
soybeans (Reijnders and Huijbregts 2008)

GG

Soy bean, from farm (LCA Food 2007) HH

Int J Life Cycle Assess (2015) 20:584–596 591



conservation till, and no-till are the basic methods used in corn
and soy cultivation. In reduced and conservation till, the
amount of tilling is decreased in relation to the conventional
method, and a different type of plough is usually employed,
while no-till uses a different planting technology to eliminate
the need to till altogether. A 2010 USDA report estimates that
28.8 % of corn in the US was grown using conventional till
practices in 2005 compared to 47.5 % grown with reduced or

conservation tillage, and 23.5%which used no-till technology
(Horowitz et al. 2010).

Ecoinvent uses a weighted average of conventional and
conservation till practices for both corn and soy in their files.
Of the 13 datasets evaluated for corn, seven (including
Ecoinvent) reflected average tilling practices at the national
level. Two represent state level averages, and one was varied
by county. One dataset is explicitly for no-till technology.

Fig. 6 Comparison of two corn
datasets with DQR 2.6 and 1.7
using ReCiPe Midpoint (H)
V1.09/World Recipe H impact
assessment method

Fig. 7 Comparison of two
soybean datasets with DQR 2.3
and 4.5 using ReCiPe Midpoint
(H) V1.09/World Recipe H
impact assessment method
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There is no corn dataset specifically representing conservation
or reduced tillage practices, despite the fact that this is the
most common tillage practice in the USA.

A higher percentage of soy was produced using no-till in
2005 than corn (45.3 %), while 43.2 % used reduced or con-
servation till technology and the remaining 11.6 % was con-
ventional till (Horowitz et al. 2010). Unlike corn, a dataset
modeling conservation till is available for soy. However, the
majority of the soy files (seven of eleven) use a weighted
average of conventional and conservation till similar to that
used by Ecoinvent.

This weighted average data is not ideal for an LCA
study that seeks to model a specific cultivation system
because it does not accurately model any one tillage meth-
od. Additionally, the state averages vary significantly
from the national averages. Texas, for example, produced
68.4 % of corn in 2005 using conventional till while Ne-
braska used conventional till for just 5.7 % of its corn
production. Therefore, depending on what state is under
study, the national average could either over- or underes-
timate the amount of inputs and emissions associated with
tilling by a wide margin (Horowitz et al. 2010).

Sugarcane has other technological issues worth noting, par-
ticularly relating to the method of harvesting. Sometimes sug-
arcane is burned before harvest, and sometimes it is harvested
green. This difference has an effect on emissions to air, and
also on the amount of process water used during milling
(Renouf et al. 2010). The burned sugarcane becomes sticky
from the release of juices during burning and therefore gener-
ally has a large amount of debris mixed in with the harvested
cane. As a result, a more vigorous washing process is required
during processing. The sugarcane datasets vary in the percent-
age of cane that is burned before harvest. The Australian
datasets reflect the national average of around 40 % burned
and 60 % green at time of harvest, while a Brazilian dataset
has the opposite ratio of 60 % burned and 40 % green harvest
(Renouf et al.; 2010; Souza et al. 2012).

Additionally, there is a significant difference between
manual and mechanical harvest. The Ecoinvent file that
models sugarcane production in Brazil assumes that 80 %
of the harvesting is done manually. In contrast, Australia
uses dominantly mechanical harvesting, which is reflected
in the Australian datasets. Harvesting sugarcane is the part
of cultivation that contributes most significantly to global
warming (Roberto Ometto et al. 2009). Therefore, data that
accurately represents the method used to harvest sugarcane
is important for accuracy of the final results of an LCA. São
Paulo, the Brazilian state where much of the country’s sug-
arcane is grown, adopted a law that will phase out the burn-
ing of sugarcane by 2017 (Manzatto 2009). This means that
the harvesting datasets analyzed here will be significantly
less representative as Brazil shifts to mechanical harvest
and phases out burning of cane fields.

3.2.2 Geographical representativeness

Evidence suggests that variation between geographical areas
can be complex and difficult to model. One study that tracked
water consumption in ethanol production from corn in 81
different watersheds in Minnesota found significant variation
in the range of water consumption between watersheds. The
study included the use of both irrigation water and process
water. The range in the amount of water used to produce 1-L
of ethanol was found to be 3–181 L in a watershed in central
Minnesota. Contrastingly, ethanol produced in a watershed in
the south of the state had a much smaller range in the amount
of water used. Farms and production facilities based in the
southern watershed used only 3–8 L of water to produce 1-L
ethanol from corn (Chiu et al. 2012). This demonstrates that
the issue of geographical correlation is not as simple as one
might assume. LCA practitioners are often compelled to use
data from a different region than the one under study. Gener-
ally, an effort is made to use data from a region with similar
geography and practices, but in this case large variation was
found within a single region that was utilizing relatively uni-
form technology. This suggests not only that it is quite difficult
to predict a correlation between regions, but also that even
data from a slightly different part of the same region may
not be an accurate substitute.

In the category of geographic representativeness, the corn
datasets scored fairly well. All but one dataset either repre-
sents the area under study or is from a larger area that includes
the study area. The exception is a dataset based on a single-site
field study conducted in central Italy. The publication associ-
ated with this data was intended to model corn production in
the “Mediterranean region,” so the dataset was classified as
from a smaller area within the Mediterranean and therefore
was scored at a value of 3 (Goglio et al. 2012).

Four of the corn datasets are based on US average values.
This is problematic because the US is quite large, and there-
fore subject to regional variations not only in weather and
conditions, but also in technology. For example, the USDA
reports that about 15 % of corn acres in 2007 in the US were
irrigated (USDA 2012). However, this 15 % is not evenly
scattered over the entire growing region, but concentrated in
certain areas. Nebraska, for example, has an irrigation rate of
60.6%, much higher than the national average irrigated (Univ.
Nebraska-Lincoln 2012). A dataset based on national aver-
ages would therefore likely underestimate the amount of water
used if the system under study was in Nebraska.

More geographically specific data has the potential to solve
this problem, and some of it is available. Three datasets model
corn cultivation at the county level. Of the three, one is only for
water in Minnesota and one is specifically for Scott County,
Iowa. These two datasets will therefore be of limited use to
practitioners because of their geographic and technological re-
straints. The third dataset, titled “Annual Report: Life Cycle
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Assessment to Improve the Sustainability and Competitive Po-
sition of Biobased Chemicals: A Local Approach,” by Kim and
Dale (2009a) is far more versatile in scope. It includes detailed
data for several counties across corn growing states, and also
has the highest DQR (1.4) of all the datasets evaluated. This
level of geographic detail is unique to corn cultivation. State
level data is the most geographically specific level of informa-
tion available for all other crops in this report. Only the LCA
Commons data is available by state for soy cultivation. The rest
of the soy datasets reflect national averages.

This type of regional variation is not unique to the USA.
Four of the sugarcane datasets represent Brazilian production,
with two specifically for the state of São Paulo. Three datasets
are for Queensland, Australia. This region accounts for 98 %
of sugarcane production in Australia, so the lack of data from
other areas is not a particularly important gap (Renouf et al.
2010). However, there is significant variation in the growing
conditions and intensity of inputs within this region. The study
by Renouf et al. (2010) includes datasets for the two areas of
Queensland with the most disparate growing conditions.

As illustrated by the discussion above, geographical and
technological differences are often strongly related, with quality
issues bridging both categories. These types of quality issues
call into question the usefulness of datasets based on national
averages when there is significant variation within regions.

3.2.3 Temporal representativeness

Of the three crops evaluated, sugarcane scored the worst in the
category of temporal representativeness with five of the nine
sets receiving a rating of 3 or above. Two soy datasets have a
score of 5 in this category; one is based on primary data of an
unknown age, and the other uses a significant amount of data
from 1979. Even the Ecoinvent dataset for sugarcane relies on
older data than the Ecoinvent files for corn and soy, using data
for agronomic inputs from 1988. This is uncharacteristic of the
Ecoinvent database, which collected most of their data be-
tween the late 1990s and the mid-2000s.

Crop yield data is particularly sensitive to age because of
advances in yields over recent years. Ayield increase basically
has the effect of diluting the environmental impacts of a
cropping system by spreading them over more outputs. For
this reason, the results of LCA studies involving crops tend to
be quite sensitive to yield changes (Fukushima and Chen
2009). Therefore, when new data is collected, a high priority
should be given to the collection of updated crop yields.

3.2.4 Completeness

Land use change (LUC), and specifically indirect land use
change, is the largest problem in the category of completeness.
Four of the corn datasets do not include any type of LUC data,
and only two of the datasets explicitly include indirect LUC. It

should be noted that the database files (Ecoinvent, USLCI,
and LCA Commons) do not distinguish between the types
of LUC at the flow level. Therefore, all that could be deter-
mined about these files is that they include some land use
change data, but it was not possible to distinguish between
direct LUC and indirect LUC.

This data gap is even more pronounced for sugarcane. Five
of the ten datasets evaluated do not account for LUC, and three
of those five also do not include land occupation. The Taiwan-
ese sugarcane dataset does not include LUC despite the fact that
the article itself states that sugarcane production is expected to
expand in the region and that fallow land will likely be con-
verted for cultivation (Fukushima and Chen 2009). Additional-
ly, three of the studies that include LUC also state that their
information on this input is not complete. One of the Australian
studies that include LUC presents the data with the qualifier
that the methods used to evaluate both LUC and water impacts
have significant limitations (Renouf et al. 2013). Another study
echoes this sentiment when it states that the LUC emissions are
uncertain due to lack of uniform methods (Liptow and Tillman
2012). The Ecoinvent file also follows this pattern as there is a
high degree of uncertainty associated with the LUC flows. The
soy datasets also deal inconsistently with this impact, although
it is less pronounced than in the sugarcane data. Four of the
eleven soy files do not include indirect LUC, and two of these
also exclude direct LUC.

The significance of this omission varies depending on the
system under study. If the study is for an established growing
system that is not expanding, then it would not be highly
important information to include. However, for most of these
crops, production is expanding in response to increased de-
mand for bio-products. This is true in South America, where
sugarcane production has expanded in Brazil at an average
rate of approximately 85,000 ha/year since 1990 and soy pro-
duction in Argentina has gone from less than a million hect-
ares to 13 million since 1970 (Martinelli and Filoso 2008;
Grau et al. 2005). Similarly, corn in the US has also been
expanding in recent years. From 2007 to 2013, 11.17 million
acres of land that was formerly in the conservation reserve
program has been converted to crop cultivation, most of it
for corn production (Farm Service 2007, 2013).

3.2.5 Uncertainty

As stated in the “Methods” section, an uncertainty evaluation
was only done for the Ecoinvent data. In general, these datasets
had low uncertainty since data is mostly based on verified mea-
surements. The exception is that all transport distances in the
Ecoinvent datasets are estimates. The Ecoinvent sugarcane
datasets also have a greater degree of uncertainty than the soy
or corn Ecoinvent datasets because the sugarcane energy and
carbon dioxide data are partly based on qualified estimates.
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Additionally, an uncertainty score was given to one USLCI
file: “Corn, production average, US, 2022.” It was possible to
score this dataset because it is a qualified estimate for corn
production in the future and was therefore given the standard
uncertainty score of 4 for qualified estimates.

As discussed above, many studies that included data for
LUC expressed concerns of uncertainty along with that data.
It was not possible to give an overall uncertainty score to these
datasets, however, because these concerns were generally
expressed only in qualitative terms and uncertainty informa-
tion was not available for the other inputs in the datasets.

4 Conclusions

Significant data gaps exist in the availability of life cycle in-
ventory data for bio-based polymers. These gaps occur geo-
graphically, technologically, and temporally. In addition, gaps
exist for certain inputs, like land use change, independent of
those qualifying factors. National averages are unlikely to
adequately represent either technology used to cultivate a crop
in any specific region or the growing conditions in that region.
There is therefore a need for more regionally explicit data that
accurately models the technology and conditions of a specific
system under study. Land use change is often not accounted
for in otherwise relatively complete datasets, which is a sig-
nificant quality issue because it can have a large influence on
the overall impacts of a system. More data for land use change
is needed, and standardized methods for collecting and incor-
porating such data into LCA studies are also necessary. Newer
data for the cultivation of feedstocks, especially crop yields,
would also be beneficial. Finally, the currently available data
is skewed heavily to Europe and the USA, leaving a signifi-
cant portion of the globe with very few datasets available. In
conclusion, understanding the impacts caused by the produc-
tion of bioplastics is the first step on the path to more sustain-
able bioplastics, and in order to accurately evaluate these im-
pacts the data gaps described above must be resolved.
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