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Abstract
Purpose In the past decade, several methods have emerged to
quantify water scarcity, water availability and the human
health impacts of water use. It was recommended that a
quantitative comparison of methods should be performed to
describe similar impact pathways, namely water scarcity and
human health impacts from water deprivation. This is precise-
ly the goal of this paper, which aims to (1) identify the key
relevant modeling choices that explain the main differences
between characterization models leading to the same impact
indicators; (2) quantify the significance of the differences
between methods, and (3) discuss the main methodological
choices in order to guide method development and harmoni-
zation efforts.

Methods The modeling choices are analysed for similarity of
results (using mean relative difference) and model response
consistency (through rank correlation coefficient).
Uncertainty data associated with the choice of model are
provided for each of the models analysed, and an average
value is provided as a tool for sensitivity analyses.
Results The results determined the modeling choices that signif-
icantly influence the indicators and should be further analysed
and harmonised, such as the regional scale at which the scarcity
indicator is calculated, the sources of underlying input data and
the function adopted to describe the relationship between
modeled scarcity indicators and the original withdrawal-to-
availability or consumption-to-availability ratios. The inclusion
or exclusion of impacts from domestic user deprivation and the
inclusion or exclusion of trade effects both strongly influence
human health impacts. At both midpoint and endpoint, the
comparison showed that considering reduced water availability
due to degradation in water quality, in addition to a reduction in
water quantity, greatly influences results. Other choices are less
significant in most regions of the world. Maps are provided to
identify the regions in which such choices are relevant.
Conclusions This paper provides useful insights to better un-
derstand scarcity, availability and human health impact models
for water use and identifies the key relevant modeling choices
and differences, making it possible to quantify model uncer-
tainty and the significance of these choices in a specific regional
context. Maps of regions where these specific choices are of
importance were generated to guide practitioners in identifying
locations for sensitivity analyses in water footprint studies.
Finally, deconstructing the existing models and highlighting
the differences and similarities has helped to determine building
blocks to support the development of a consensual method.
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1 Introduction

This paper is divided into two parts and aims to broaden the
understanding of existing water use impact assessment
methods and their applicability within a water footprint study.
Part A focuses on identifying relevant modeling choices to
analyse the main differences between water impact assess-
ment methods and assess their overall variability and model
uncertainty. Part B illustrates the applicability of water foot-
print methods through a case study and discusses the methods’
consistency, reliability and limitations for decision making.
Sensitivity analyses on the case study were selected based on
relevant modeling choices determined in part A.

1.1 Purpose

In LCA, potential impacts from water pollution were tradi-
tionally captured by impact categories such as (eco)toxicity,
acidification and eutrophication. The impacts of using the
resource itself (impacts of water use) and reducing the avail-
ability of water for other users—humans and ecosystems—
were not yet captured until recently. Since the preliminary
discussion on the topic began in the early 2000s (Owens
2002; Bauer and Zapp 2005; Brent 2004), several methods
have emerged and entirely or partially address the different
impact pathways outlined in the general framework proposed
by Bayart et al. (2010). Kounina et al. (2013) (see Electronic
Supplementary Material, Fig. S1) reviewed and analysed the
developed methods and their scopes, strengths and weak-
nesses. At the midpoint level, most existing methods quantify
water scarcity based on a use-to-availability ratio, referred to
as scarcity or stress index. At the damage level, impacts are
generally modeled up to specific endpoints within a given area
of protection: human health, ecosystem quality or resources.

The review showed that existing methods sometimes
model complementary impact pathways or the exact same
ones based on different modeling approaches and assump-
tions. Building on Kounina et al.’s (2013) review, this paper
aims to: (1) identify the key relevant modeling choices that
explain the main differences between characterisation
models leading to the same impact indicators (scarcity,
availability and human health); (2) quantify the signifi-
cance of the differences between methods, and (3) discuss
the main methodological choices in order to guide method
development and harmonisation efforts. The goal of this
paper is not to provide recommendation regarding the use
of one method over another. This paper constitutes the third
deliverable of the UNEP/SETAC Life Cycle Initiative
Working Group on Water Use in LCAA and represents a
stepping stone towards its goal to develop a harmonised
method through scientific consensus on existing methods
(Life Cycle Initiative 2012).

1.2 Presentation of methods analysed

The methods chosen for this comparison focus on human
health, with scarcity as an intermediate indicator along the
impact pathway. Figure 1 provides a detailed description of
the selected methods along the impact pathways leading to
human health. A summary table of the methods and their
associated names is presented in the Electronic
SupplementaryMaterial, Table S1. Damage-oriented methods
assessing impacts on ecosystems address impact pathways
that are considered complementary (Kounina et al. 2013)
and are therefore excluded from the scope of the comparison.
The resource depletion damage category is still under debate
and not yet mature enough to be included in the scope of this
paper.

1.2.1 Midpoint: scarcity and availability

The scarcity and availability methods reviewed by Kounina
et al. (2013) are selected for the model comparison, except for
Ridoutt and Pfister (2010). The latter was excluded because
the authors suggest using a different approach (Ridoutt and
Pfister 2013). In this paper, and as a proposal for future
consistency, scarcity refers to the pressure on the resource
from a quantity perspective only, and availability refers to an
assessment of lower water availability due to water quality
degradation and quantity depletion. This is in line with the
terminology used in the International Standards Organisation
(ISO) standard on Water Footprint 14046 (ISO 14046 2014).

& Swiss Ecoscarcity (named M-SwissSc) (Frischknecht
et al. 2008)

The Swiss ecological scarcity method is based on the
distance-to-target principle, which is similar to using a
withdrawal-to-availability (WTA) ratio based scarcity in-
dicator. All withdrawn volumes in a region are considered
and divided by the critical water use volume for this region
with data from WaterGap (Alcamo et al. 2003a) (in the
updated version). The critical volume is defined as the
fraction of water use at which scarcity begins to occur, set
by default to 20 % of the renewable water available. This
fraction is then squared and normalised using a reference
region (the default is Switzerland). Results are given in
eco-points (scaled by a constant to obtain readily present-
able numerical quantities) at the country and grid-cell
levels (0.5°×0.5°). The indicator is applied to the volume
of water that is consumed or withdrawn and therefore
assesses consumptive water use or all water use reported
in ecoinvent 2, except for hydropower production.

& Pfister WSI (named M-PfisterSc) (Pfister et al. 2009)
This scarcity indicator is based on a WTA ratio, mod-

ified to account for seasonal variations, and modeled using
a logistic function (S-curve) in order to obtain resulting
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indicator values between 0.01 and 1 m3
deprived/m

3
consumed.

The curve is tuned using OCDE water scarcity (stress)
thresholds, which define moderate and severe water stress
as 20 and 40% of withdrawals, respectively (Alcamo et al.
2000). The model is available at the grid-cell level (0.5°×
0.5°), and data for water withdrawals and availability were
obtained from theWaterGap model (Alcamo et al. 2003b).
The indicator is applied to the consumed water volume
(i.e. assesses consumptive water use only).

& Blue water scarcity (named M-BWSc) (Hoekstra et al.
2012)

This scarcity indicator is based on a consumption-to-
availability ratio (CTA) calculated as the fraction between
consumed (referred to as blue water footprint) and avail-
able water. The latter considers all runoff water, of which
80 % is subtracted to account for environmental water
needs. The data are from Fekete et al.(2002) for water
runoff and Mekonnen and Hoekstra (2011) for water
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consumption. Results are available for the main water-
sheds worldwide, but many outlying regions are not cov-
ered. The indicator is applied to the consumed water
volume (i.e. assesses consumptive water use only).

& Boulay—simplified methodology considering consump-
tive use only (named M-BoulaySc) (Boulay et al. 2011b)

This scarcity indicator is based on a CTA ratio (using
statistical low-flow to account for seasonal variations) and
modeled using a logistic function (S-curve) in order to
obtain resulting indicator values between 0 and
1 m3

deprived/m
3
consumed. The curve is tuned using the

same water scarcity thresholds as the OECD thresholds
in M-PfisterSc (Alcamo et al. 2000) but converted with an
empirical correlation between WTA and CTA. More spe-
cific scarcity indicators are also available for surface and
groundwater based on the same approach as for water
from unspecified origin.Water consumption and availabil-
ity data for surface and ground water are taken from the
WaterGap 2.2 model (grid cell level). Results are available
at a scale that originates from the intersection of the
watershed and country scales, resulting in 808 cells world-
wide. The simplified method does not consider changes in
water quality, unlike the original one (presented in the next
paragraph). The indicator is applied to the consumed
water volume (i.e. assesses consumptive water use only).

& Boulay—original method, including quality aspects
(named M-BoulayAv) (Boulay et al. 2011b)

This availability indicator assesses degradative and
consumptive water use. The same characterisation model
asM-BoulaySc is used, though it is differentiated for eight
water categories that each correspond to an inventory flow
that describes a type of water (surface or groundwater) of a
given quality that is acceptable for specific human uses
(domestic, etc.). This indicator assesses degradative and
consumptive water use by characterising input and output
flows of water from a process and their difference in
quantity and quality. Default values on local availability
and water quality are taken from the GEMStat database
(UNEP Global Environment Monitoring System (GEMS)
Water Programme 2009).

& Veolia Water Impact Index (named M-WIIXAv) (Bayart
et al. 2014)

The impact index is calculated as the product of (1) a
water scarcity indicator (M-PfisterSc) and (2) a quality
indicator, hence categorised as an availability method. The
quality indicator is calculated as a ratio between a refer-
ence concentration—based on environmental quality stan-
dards (EQS) targeted to protect the receiving water bod-
ies—and the actual concentration of the inventory flows.
Since EQS are pollutant-specific, the quality index is
driven by the most penalizing ratio. It is set to a maximum
of 1 when the concentration of the inventory flow is below
the reference concentration for all pollutants, meaning that

the impact of consuming EQS-compliant water yields
maximum impacts whereas consuming non-EQS-
compliant water for at least one contaminant has fewer
impacts (the higher the index, the greater the impacts).
This indicator assesses degradative and consumptive wa-
ter uses by characterising the input and output flows of
water in a process.

1.2.2 Endpoint impacts on human health

So far, the human health impacts of water deprivation have
been modeled using four parameters: 1 scarcity (how much
of the water used will deprive other users?); 2 distribution
of affected users (which users will be deprived by which
fraction of unavailable water?); 3 socio-economic parame-
ter (to what extent will the deprived users suffer health
impacts and remain unable to adapt through economic
resources?) and 4 effect factor (what is the effect on human
health of a specific user being deprived of a certain amount
of water?). Equation 1 (Aguilar-Manjarrez 2006) represents
how these parameters interact in a generic model. Pfister
(Pfister et al. 2009) and Boulay (Boulay et al. 2011b) model
each parameter explicitly, whereas Motoshita_dom
(Motoshita et al. 2010b) uses a statistical regression that
merges steps 3 and 4 into a single modeling step (see
Fig. 1). The intermediary parameters express different
modeling components along the cause effect chain (see
Fig. 1) and are kept distinct to gain insight into their indi-
vidual contributions to the total results. Characterisation
models and factors assessing the impacts of depriving do-
mestic users, agricultural users and/or fisheries of sufficient
water are analysed individually, since the pathways can
lead to different direct human health endpoints expressed
in DALY (disability-adjusted life years).

CFi
DALY

m3

� �
¼ SI � DAUi � SEP � EFi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

SEEi factor

ð1Þ

Where:

CFi Characterisation factor describing the
potential human health impacts of
water deprivation of user i (agriculture,
domestic user or fisheries)

SI Scarcity or availability index, depending
on the inclusion (availability) or exclusion
(scarcity) of quality in the index

DAUi Distribution of affected users i (i.e. fraction
of water use that affects user i)

SEP Socio-economic parameter
EFi Effect factor for water deprivation of user i
SEEi factor Socio-economic and effect factor
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& Pfister (named E-Pfister)(Pfister et al. 2009)
This endpoint indicator expressed in DALY is obtained

by modeling the cause–effect chain of water deprivation
for agricultural users (lack of irrigation water) leading to
malnutrition. It assumes that there is no general causality
fromwater consumption to lack of water for domestic use,
arguing that water access for domestic use is mainly
dependent on infrastructure (and not onwater) availability.
It builds on the scarcity indicator (M-PfisterSc) and
models the cause–effect chain by multiplying it by (1)
the agricultural users’ share of water use (as DAU) from
Vörösmarty (Vorosmarty et al. 2000)), (2) a socio-
economic parameter defined as a human development
factor for malnutrition, which relates the Human
Development Index (a composite index representing hu-
man development by considering life expectancy, educa-
tion and income published by the UNDP) to malnutrition
vulnerability and (3) two values independent of location
combined in an effect factor that describes the DALY/m3

of water deprived for agriculture: the per-capita water
requirements to prevent malnutrition (in cubic meters/
(year•capita)) and the damage factor denoting the damage
caused by malnutrition (DALY/(year•capita)). The effect
factor therefore carries two underlying assumptions: (1)
global malnutrition health impacts are exclusively caused
by a lack of water for irrigation, and (2) a case of malnu-
trition occurs only once all the water required for one
person is no longer available. The first assumption may
lead to an overestimation of impacts while the second may
lead to an underestimation. The results are derived on a
0.5°×0.5° grid cell scale and aggregated at the watershed
level (>10,000 watersheds, as in (Alcamo et al. 2003a).

& Boulay (named E-Boulay with different variants: _agri,
_dom, _marg, _distri, _Q) (Boulay et al. 2011b)

This endpoint indicator expressed in DALY is obtained
by modeling each water user’s loss of functionality. It
addresses three different impact pathways: malnutrition
from water deprivation for agricultural users, malnutrition
from water deprivation for fisheries and water-related dis-
eases associated with a lack of water for domestic use. Four
model scenarios are considered by E-Boulay as a cross-
combination of both original versions (addressing con-
sumption and degradation with suffix _Q) and the simpli-
fied version (which only addresses consumption) of the
model and two key modeling hypotheses: distribution and
marginal. Distribution (Boulay_distri or Boulay_distri_Q)
refers to the impact assessment in which all users are
competing and proportionally affected according to their
distributional share of water use for off-stream users (here,
agriculture and domestic). Marginal (E-Boulay_marg or E-
Boulay_marg_Q) refers to a modeling choice in which an
additional water use will deprive only one off-stream user
(in addition to in-stream users here, fisheries). The one for

which water has less value was set as agriculture by de-
fault. This hypothesis therefore excludes potential impacts
to domestic users. The distribution among users from
WaterGap is used to determine the distribution of affected
users for Boulay_distri (factor giving the cubic meter de-
prived distribution between affected users). The socio-
economic parameter used in all E_Boulay methods is one
minus the adaptation capacity (AC). High-income coun-
tries are considered to fully adapt (AC=1) whereas low-
income countries are considered not to adapt at all (AC=0)
to water deprivation. The adaptation capacity of medium-
income countries is considered to be linearly correlated
with gross national income (GNI) per capita. The effect
factor uses country-specific statistical data to obtain the
relationship between health impacts from malnutrition
(DALY/kcal of malnutrition×kilocalorie produced per cu-
bic meter for agricultural use or kilocalorie produced per
cubic meter for aquaculture use), associating 50 % of
malnutrition health impacts to a lack of calorie intake and
the remaining 50 % to water-related diseases, since they
often lead to malnutrition. These 50 % are added to the
health impacts in DALY from water-related diseases and
divided by the amount of water lacking for domestic use
based on the minimum requirement of 50 L/cap/day and
the actual regional water use by domestic users, resulting in
DALYper cubic meter deprived for domestic use. For both
effect factors, a linear relationship is therefore assumed
between the health impact and the deprived water. The
results are presented according to the M-Boulay spatial
scale of from the overlap of the country and main water-
shed scales for the simplified alternative versions (E-
Boulay_distri and E-Boulay_marg) and original methods
(E-Boulay_distri_Q and E-Boulay_marg_Q). In this paper,
for several analyses, the aggregated characterisation factors
(CFs) are separated into domestic and agricultural depri-
vation parts and referred to as E-Boulay_dom and E-
Boulay_agri, respectively.

& Motoshita (named E-Motoshita with different
variants:_dom, _agri, _agri (no TE))

This damage assessment model is based on the sum of
two distinct models: one for infectious disease damage
caused by domestic water scarcity (Motoshita et al.
2010b) (E-Motoshita_dom) and one for malnutrition dam-
age caused by agricultural water scarcity (Motoshita et al.
2010a) (E-Motoshita_agri).

For domestic water scarcity, the method assumes that
water resource scarcity caused by water consumption will
lead to a loss of access to safe water. Subsequently, based
on location, drinking unsafe water will result in the use of
infectious sources and health impairment by disease. The
method provides country-based CFs expressed in DALY
per cubic meter of water consumed obtained with M-
PfisterSc as a scarcity assessment, multiplied by the share
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of water used by domestic users (from Aquastat) and a
combined socio-economic and effect factor obtained by
applying non-linear multiple regression analysis consider-
ing related socio-economic factors such as GDP, expendi-
ture for capital formation, average temperature, sanitary
facilities, nutritional conditions and health expenditure
based on statistical data. The factor represents the inac-
cessibility to safe water due to domestic water scarcity and
a subsequent increase in infectious diseases (intestinal
nematode infection and diarrhea).

The impacts of malnutrition caused by agricultural wa-
ter deficit are modeled using the same data source for
scarcity and distribution as above, multiplied by a socio-
economic parameter describing the trade effect. This illus-
trates how food supply shortage in a country will spread to
other countries through international food trade. It applies a
food shortage sharing model based on the proportion of
world net import amount (in kilocalories) for net food
importer countries that are not able to adapt (or only
partially able to adapt) using the adaptation capacity de-
fined in Boulay et al. (2011b) based on GNI. For example,
if 1,000 kcal of food are not produced in Spain due towater
shortage and local crop productivity, the amount will be
distributed among all the world’s net importer countries
proportionally to the amount they import (in kilocalories).
Countries with low and middle incomes will be affected by
the food shortage. This effect is quantified in DALY by
using malnutrition-related DALYs in the importing coun-
tries (DALYs per kilocalorie malnutrition). The method
provides country-based characterisation factors in the con-
text of both domestic and agricultural water scarcity,
expressed in DALY per cubic meter of water consumed.
The method can also be used without the trade model (E-
Motoshita_agri (noTE)) to compare local effects.

2 Methods

The following section describes how the analysis was per-
formed. It is divided into three parts: comparison, analysis of
modeling choice and uncertainty assessment. The comparison
first assesses how the model results compare at the character-
isation factor level and the respective intermediary parameters
(identified by the blue squares in Fig. 1). A set of modeling
choices was identified, and their sensitivity in terms of the
final results was analysed using two versions of the same
model, differing only by the option being analysed (e.g. the
use of one or another source of data for modeling). For each
model, the uncertainty assessment quantifies the uncertainty
associated with the choice of model only.

Two statistical indicators were used to compare the models.
The difference between the model responses was assessed

through the mean difference coefficient (MDC), and the con-
sistency of model response through the rank correlation coef-
ficient (RCC), which are defined below. The correlation coef-
ficient (Pearson’s) was not considered an appropriate indicator
because the data revealed heteroscedasticity (i.e. the differ-
ence between the values given by two methods is not inde-
pendent on the value itself). When the homoscedasticity as-
sumption is violated, Pearson’s coefficient of correlation may
overestimate the goodness of fit.

The comparison sought to analyse the degree of model
response agreement and consistency from one model to the
next, rather than their correlation. Two models can have
100 % correlation but may still disagree. A mean relative
coefficient (MDC), as described in Eq. 2, was used to repre-
sent the difference between two models. It illustrates a mean
relative difference, which is the mean of the absolute differ-
ences between each data pair divided by their average. It
measures dispersion, just like the standard deviation would,
but it is not defined in terms of a specific measure of central
tendency: It represents the difference between two measure-
ments, not their deviation from an arithmetic mean. Also, the
standard deviation squares its differences, giving more weight
to greater differences and less weight to smaller differences
compared with the mean difference. It can be interpreted
similarly to a coefficient of variation, with a higher value
representing a greater difference between models. It should
be noted that the maximum value for the MDC is equal to the
number of datasets compared, such that, when two datasets
are compared, the maximum value of MDC is 2, since a large
difference will result in one value being negligible as com-
pared with the other, making the largest value divided by half
of its value (i.e. equaling 2).

MDC ¼ mean
Difference between data set

Mean of data set

� �
ð2Þ

The RCC is also referred to as the Spearman coefficient and
is used to represent the consistency between twomodels based
on the respective ranks that each regional parameter (at coun-
try or region level) would occupy. The RCC ranges between 0
and 1: The higher the value, the more consistent the models.
This method was successfully used by Fenner et al. (2005),
who aimed to compare models by ranking model outcomes.
This is especially relevant for comparative LCAs.

2.1 Model comparisons

2.1.1 Scarcity indicators

The first comparison is a generic comparison of all four
scarcity assessment methods (midpoint), as identified in
Fig. 1: M-SwissSc, M-PfisterSc, M-BWSc and M-BoulaySc.
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The comparison was carried out at the watershed level with
the 250 watersheds from the World Resource Institute as the
finest common resolution (Aguilar-Manjarrez 2006). Since all
four methods yield results in different units (cubic meter
equivalent referring to different equivalencies or ecopoints),
they are normalised using their respective world weighted
averages using withdrawal volumes as weighting factors.
Normalised results therefore correspond to equivalent units
of “world-cubic meter equivalent” for all methods.

The RCC and MDC between each pair of methods were
calculated (M-BoulaySc vs. M-PfisterSc, M-BoulaySc vs. M-
BWSSc, etc.).

2.1.2 Availability indicators

The M-BoulayAv and M-WIIXAv availability indicators both
consider water scarcity and change in quality, thus making
them principally comparable. However, the fundamental basis
upon which these methods assess the change in water quality
is different. While M-BoulayAv assesses a change in quality
based on the functionality of water for human users, M-
WIIXAv quantifies the change in quality based on environ-
mental standards for ambient water quality, which are mainly
ecosystem-oriented. The methods do not actually aim to mod-
el the same impact pathway, and the comparison is therefore
irrelevant. This is further addressed in the “Results and dis-
cussion” section.

2.1.3 Human health impacts: overall CF

The CFs, as presented in each of the four main models, are
directly compared in pairs. However, to enable an adequate
comparison, only the simplified versions of the Boulay
methods—those that disregard water quality—are used. The
effect of this modeling choice is further analysed in
Section 2.2. Since the Motoshita model results are only avail-
able at the country level, this scale was used for all endpoint
analyses.

2.1.4 Human health impacts: domestic user deprivation

The impacts of depriving domestic users are assessed in E-
Motoshita_dom and E-Boulay_distri. Only the domestic com-
ponent of Boulay_distri is used in this comparison and is
referred to as E-Boulay_dom. First, the entire CFs are com-
pared. Then, the scarcity and distribution of affected users
(DAU) parameters are removed from both methods, and the
socio-economic and effect factors (SEE) are compared. The
removed components (scarcity and DAU) were compared in
other parts of this paper (Sections 2.1.1 and 2.2.3). The SEE
factors are regionalised parameters in both methods and de-
scribe the human health impacts of domestic user deprivation
in DALY/m3 of lacking water. In E-Boulay_dom, the

adaptation capacity (socio-economical parameter) provides a
regionalised resolution, since the value of DALY caused per
cubic meter of water lacking for domestic users (effect factor)
is the same worldwide. In E-Motoshita_dom, this value is
regionalised bymodeling the loss of accessibility to safe water
and the subsequent increase of infectious disease damage is
regionalised by applying statistical regression analysis based
on country-specific data.

2.1.5 Human health impacts: agricultural user deprivation

The impacts of depriving agricultural users are assessed in all
four methods: E-Motoshita_agri, E-Pfister, E-Boulay_distri
and E-Boulay_marginal. The agriculture component of E-
Boulay_distri is considered here and referred to as E-
Boulay_agri. The models are compared on three levels: (1)
the CFs; (2) the product of the socio-economic and effect
factors (SEEs) (isolated and compared by removing the scar-
city factors and distribution of affected users in bothmethods);
and (3) the effect factors alone. This last comparison can only
be done for E-Pfister and E-Boulay, which both assess a single
worldwide value that describes the impacts in DALYper cubic
meter of water lacking for agricultural users.

2.2 Analysis of specific modeling choices

Several modeling choices may affect (1) the inventory require-
ments and the four modeling parameters identified in Fig. 1
and Eq. 1 (Aguilar-Manjarrez 2006): (2) scarcity, (3) affected
users, (4) socio-economic parameter and (5) effect factor. A
specific number of key choices that differ from one method to
the next are identified below, and for each model, the impor-
tance of the choice is quantified by assessing the consistency
(RCC value) and difference (MDC value) between the two
versions of the same model in which different choice options
are applied. No choice on effect factor is analysed here as they
are directly compared and analysed in the previous section.

2.2.1 Inventory-related choices

Four model specifications that affect the level of detail re-
quired for the inventory flows are identified: temporal resolu-
tion scale, water source, spatial resolution scale and quality
aspect. We evaluated the extent to which the models with a
higher level of detail leading to higher spatially or temporally
resolved inventory flows and/or more detailed specifications
on water source and water quality increase the discriminating
power of model outcomes.

In daily practice, inventory data at lower (or unknown)
spatial and temporal resolution, water withdrawals or releases
without quality or water source specification are common
situations. CFs for the corresponding inventory flows are
mainly generated by two different approaches: (1) by adopting
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a lower level of detail, e.g. calculating national CF using
national averaged model input parameters (such as water
consumption and availability) or using total available and
consumed water instead of differentiating surface versus
ground water or (2) by keeping the highest level of detail to
calculate specific regional CFs and aggregating them using
weighted averages to calculate, e.g. a national CFs using water
withdrawals in each sub-watershed as weighting factor, or by
calculating an “unspecified origin” CF based on surface and
ground water CFs using ground and surface water with-
drawals as weighting factors. We evaluated the influence of
these choices, which resulted in models with a lower level of
detail versus the aforementioned higher-resolution models.

a. Temporal resolution scale

Higher level of detail: monthly assessment. Water scarci-
ty is known to be a seasonal problem in many regions of
the world. While most indices are annual, two methods
provide monthly indicators: M-BWSSc and M-PfisterSc
(Pfister and Bayer 2013). M-PfisterSc is used to compare
the original annual values with individual monthly
values. The largest absolute difference between a month-
ly value and the annual value is calculated for each region
and georeferenced on a map to identify the regions in
which collecting inventory data with higher temporal
resolution is worthwhile.
Lower level of detail: annual assessment. To characterise
the inventory data without any temporal specification, the
generic CFs must be recalculated: (1) using annual aver-
aged input values or (2) using a weighted average of
monthly CFs based on total monthly water withdrawals.
The absolute difference between the two options is illus-
trated on a map, and the MDC was calculated.

b. Water source

Higher level of detail: specifying surface and ground
water sources. It is relevant to differentiate the water
sources used in the inventory since the decreased avail-
ability of surface or ground water will not affect the same
users. Even though surface and ground water are often
interconnected, transport, hydropower and fisheries can-
not use groundwater. The M-BoulaySc method is used to
evaluate the importance of specifying the water source
(surface or ground).
Lower level of detail: unspecified source. If the source is
not specified, two approaches may be used to characterise
the inventory flow: (1) assess all available and consumed
water as a single resource or (2) use a weighted average of
surface and ground water CFs using the fraction of total
regional surface and ground water withdrawals, respec-
tively, as weighting factors.

c. Spatial resolution scale

Higher level of detail: watershed and sub-watershed
scale. The difference in geographical resolution between
sub-watershed, watershed and country is assessed using
M-BoulaySc. The last two resolutions are obtained from
the withdrawal-based weighted averages of sub-
watershed results. The MDC was calculated in compari-
son with the country scale.
Lower level of detail: country scale. For a country-level
assessment, the following scarcity indexes were com-
pared using M-BoulaySc: (1) scarcity index calculated
based on the mean CTA for the country, (2) scarcity index
calculated from the weighted average of watershed’s
scarcity indexes or (3) scarcity index calculated from
the weighted average of sub-watershed’s scarcity index-
es, using water withdrawals as weighting factors.

d. Quality aspect

Higher level of detail: water quality specification. Water
that is released at a lower quality than withdrawn may
become unusable by some downstream users, thus reduc-
ing their water availability. The original M-BoulayAv
method assessing both degradative and consumptive wa-
ter use is compared with the simplified M-BoulaySc,
which addresses only consumptive water use. The results
were compared according to three hypothetical scenarios:
(1) 100 % consumption of good quality surface water
(S2a), (2) 100 % consumption of poor quality surface
water (S3) or (3) 100% degradation of good quality water
(S2a) into very poor quality water (S4).

The same three hypothetical cases were analysed at the
endpoint level using the E-Boulay_distri and E-
Boulay_distri_Q methods to assess the difference in hu-
man health impacts when considering the impacts of
water consumption alone and those generated by water
consumption and degradation.
Lower level of detail: unspecified quality. Comparing (1)
M-BoulaySc (no quality specified) with (2) a weighted
average of M-BoulayAv CFs using amounts of water of
different quality withdrawn from different watersheds
would be of interest. However, such quality-specific
withdrawal data are not available, meaning that CFs of
“unspecified quality” can only be calculated using the
“lower level of detail” approach (i.e. using total water
without any quality specification). Therefore, no compar-
isons were possible for this parameter.

2.2.2 Scarcity modeling choices

Water scarcity indexes were developed using withdrawal-to-
availability ratios (WTAs) (i.e. M-PfisterSc, M-SwissSc) or
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consumption-to-availability ratios (CTAs) (i.e. M-BoulaySc,
M-BWSSc). Moreover, hydrological data sources and scarcity
model algorithm change from one method to the other. While
M-SwissSc squares the WTA, M-BWSSc subtracts 80 % of
available water for ecosystems. M-PfisterSc and M-BoulaySc
both use S-curve modeling to fit the ratio (WTA and CTA,
respectively) to values between 0 (For M-BoulaySc) or 0.01
(for M-PfisterSc) and 1. The curve is tuned using withdrawal-
based water scarcity thresholds (in M-PfisterSc), which de-
scribes it as moderate or severe when respectively 20 or 40 %
of the resource is withdrawn ((Alcamo et al. 2000; Vorosmarty
et al. 2000)). Alternatively, the curve is tuned using
consumption-based equivalent thresholds (in M-BoulaySc)
extrapolated from the withdrawal-based ones, as being 6 and
12 % of the consumed resource (values updated from (Boulay
et al. 2011b) with more recent data). The following analyses
were performed.

a. Consumption-based versus withdrawal-based scarcity
(CTA vs. WTA) Water withdrawals partly return to the
catchment where they were extracted (Perry 2007), and it
has therefore been argued that a consumption-based indi-
cator (CTA) is more relevant than a withdrawal-based
indicator (WTA) (Boulay et al. 2011b; Berger and
Finkbeiner 2013). Two analyses were carried out to eval-
uate the model choice. First, CTAs and WTAs were di-
rectly compared using the underlying data fromWaterGap
through the rank correlation coefficient for the 808 cells
covering the globe, as used inM-BoulaySc. Second, using
the same model, WTA-based scarcity (based on the orig-
inal OCDE thresholds) was compared with CTA-based
scarcity (based on the aforementioned extrapolated scar-
city thresholds). While the original M-BoulaySc model
uses an S-curve to describe the relationship between CTA
and scarcity between the two thresholds that define low
and high scarcity, we linearised the curve in order to
exclude the differences related to the algorithms used to
fit the curves.

b. Scarcity model algorithm
The four modeling choices used to translate CTAs and

WTAs ratios into scarcity indicators were evaluated: (1)
S-curve modeling between the thresholds for low and
high scarcity, set at 0 and 1 respectively, as in M-
BoulaySc and M-PfisterSc; (2) linear function between
the thresholds for low and high scarcity, set at 0 and 1
respectively; (3) power function applied to the ratio of
water consumed to a critical flow, as described by M-
SwissSc and adapted to consumptive use and (4) direct
use of the ratio considering that 80 % of available water is
reserved for ecosystems, as modeled inM-BWSSc. These
modeling choices were applied using CTAs calculated
with the WaterGap data. Values were normalised for
comparison purposes and plotted on an x–y graph.

c. Data sources for water availability and water use
In order to assess the importance of the hydrological

data source (water availability and water use), CTA ratios
were calculated with data fromWaterGap, Aquaduct from
Fekete et al. (2002) and Mekonnen and Hoekstra (2011),
as used inM-BWSSc. This comparison was performed on
the main watersheds used in M-BWSSc. The mode M-
BoulaySc is used to illustrate the largest differences in
scarcity on a map.

2.2.3 Affected users

While all current methods suggest that water use can lead to
water deprivation for agriculture, the same is not true for
domestic users or aquaculture/fisheries. Based on the existing
models, the impact of the choice is analysed along with the
data source used to assess the extent to which a specific user is
deprived (DAU).

a. Aquaculture/fisheries
Only the E-Boulay methods include the impacts of

water deprivation on aquaculture/fisheries. The contribu-
tion of the impact pathway to the total human health
impacts was analysed by comparing E-Boulay_marginal
method with and without the aquaculture deprivation
impacts.

b. Domestic
While Pfister et al. stipulate that increased water use

will not generally affect domestic users, Motoshita et al.
set out a model that quantifies human health impacts from
water deprivation for domestic users. In the Boulay et al.
model, both options are offered, and the choice is left to
the practitioner to include (distribution) or exclude
(marginal) the effect on domestic users. The alternatives
are compared, and MDC and RCC are calculated.

c. Data source for the distribution of affected users
National values for user distribution vary depending on

the data source: WaterGap (used in E-Boulay), Aquastat
(Food and Agriculture Organization of the United Nations
2999) (used in E-Motoshita) or Vorosmarty et al. (2000a)
(used in E-Pfister). To assess the importance of these
sources, E-Boulay_distribution was run using all three
data sources. The results were compared.

2.2.4 Socio-economic parameter

One of the main diverging choices that describes the influence
of the economic context on malnutrition resulting from water
use is the consideration of a trade effect in E-Motoshita_agri,
which illustrates how a food supply shortage in a country will
spread to other countries through international food trade. The
extent to which the inclusion of this effect impacts the results
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is analysed by comparing E-Motoshita_agri (no TE) to E-
Motoshita_agri, E-Boulay_agri and E-Pfister.

2.3 Uncertainty assessment of model choice

Hertwich and colleagues (1999) distinguish several types of
uncertainty, including parameter uncertainty, model uncertain-
ty, decision rule uncertainty, natural variability, etc. Here, only
the uncertainty associated with the choice of model is assessed
at both midpoint and endpoint levels.

At midpoint, the assessment is carried out for all major
watersheds compared in Section 2.1.1 for scarcity assessment
methods only (availability methods are not comparable). The
uncertainty was determined by using each set of normalised
data to identify the minimum and maximum values between
the models for the same watershed. These values were then re-
converted to the scale of each model (i.e. “de-normalised”) in
order to provide a method-specific min–max range per water-
shed. Using the normalised results obtained through the dif-
ferent methods, an average value was also provided for each
watershed in cubic meter world-normalised equivalent per
cubic meter water consumed, including a 95 % confidence
interval.

The uncertainty of the choice of model was assessed for the
different human health endpoints (from water deprivation for
domestic and agricultural users). No normalisation step was
necessary since all models represent the same damage unit
(DALY) and the minimum and maximum are identified across
models assessing impacts on the same user. An average be-
tween the different method results is calculated for impacts on
domestic and agricultural users, with a 95 % confidence
interval bracket.

3 Results and discussion

Table 1 summarises the RCCs and MDCs for all proposed
evaluations. The horizontal bars are largest when the methods
differ most or the choices are the most influential (i.e. a low
RCC and high MDC).

3.1 Model comparison

3.1.1 Scarcity indicators

The highest consistency was observed between M-BoulaySc
and M-PfisterSc (RCC=69 %), which is explained by the
choice of similar low and upper scarcity thresholds and logis-
tic function (S-curve). A comparative graph is included in the
Electronic Supplementary Material (Fig. S2).

3.1.2 Availability indicators

The two availability assessment methodologies were not
compared quantitatively, since they target two distinct areas
of protection. M-BoulayAv is an availability indicator at an
intermediate modeling step to assess water deprivation for
human uses and the resulting impacts on human health. M-
WIIXAv addresses the potential impacts of a loss of quality
based on ecosystem quality standards. This could be con-
sidered as a potential midpoint indicator for the impact
pathway leading to the ecosystems quality area of protec-
tion. However, it is not clear which additional impacts are
not already captured in specific pollution indicators. This
indicator should be used with caution in an LCA context to
avoid double counting with impact categories such as
ecotoxicity or eutrophication if the contaminants are con-
sidered in the availability assessment as well. M-WIIXAv
could be used in parallel to evaluate contaminants that are
not addressed by other methods (e.g. fecal coliforms, COD,
etc.).

For both methods, water quality data remain a weak point,
since global datasets providing environmental concentrations
have limited measurement points for several regions of the
world.

3.1.3 Human health CF

Figure 2 shows the comparison between endpoint CFs.
Both E-Boulay methods (distribution and marginal) yield
generally higher results than E-Motoshita, with the latter
showing higher results than E-Pfister. E-Boulay_distri re-
sults are higher than E-Boulay_marg, since the impacts of
domestic user deprivation are greater than those of agri-
cultural user deprivation and only included in E-
Boulay_marg. Since the graph is on a log scale, zero values
are not plotted, despite their relevance (60 of the 175
countries).

3.1.4 Human health: domestic user deprivation

Figure 3 compares the E-Boulay and E-Motoshita model
results for the pathways linking water deprivation for
domestic users to human health impacts. The CFs of E-
Boulay_dom are generally higher than E-Motoshita_dom.
The rank correlation between the two models is low
(26 %), and they differ significantly (MDC is relatively
high, 1.78). A higher correlation is observed for the
intermediary parameter SEE (RCC of 78 %) (i.e. exclud-
ing both the scarcity and distribution of the affected
users intermediary parameters (see Eq. 1)). The MDC,
however, remains relatively high at 1.72. This means that
this section of the model is generally consistent in terms
of comparison of regions
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For the 124 CFs analyzed, in E-Boulay_dom, there are 60
values for which the result is 0 and only 5 in E-Motoshita_dom
(Fig. 3). The largest differences are in poor countries with no
scarcity problem, where the choice in lower value for scarcity
differs: Avalue of 0 is chosen in E-Boulay_dom, and a value of
0.01 is used in E-Motoshita_dom (coming from M-PfisterSc).
These countries include Angola, Central Africa, Benin,
Burundi, Congo and Ghana.

When focusing on the SEE factor (see Electronic
Supplementary Material, Fig. S3), E-Boulay_dom had non-

zero values for 107 of 139 countries analysed versus 128 non-
zero values in E-Motoshita_dom. It should be noted that zero
values constitute a result and not a gap or lack of data.

3.1.5 Human health: agricultural user deprivation

A comparison of regional human health CFs from water
deprivation for agriculture is shown in Fig. 4. The E-Pfister
and E-Boulay_agri CFs show the highest consistency (RCC=
74 %), while both methods demonstrate low consistency with

Table 1 Rank correlation coefficients (RCC) and mean differences (MDC) for a model comparisons and b choice analysis
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Table 1 (Continued)

The smaller the colored bars, the more consistent/in agreement the models or the choices. Sections in green refer to midpoint result analysis
The longer the red bar the lower the correlation
The longer the blue bar, the higher the difference
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E-Motoshita_agri (53–49 %). Despite their high correlation,
absolute difference between E-Pfister and E-Boulay_agri can
sometimes be of two to three orders of magnitude. Of the 124
countries analysed, E-Boulay_agri generated zero-value for
57 versus 17 and 3 for E-Pfister and E-Motoshita_dom, re-
spectively. The zero-values in E-Boulay_agri come from the
scarcity and socio-economic parameters, which were both set
at zero when below the threshold set to define each issue. In
general, E-Boulay_agri yielded greater impacts than E-Pfister,
and in most cases, E-Boulay_agri also led to more significant
impacts than E-Motoshita_agri.

When comparing the SEE factors alone (see Eq. 1
(Aguilar-Manjarrez 2006)), the correlation between E-
Motoshita_agri and_Boulay_agri and E-Pfister E_drops to a
negative value, since the correlation was driven by scarcity
and the distribution of affected users. The results of
E_Boulay_agri and E-Pfister are very consistent (88 %), and
the MDC (0.76) is relatively low. SEE and EF factor graphics
are included in scarcity or availability index (SI).

Focusing on the effect factor only (i.e. disregarding the
distribution parameter (DAU)), E-Pfister and E-Boulay_agri
show constants values (i.e. independent of location)—1.363×
10−5 DALY/m3 and 6.53×10−5 DALY/m3, respectively. E-
Pfister considers a minimum volume of water needed to meet
direct human dietary requirements (1,350 m3/(year•capita))
and a damage factor from malnutrition. The latter is derived
from a linear regression between country-specific malnutrition
rates and human burdens related to malnutrition (DALY),
resulting in a per-capita malnutrition damage factor of 1.84×
10−2 DALY/(year•capita). The effect factor is obtained by the
ratio between the two values. The effect factor of E-
Boulay_agri directly relates the average health burdens caused
by calorie malnutrition (DALY per kilocalorie) to the total
calorie deficit of a given population. The geometric mean
across all low- and middle-income countries facing malnutri-
tion was calculated (1.27×10−7 DALY/kcal). A similar value
of 1 278 m3/(year•capita) is considered to meet a direct human
dietary requirement of 2,800 kcal/(day•capita), resulting in an
average agricultural productivity of 800 kcal/m3, which is
then corrected to account for the share of agricultural produce
used to feed livestock. The effect factor is obtained by multi-
plying the malnutrition burden by the corrected agricultural
productivity. The connection between malnutrition and water
deprivation for agriculture in E-Pfister assumes that one case
of malnutrition occurs when the total water requirement for
one person to eat for 1 year is consumed. This difference
explains the lower value than E-Boulay_agri, which assumes
a linear effect of malnutrition per kilocalorie deprived.

Overall, with respect to E-Boulay, E-Pfister yielded a lower
effect factor, higher SEE and lower CF. One can deduct that
the socio-economic parameter is responsible for the higher
SEE, and the distribution of affected users is responsible for
the lower CF—a parameter analysed in Section 2.2.3.
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3.2 Analysis of specific modeling choices

3.2.1 Inventory-related choices

a. Temporal resolution scale

Higher level of detail: monthly assessment. Figure 5 shows
the maximum absolute difference between the monthly
water scarcity indicators versus the annual value. It is to
be compared with the original range of 0.01 to 1 of the M-
PfisterSc scarcity indexes. The difference remains below
0.1 for large areas of the world and is significant (0.1–0.5)
and very large (>0.5) in most of the US, Europe and India.
This difference would lead to higher results for month-to-
month comparisons. The high consistency (RCC) between

monthly values and annual values (96 %) and relatively
low MDC (0.23) suggest that results of a comparison
between products where water use occurs at the same time
for both products would not be much affected by a higher
temporal scale. However, for those locations identified in
red in Fig. 5, results within one region can change signif-
icantly based on the temporal differences in inventory data.
This might be especially relevant when comparing different
crops with different growth periods as further illustrated by
Pfister and Bayer (2013).

Lower level of detail: annual assessment (annual data or
monthly weighted average based on withdrawals). Scarcity
indicators based on annual model input data versus indica-
tors aggregated frommonthly scarcity indicators based on a
weighted withdrawal average are highly correlated (RCC=
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98 %) and show low MDC (0.13). Exceptions are in
regions mainly located in the US and Europe (see map S5
in SI). In these regions, which face peaks of higher scarcity
during specific periods in the year, a weighted average of
monthly scarcity is generally more representative to assess
the impacts associated with constant year-round with-
drawals than an annually calculated value as also concluded
by Pfister and Bayer (2013).

b. Water source

Higher level of detail: surface and ground water sources.
Specifying surface and ground water sources in the assess-
ment scarcity indicators leads to MDCs of 0.63 and 0.29
and RCCs of 70% and 83% for surface and ground water,
respectively, when compared with a general scarcity indi-
cator based on overall water use and availability. In 55 %
of cases, the resulting scarcity values are unchanged (see
Fig. 6). In approximately 35% of cases, scarcity indicators
specific to surface water are higher; in only 2.5 % of cases,
scarcity specific to ground water is higher.
Lower level of detail: unspecified source. Scarcity indi-
cators based on overall aggregated water use and avail-
ability versus indicators aggregated from surface and
ground water scarcity results based on the intensity of
water withdrawal are generally highly correlated (RCC=
95 %) with a relatively low MDC (0.23). Exceptions are
mainly located in the US, Central Asia, southeast
Australia and certain coastal regions (see map S6 in the
Electronic Supplementary Material).

c. Spatial resolution scale

Higher level of detail: country, watershed and sub-
watershed scales. A higher spatial resolution than the
country scale results in an MDC of 1.06 and an RCC of

63 % when compared with the watershed scale. The
difference increases when the values are compared with
the sub-watershed scale: MDC of 1.32 and RCC of 54%.
Figure 7 shows where the most significant differences lie.
Lower level of detail: country scale. Different aggregat-
ing choices to obtain country-scale scarcity values result
in a moderate difference (MDC and RCC of 0.18 and
95 %, respectively) when comparing countrywide values
for water use and availability data versus a watershed-
based scarcity aggregation. The difference increases
(0.85 and 71 % for MDC and RCC, respectively) when
the countrywide model is compared with a sub-watershed
scarcity aggregation. Figure 8 illustrates the greatest var-
iation incurred from such modeling choices on the
resulting country level scarcity indicator. The values are
available in the Electronic Supplementary Material.

d. Quality aspect

Higher level of detail: water quality specification. Model
results accounting for water quality (M-BoulayAv) are
not correlated with results that exclusively address water
quantity (simplified M-BoulaySc). At midpoint, the
MDC ranges between 0.55 and 1.38, and the RCC ranges
between 30 and 92 %. At the endpoint, the MDC ranges
between 0.79 and 1.24 and the RCC between 43 and
59 %. A detailed description of the differences is present-
ed in SI. The results reveal significant country-specific
variations. The variations in results between countries
and the map published in Boulay et al. (2011a) can help
in identifying specific case for each region.

At midpoint, representing results based on scarcity or
availability can greatly influence the conclusions of a
study. The choice should therefore be made based on the
question to be answered. If only physical scarcity is to be
addressed or if no pollution occurs, then a scarcity

Fig. 6 Maximal absolute difference between resulting scarcity indicators specifying surface and ground water versus a generic scarcity indicator
considering overall water use and availability. Results are obtained using M-Boulay-Sc, with values that range between 0 and 1
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indicator is appropriate. To assess the availability of the
water resource for other users—ecosystems or human
users (as described above)—availability is a more appro-
priate indicator. It has been argued that including quality
could lead to double counting when used in parallel with
specific water pollution indicators (Berger and Finkbeiner
2013), but, in reality, this is rarely the case as the contri-
bution to the potential impacts of a specific contaminant
would need to be considered in both: the loss of water
functionality (Boulay et al. 2011b) and in human toxicity
models (Rosenbaum et al. 2008). Moreover, the threshold
for functionality must be exceeded for drinking water, in
which case one could argue that the ingestion route of
exposure may not occur, and the human toxicity impacts
of drinking may lead to double counting. However, the
pathway leading to the human health impacts from water
deprivation is associated with hygiene and biological con-
tamination and less so with toxicity, though some cases
may fall in an ambiguous zone. Using themarginal version
of the model helps to avoid potential double counting.

3.2.2 Scarcity

a. CTA versus WTA
WTA and CTA results are generally consistent (RCC=

96%). Correlating the data fromWaterGap shows that, on
average, 30 % of the water withdrawn in the world is
consumed. Figure 9 shows the difference in results using
M-BoulaySc. The most important variations are observed
in agricultural-intensive regions, where a large fraction of
water withdrawn is consumed, and in regions with signif-
icant water-cooling needs, where most withdrawn water is
not consumed. Worldwide, the difference in scarcity re-
sults in MDC and RCC values of 0.35 and 87 %,
respectively.

b. Scarcity model algorithm
Modeling the scarcity index with an S-curve or a

straight line yields a relatively small difference in scarcity
results: MDC=0.19 and 100 % consistency, as illustrated
in the Electronic Supplementary Material (Fig. S7). The
difference increases when an upper threshold of scarcity

Fig. 7 Maximal absolute difference between different spatial resolution choices: country scale (aggregated from sub-watershed), watershed scale
(aggregated from sub-watershed) or sub-watershed scale scarcity. Results are obtained using M-Boulay-Sc, with values that range between 0 and 1

Fig. 8 Maximal difference for different choices for country-scale scarcity modeling: using direct country data, aggregating scarcity from watershed or
aggregating scarcity from sub-watershed, using M-Boulay-Sc (result from 0 to 1)
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equal to 1 is excluded:MDC ranging between 1.70 and 1.92
with the higher value corresponding to the use of a power
function. The consistency (RCC) is strictly related to the
inclusion or exclusion of a threshold, which will make the
rankings of low-scarcity regions (and high-scarcity regions)
equal and less correlated with direct CTA. Adopting an S-
curve or a straight line is therefore less important than
defining scarcity with (or without) thresholds.

c. Data source
The underlying data used to calculate CTA provided

from WaterGap, Aquaduct or as used by the Water
Footprint network (Mekonnen and Hoekstra 2011; Fekete
et al. 2002) are compared using CTA results (RCC 90–
94 % and MDC 0.96–1.04). Aquaduct and WaterGap are
the most similar in results. Calculating the scarcity indica-
tors with M-BoulaySc using consumption and availability
data from one or the other source results in significant
differences in some parts of the world, shown in Fig. 10.

The three models providing the data are constructed
differently. For the water availability data, WaterGap

calculates water balances for each grid cell using climatic
data and physiographic characteristics (soil type, slope,
etc.), and these calculations are tested and calibrated to
observed discharge data. Fekete et al. (2002) have used
observed discharge data from monitoring stations to dis-
tribute runoff over a simulated river network, determined
by a water balance model and the discharge observed.
Aqueduct water availability is based on runoff data obtain-
ed from the Global Land Data Assimilation System version
2 (GLDAS2) (Rodell et al. 2004) and used to calculate the
water available before and after human consumption. This
is later assessed using withdrawal volumes, estimated from
FAO AQUASTAT (Food and Agriculture Organization of
the United Nations n.d.) reported withdrawal for each
sector (domestic, industrial and agricultural) as functions
of annually measured indicators such as GDP, population,
irrigated area or electrical power production and combined
with consumptive use ratios by sector by Shiklomanov and
Rodda (2003). TheWaterGapwater usemodel is also based
on these three sectors, and computes the water intensity (per

Fig. 9 Comparison of CTA- versus WTA-based scarcity (using M-BoulaySc, values ranging from 0 to 1)

Fig. 10 Absolute difference in scarcity indicators usingmodel input data onwater consumption and availability fromWaterGap, Aquaduct or as used by
the WFN. Results are obtained using M-BoulaySc, with values that range from 0 to 1
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unit use of water) for each sector and multiplies it by the
driving force of water use: population, national electricity
production and area of irrigated land and number of
livestock for domestic, industrial and agricultural sectors,
respectively. The WFN water consumption data are
calculated using crop water use and production models
from Mekonnen and Hoekstra (2011) and Fekete et al.
(2002), and water withdrawals from Aquastat (a statistical
database from FAO) are used along with consumptive use
ratios of 5 and 10 % for industrial and domestic use,
respectively.

Scarcity overview The choice of model can have a significant
impact on the scarcity results, since they differ in terms of
consistency of response and absolute value. Among the most
influential modeling choices, the scale at which the modeling
data are used to calculate the index leads to important differ-
ences between sub-watershed and country scales. Maps
shown in Fig. 7 identify regions in which collecting
regionalised data at the sub-watershed level, rather than the
country level, is relevant. While spatial resolution is an influ-
ential aspect, the question of the optimal scale remains.
Variations in terms of water use and availability may be
observed at a very small scale—perhaps a neighbor has a
pond and not the other—but scarcity does not need to be
defined at such a local level. Different scales may be relevant
depending on the type of impact and region. Since scarcity is
only associated with the modeling of impacts on human health
(Kounina et al. 2013), the scale at which human society can
still use water with no further adaptation to water scarcity is
the most relevant and may range from a few kilometers that
populations must walk in developing countries to larger areas
that already get water from a mountain hundreds of kilometers
away through pipelines, for example. Determining a scarcity
index with no socio-economic context, although practical,
may therefore have little relevance as a midpoint for assess-
ment on human health. A region-specific optimal scale must
still be determined, and inventory efforts must then be adapted
to the scale, since variations are important even when using
withdrawal-weighted averages. Temporal scale on the other
hand showed a large variation throughout the year (large
difference in many important regions between monthly and
annual indicator), but these differences showed a high corre-
lation between regions, meaning that absolute results would
be affected but not so much comparative ones with same
temporal inventory information.

In addition, the relationship that describes scarcity as a
function of CTA (or WTA) was also shown to influence the
results. The key issue is therefore how to define scarcity, and
this is reflected in two choices: the choice of curve (direct,
exponential or logistic) and the use of thresholds. On this later,
both withdrawal-basedmethods and indexes (M-PfisterSc and
M-SwissSc) use the OCDE thresholds at which a region faces

moderate or severe water stress when respectively 20 or 40 %
of the resource is withdrawn. While these thresholds are not
defined based on scientific data, they at least provided a
commonly agreed upon reference, which does not exist for
consumption-based scarcity. This issue must be addressed in
future research work, since scarcity is caused by water con-
sumption and not simply withdrawal. Regarding the choice of
curve, logistic and exponential curves correspond to opposite
views in the assessment of regions with a high fraction of
water use (a logistic curve results in smaller differences,
whereas an exponential curve increases the difference). At
this point, no robust data exist upon which to base this choice;
hence, the direct curve represents the intermediate choice with
the least added bias.

The source of the data is not important for most of the
world when using M-BoulaySc, except for specific parts of
the world (North America, Spain, Eastern Europe, East and
South Africa, and other isolated watersheds) where differ-
ences are significant. The type of model and data reference
year may be possible sources of discrepancy. The WaterGap
water use data are for year 2000, and the water availability
data are for 1961–1990. The WFN data average the 1996–
2005 time period.

Finally, the differentiation between withdrawn surface wa-
ter versus withdrawn ground water and the use of a WTA- or
CTA-based indicator made less of a difference at a global
level, with, however, a few important exceptions in specific
regions. Moreover, it is uncertain whether surface and ground
water scarcity are meaningful midpoints. While they lead to
different potential human health impacts, greater groundwater
scarcity does not necessarily lead to more significant impacts,
and perhaps, this distinction is only necessary when modeling
endpoint damages, where impacts associated with a specific
type of water can be assessed. Hence, this type of differenti-
ation may be useful depending on the objective of the study
and only for the regions highlighted in Fig. 6. Groundwater
data of a satisfying quality are still not available and must be
further developed from hydrological models.

3.2.3 Affected users

a. Aquaculture
Though fisheries are important water users in certain

parts of the world, the proportion of water used for this
purpose in comparison to agriculture or domestic use is
generally small (Boulay et al. 2011b). Consequently, in-
cluding or excluding the impact pathway does not affect
ranking and leads to an MDC of 0.0004, with the largest
difference (absolute) seen for Egypt and China at 1.3×
10−6 DALY/m3.

b. Domestic
Comparing both hypotheses proposed in E-Boulay

(marginal and distribution approaches) leads to an RCC
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of 83 % and an MDC of 0.75. The difference stems from
attributing 100% of the water deprivation to agriculture or
using the fraction of water used by each user (i.e. includ-
ing domestic users). The greater impacts of depriving
domestic users result in a significant difference for all
low- and middle-income countries with water scarcity
(see map S8 in SI). This is because, even though domestic
users represent a generally smaller fraction of users than
agricultural (10–20 % of total use), the effect factors for
domestic deprivation is higher than agricultural depriva-
tion (Boulay et al. 2011b).

c. Data source
The world average fraction of water used for agricul-

ture across watersheds differs according to the data
source: 46 % with WaterGap (used in E-Boulay), 61 %
with Aquastat (used in E-Motoshita) and 65 % with
Vorosmarty et al. (2000a) (used in E-Pfister). World-
weighted averages using watersheds water withdrawal
from WaterGap as a weighting factor yields 74 %, 72 %
and 77 %, respectively. Calculating the same results with
E-Boulay_agri in DALY from agricultural water depriva-
tion with these three different data sources for distribution
of affected users shows a change in RCC from 87 to 93 %
and in MDC from 0.30 to 0.60. Aquastat and WaterGap
are the best correlated with the smallest difference.
Although the resulting difference is not as significant as
the choice of model, for example, this discrepancy be-
tween models may be easily harmonised by selecting the
data source believed as being the most robust. The differ-
ence may be observed in the relative difference between
the SEE and CF of E-Pfister as compared with E-
Motoshita_agri. Since only the distribution of affected
users and scarcity differ between the SEE and CF and
since they both use the same scarcity indicator, the differ-
ence in relative magnitude may be attributed to the user’s
fraction of water use (see SI).

3.2.4 Socio-economic

The Motoshita_agri model differs significantly when consider-
ing (or not) the trade effect (RCC of 76 % and MDC of 1.32).
When comparingMotoshita_noTE (instead of the original mod-
el) with E-Boulay_agri and E-Pfister, the correlation increases
from 59 to 75% (as compared with 53 to 49 %with the original
model in Section 3.1.5), thus demonstrating the significance of
the trade effect which is not present in the other models.

Overview of human health impactsWhenmodeling the human
health impacts of water use, all three models agree that scarcity
should be considered, followed by a parameter that describes
the extent to which each user is affected (DAU) and an assess-
ment of the socio-economic situation and, finally, an effect
factor that quantifies the health impacts in DALY for each

cubic meter for which a specific user is deprived. Differences
arise out of the choice of scarcity indicator, but also out of the
choice of users affected by water deprivation. Considering the
effect on domestic users impacts the results and, although there
is no consensus on whether they actually are affected or not,
efforts towards a consensual model should consider this as a
sensitive choice. Aquaculture/fisheries are only considered in
E-Boulay and, although it is conceptually relevant to include it,
it was shown to be insignificant for most of the world.

The trade effect factor introduced in E-Motoshita_agri had
an important effect on the results, and, although still under
development, the results indicate that further research into trade
effects modeling is appropriate, since it constitutes an addition-
al modeling step that is not yet included in other models.
Excluding such effect could significantly change the conclu-
sions of an assessment and underestimate water use impacts in
richer countries. This is in agreement with the discussion in
Boulay et al. (2011a) on the indirect impacts, and, ultimately,
the two concepts should be combined: Agricultural water dep-
rivation in a rich country either leads to an increase in imports
and associated indirect impacts or to a reduction in exports with
malnutrition-related human health consequences in developing
importing countries. Whether this should be included in the
characterisation factor or modeled separately as a model
boundary extension should be agreed upon.

Although the effect factor from E-Motoshita_agri could not
be directly compared, the value in DALY per cubic meter
deprived for agriculture obtained by E-Pfister and E-Boulay
were compared, and the value of Boulay is higher, as it
assumes that malnutrition occurs proportionally to lack of
irrigation water, whereas E-Pfister assumes that malnutrition
occurs when all irrigation water necessary for food production
has been consumed.

Lastly, it is important to keep in mind that, even though
modeling choices are compared and general trends are uncov-
ered, it does not certify that the damages that are modeled
actually occur in the predicted way. Health damages are
extremely hard to predict, and the relation between water
consumption, scarcity and impacts is still at this point based
on logical argumentation, and not a verified mechanism.

3.3 Uncertainty

The uncertainty associated with the choice of model is shown
in Fig. 11 as the maximum difference between model results
(max–min) for scarcity and human health deprivation for
domestic and agricultural users. The numerical values of the
confidence intervals for each model are provided in SI. While
uncertainty may be high in certain regions, this is not the case
everywhere (Fig. 11).

We only addressed the uncertainty associated to the choice
of the model. The reader is invited to refer to other publica-
tions for more information about parameter and model
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uncertainty. Pfister and Hellweg (2011) addressed model un-
certainty for the Pfister model; Bourgault et al. (2012) quan-
tified the uncertainty of characterisation factors due to spatial
variability within the Boulay method, and its parameter un-
certainty is assessed in the upcoming impact model Impact
World+ (Bulle et al. 2012).

The average values were shown along with the original
models in Figs. S2, 3 and 4 (Electronic Supplementary
Material), respectively, and the uncertainty data for each method
are provided in SI. Although average values do not have any
specific physical meaning, they are useful to carry out a

sensitivity analysis on model choice. Uncertainty related to input
data for WTA and socio-economic data has not been specifically
addressed, since it was quantified for the case ofM-Pfister and E-
Pfister (Pfister and Hellweg 2011). However, the uncertainty
may be combined for a complete uncertainty assessment.

4 Conclusions

Since several methods characterise the same impact pathways,
it is not clear which method to use or the consequences of the

Fig. 11 Uncertainty associated with the choice of model for a scarcity, b domestic water deprivation and c agricultural water deprivation
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choice of method. This paper provides such insight and suffi-
cient practical geo-referenced information to guide the identi-
fication of regions in which different models and underlying
modeling choices yield diverging results. Moreover,
deconstructing the existing models and highlighting their
differences and similarities has helped to determine building
blocks to support the development of a consensual method.
Until such a method is developed, the uncertainty related to
model choice in each method as well as the average values at
midpoint and endpoint can help enrich the results of one of the
methods compared in this paper. In a related paper—under
review at the moment of press (Water impact assessment
methods analysis (Part B): Applicability for water
footprinting and decision making, by the same authors) —
the insights outlined in this paper were applied to a case study
on laundry detergent. An assessment of the applicability of the
different models and the related uncertainty was also carried
out.
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