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Abstract
Purpose Data used in life cycle inventories are uncertain
(Ciroth et al. Int J Life Cycle Assess 9(4):216–226, 2004).
The ecoinvent LCI database considers uncertainty on ex-
change values. The default approach applied to quantify un-
certainty in ecoinvent is a semi-quantitative approach based
on the use of a pedigree matrix; it considers two types of
uncertainties: the basic uncertainty (the epistemic error) and
the additional uncertainty (the uncertainty due to using imper-
fect data). This approach as implemented in ecoinvent v2 has
several weaknesses or limitations, one being that uncertainty
is always considered as following a lognormal distribution.
The aim of this paper is to show how ecoinvent v3 will apply
this approach to all types of distributions allowed by the
ecoSpold v2 data format.
Methods A new methodology was developed to apply the
semi-quantitative approach to distributions other than the
lognormal. This methodology and the consequent formulas

were based on (1) how the basic and the additional uncer-
tainties are combined for the lognormal distribution and on (2)
the links between the lognormal and the normal distributions.
These two points are summarized in four principles. In order
to test the robustness of the proposed approach, the resulting
parameters for all probability density functions (PDFs) are
tested with those obtained through a Monte Carlo simulation.
This comparison will validate the proposed approach.
Results and discussion In order to combine the basic and the
additional uncertainties for the considered distributions, the
coefficient of variation (CV) is used as a relative measure of
dispersion. Formulas to express the definition parameters for
each distribution modeling a flow with its total uncertainty are
given. The obtained results are illustrated with default values;
they agree with the results obtained through the Monte Carlo
simulation. Some limitations of the proposed approach are
cited.
Conclusions Providing formulas to apply the semi-
quantitative pedigree approach to distributions other than the
lognormal will allow the life cycle assessment (LCA) practi-
tioner to select the appropriate distribution to model a datum
with its total uncertainty. These data variability definition
technique can be applied on all flow exchanges and also on
parameters which play an important role in ecoinvent v3.
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1 Introduction

Life cycle assessment (LCA) is a quantitative model of the
industrial ecosystem, and LCA results always have uncertain-
ty, i.e., are not perfectly known. Sources and typologies of
uncertainty in LCA have been well documented (Huijbregts
et al. 2003; Lloyd and Ries 2007; Björklund 2002;
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Sonnemann et al. 2003). Uncertainty can be divided into
model, scenario, and parameter uncertainty. The focus of this
paper is on the parameter uncertainty due to lack of knowl-
edge associated to the true value of a quantity associated with
the values of exchanges (elementary and intermediate flows)
in the context of life cycle inventory (LCI) databases. Al-
though we recognize the importance of uncertainty in life
cycle impact assessment, this paper discusses only the inven-
tory phase.

These parameters, the quantitative data needed to compile a
LCI (e.g., exchange values), are uncertain for a number of
reasons; for example, the real value could not be known
(Björklund 2002), or the measured data do not accurately
describe the “true” median or mean value (Ciroth et al.
2004). In real-world technological and environmental pro-
cesses, there is also considerable variability. The concept of
variability is often confusedwith uncertainty. Variability refers
to the inherent variations of a parameter value in space, time,
or across individuals (Huijbregts 1998) while uncertainty
(specifically, parameter uncertainty) includes also the lack of
confidence that a parameter value is truly representative of the
true value. It is important to consider uncertainties in the
interpretation phase of LCI and LCA studies in order to
determine the confidence in results. Usually, a quantitative
parameter is known with a certain level of uncertainty and a
certain level of quality. Taking into account this uncertainty
and quality of the inputs in a LCA study, especially on
parameters, will reinforce the confidence in the results and
help the decision-making process based on the results and
their interpretation in a quantitative and qualitative way.
Several approaches were also developed in order to take
these uncertainties at a parameter level, see Lloyd and Ries
(2007) for a review, including purely qualitative (Rousseaux
et al. 2001), semi-quantitative (Kennedy et al. 1996; Maurice
et al. 2000; Weidema and Wesnæs 1996), and quantitative
(Tan et al. 2002; Ciroth et al. 2004; Coulon et al. 1997)
approaches. Different approaches were also proposed to con-
sider how the parameter level uncertainty translates into un-
certainty of actual LCA results (Hong et al. 2010; Ciroth et al.
2004), although this topic will for the most part be outside the
scope of this paper.

The LCI phase of an LCA aims to collect and compile all
the heterogeneous data needed to quantify the exchanges
within the studied product system and between the product
system and the environment. Since product systems model
complex supply chains, LCA practitioners and researchers
normally revert to using generic LCI databases that contain
exchange values for different processes. Since these databases
are an important data source for LCA, how they describe
uncertainty in their data is the key to subsequently evaluating
the overall uncertainty of the LCA.

The ecoinvent database is one of a very few LCI databases
that systematically includes explicit uncertainty data. A semi-

quantitative approach based on the use of a pedigree matrix is
used. This approach, first proposed for the LCA by Weidema
and Wesnaes (1996), is inspired from the NUSAP system
developed in the early 1990s (Funtowicz and Ravetz 1990)
and has been in use in the ecoinvent database since 2005
(Frischknecht et al. 2005). It considers two kinds of parameter
uncertainty:

1. Intrinsic variability and stochastic error of the parameters,
due to, e.g., measurement uncertainties, activity specific
variability, temporal variability, etc. This uncertainty is
captured in a so-called basic uncertainty factor;

2. Uncertainty due to the use of imperfect data, e.g., data
resulting from estimates, lacking verification, or extrapo-
lated from temporally, spatially and/or technologically
different conditions, collectively grouped under the term
additional uncertainty.

In other terms, the approach addresses two of the three
categories of parameter uncertainty described in Huijbregts
et al. (2001), namely, data inaccuracy and lack of representa-
tive data for the context of use. In the approach, a datum and
its uncertainty (the basic and additional uncertainty) are
modeled using a probability density functions (PDF). In the
earlier version of the ecoinvent database, the lognormal dis-
tribution was used by default (Frischknecht et al. 2005). The
lognormal distribution is represented by two definition param-
eters: the geometric mean (μg) and the geometric standard
deviation (GSD) see Table 1. The geometric mean (also the
median) is the deterministic value, and the GSD captures the
information on the uncertainty. Uncertainty factors were also
expressed in terms of GSD2 (basic uncertainty factors) and
“contributors to the GSD2” (additional uncertainty factors) in
ecoinvent v2. Having statistical information about the data,
basic uncertainty factors were directly calculated as GSD2.
When no statistical information was available, basic uncer-
tainty factors could be defined by default. For this, ecoinvent
provided a table with basic uncertainty factors differentiated
by exchange type (total of 27 types, ranging from specific
classes of air pollutants to different types of intermediate
exchanges) and by class of process (combustion, process, or
agricultural). The datum was then evaluated according to a
“pedigree matrix” by which it was scored (1 to 5, where 5 is
worse) on the following independent data quality characteris-
tics: reliability (sampling methods and verification proce-
dures); completeness (statistical representativeness of the da-
tum and time periods for data collection); temporal, geograph-
ic, and further technological correlation (for data used outside
its proper context) and sample size.

The semi-quantitative scores, based on the pedigree matrix,
were then converted into uncertainty figures using additional
uncertainty factors, expressed as a contribution to the square
of the geometric standard deviation. For example, a reliability
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score of “5”, representing a value based on a non-qualified
estimate, would be associated with a contributor to the GSD2

of 1.50. These additional uncertainty factors were subsequent-
ly compiled with the basic uncertainty factors using a compi-
lation formula, derived from the properties of the lognormal
distribution, resulting in a measure of the total uncertainty.
The total uncertainty was expressed as the square of the
geometric standard deviation (GSD2). If in ecoinvent, the
“pedigree matrix approach” refers to the determination of
the additional uncertainty factors; the term “pedigree ap-
proach” will be used in this paper to name the whole semi-
quantitative structure: from the determination of the additional
uncertainty to the compilation of both types of uncertainty.

In the context of a database, this approach has many
advantages. Uncertainty information can be made available
for all types of exchanges, even if statistical information is not
available. This ensures that the cumulative uncertainty of
LCIs, calculated via, e.g., Monte Carlo or analytical propaga-
tion approaches, takes into account the uncertainty of every
exchange in the model. The data quality indicators derived
from the use of the pedigree matrix can also be used directly as
a data quality management tool.

However, the pedigree approach as applied in ecoinvent v2
had several weaknesses. One of them was the fact that the
pedigree approach was only valid for lognormal distributions,

while four different PDFs tomodel a datum’s uncertainty were
already available in the previous version of the ecoinvent
database. While the lognormal distribution has many nice
properties for modeling physical parameters (e.g., it is strictly
positive, positively skewed, and is the result of the multipli-
cation of independent random variables (MacLeod et al. 2002;
Slob 1994)), distributions other than the lognormal are more
appropriate when they better represent the uncertainty associ-
ated with the datum.Most often, this will be the case when the
basic uncertainty has been calculated based on available data.
In these cases, the parameters of the basic uncertainty PDF
will be directly known. In the cases where (1) the basic
uncertainty cannot be calculated due to small sample size
and (2) one nonetheless wishes to use a distribution other than
the lognormal, the definition parameters of the PDF modeling
a datum and its basic uncertainty can be determined using the
default basic uncertainty factors used for the lognormal by
converting the GSD2 and the deterministic value into the
definition parameters of the desired distribution.

The objective of this paper is to provide practical consid-
erations on how to apply the pedigree approach for all distri-
butions allowed in ecoinvent version 3. This specific objective
treated in this paper belongs to a more global objective that is
to improve the above approach and to legitimize the actual
structure of uncertainty calculation in the ecoinvent database.

Table 1 Definition of the distributions foreseen in ecoinvent v3 and how to express the CVaccording to the definition parameters

Name of
the
distribution

Parameters Deterministic
value

PDF How to link the
coefficient of variation
(CV) with the parameters

Lognormal μg: geometric mean
σg: geometric standard deviation

Median: μg
f x;μg;σg
� �

¼
exp

− lnx−lnμgð Þ2
2ln2σg

� �
ffiffiffiffi
2π

p
lnσg

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ln2σg

� �
−1

q
Normal μ: arithmetical mean

σ: arithmetical standard deviation
Mean: μ

f x;μ;σð Þ ¼ exp − x−μð Þ2
2σ2

� �
σ
ffiffiffiffi
2π

p
CV ¼ σ

μ

Uniform a: minimum of the distribution
b: maximum of the distribution

Mean 0.5
(a+b)

f x; a; bð Þ ¼ 1

b−a
for a < x < b

f x; a; bð Þ ¼ 0 otherwise

(
CV ¼ b−affiffi

3
p

bþað Þ

Triangular a: minimum of the distribution b:
maximum of the distribution c: most
likely value of the distribution

Most likely
value: c f x; a; b; cð Þ ¼ 2 x−að Þ

b−að Þ c−að Þ for a < x < c

f x; a; b; cð Þ ¼ 2 b−xð Þ
b−að Þ b−cð Þ for c < x < b

f x; a; b; cð Þ ¼ 0 otherwise

8>>>><
>>>>:

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þb2þc2−ab−ac−cb

p ffiffi
2

p
aþbþcð Þ

Beta PERT a: minimum of the distribution
b: maximum of the distribution
c: most likely value of the distribution

and
α ¼ 6

μ−a
b−a and β ¼ 6

b−μ
b−a

μ ¼ aþ 4cþ b

6

Most likely
value: c f x; a; bð Þ ¼ x−að Þα−1 b−xð Þβ−1

Β α;βð Þ b−að Þαþβ−1

CV ¼ b−a
aþ4cþb

Gamma k: shape parameter
λ: scale parameter

Most likely
value: λ
(k-1)

f x; k;λð Þ ¼ xk−1exp −k=λð Þ
Γ kð Þλk

CV ¼ 1ffiffi
k

p

Binomial k: number of successes
n: number of trials
p: probability of success

f k; n; pð Þ ¼ n
k

� �
pk 1−pð Þn−k CV ¼

ffiffiffiffiffiffi
1−p
np

q
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The ecoinvent v3 database and its associated ecoSpold v2 data
format will include three changes to the way uncertainty is
handled:

1. Three new distributions will be available, the gamma, the
beta (PERT approximation), and the binomial distribu-
tion. The binomial distribution is not affected by addition-
al uncertainty and is therefore not addressed further. The
Erlang distribution is a special case of the gamma distri-
bution and can therefore also be used. The definitions for
these distributions are presented in Table 1. The uniform,
triangular, normal, and lognormal distributions were al-
ready available in ecoinvent v2.

2. The data quality indicator “sample size” and its corre-
sponding additional uncertainty factors will be removed
from the pedigree approach, as sample size should already
be captured in the basic uncertainty factor. This should be
recognized as a simplification, since the generic basic
uncertainty factors do not capture the large deviations of
small sample sizes often encountered in LCA.

3. The pedigree approach will be expanded to cover all six
probability distribution functions.

This paper deals specifically with point 3. The methodol-
ogy developed to combine basic and additional uncertainties
for all PDFs, and the resulting formulas are presented.

2 Materials and methods

2.1 Methodology applied to derive analytical formulas

In ecoinvent version 2, default basic and additional uncertainty
factors were developed, and a method to combine basic and
additional uncertainty was proposed only for the lognormal
distribution, used by default in the database. This combination
is based on the fact that the spread of the distribution increases
when adding an uncertainty component (the additional uncer-
tainty here). In case of the lognormal distribution, the spread
can be expressed through the 95th confidence interval [μg/
GSD1.96;μg*GSD

1.96]. Conventionally, the value 1.96 is round-
ed to 2, and the 95th confidence interval is commonly
expressed as [μg/GSD

2; μg*GSD
2]. It has been shown that in

case of experts’ judgments and scarce data (characteristics that
apply to the pedigree approach), the GSD2 is a goodmeasure of
the spread of the distribution (MacLeod et al. 2002; Slob 1994).
Because the basic uncertainty was expressed in terms of GSD2,
the additional uncertainty factors were also expressed as “a
contribution to the GSD2” (Frischknecht et al. 2005).

Concretely, the combination that aims to correct the initial
uncertain value using different components of variability,
represented by the pedigree criteria, is done as follows:

A quantitative datum needed to compile a LCI is
expressed with its basic uncertainty as a random variable
(Db). In the pedigree approach as implemented to date, Db

follows a lognormal distribution whose deterministic value
is set as the median (μg), and the basic uncertainty factor
defines the GSD2

Db. Then, the different components of the
pedigree matrix act as modifiers of this random variable Db,
leading to the random variable DT. This parameter is also a
lognormally distributed random variable and has the same
deterministic value as Db. However, the uncertainty factor,
now represented by GSD2

DT, called the “total” uncertainty,
represents the initial basic uncertainty whose spread was
increased to account for additional uncertainty. This addi-
tional uncertainty expresses the variability between a per-
fect case and the case described by the related pedigree
matrix cell, and this for each pedigree criterion. For exam-
ple, for the pedigree criterion “temporal correlation” and for
a pedigree score equals to 3, the cell’s description is “less
than 10 years of difference to the time period of the dataset”
(Weidema et al. 2013). For this specific case, the additional
uncertainty must express the variation that exists in a 0 from
10 years time interval. In other words, the variation that
occurs when compiling different data measured in this time
interval. It can be defined as a random variable. The same
can be said about the 5 pedigree criteria. Di is also the
random variable representing the additional uncertainty
(for i from 1 to 5, representing the five pedigree criteria—
from reliability to further technological correlation). These
random variables were initially defined by experts’ judg-
ments; they can also be determined using empirical sources
as shown in the work by Ciroth et al. (2013). Experts’
judgments are better represented using a lognormal distri-
bution (MacLeod et al. 2002; Slob 1994); Di are also repre-
sented as lognormal distributions with a geometric mean of
1 and with additional uncertainty factors as GSD2

Di. The
lognormal distribution is also useful because, having a
geometric mean of 1, Di act as modifiers on Db through
Eq. 1 that results to an unmodified deterministic value.
Moreover, the GSD2 resulting from the multiplication of n
independent lognormal distributions (Db and Di here) is
expressed through Eq. 2 (Limpert et al. 2001). As the
pedigree criteria are independent (Weidema and Wesnæs
1996) so are DT, Db, and Di and Eq. 2 can be used to
combine basic and additional uncertainty leading to the
formula applied in ecoinvent v2.2 (Frischknecht et al.
2005). Combination of random variables to express uncer-
tainties can be found in environmental science (through
assessment factors) and in some risk assessment methods
(MacLeod et al. 2002; Vermeire et al. 1998; Slob 1994).

DT ¼ Db:∏
i¼1

5
Di ð1Þ
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GSD2
DT

¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2GSD2

Db
þ
X
i¼1

5

ln2GSD2
Di

vuut
0
@

1
A ð2Þ

The application of the pedigree approach to other PDFs
will be directly based on how it was applied to the lognormal
PDF and will follow the following four principles:

& The additional uncertainty must modify neither the deter-
ministic value (i.e., the statistical parameter used to define
the exchange values in ecoinvent (Weidema et al. 2013))
nor the type of distribution chosen to represent the data
(with its basic uncertainty).

& The total uncertainty is equal to the basic uncertainty when
no additional uncertainty is added, i.e., when the data
quality is assumed to be perfect and hence scores “1” for
all data quality indicators using the pedigree matrix.

& The additional uncertainty is dimensionless and expresses
the datum’s relative dispersion, according to each pedigree
criteria, due to the use of imperfect data.

& The value of the additional uncertainty factors used for the
lognormal distribution are used to derive the additional
uncertainty for other PDFs (see the Data Quality Guide-
lines of the ecoinvent database for the values of additional
uncertainty factors (Weidema 2013)).

The lognormal and the normal distributions are intimately
linked; if the random variable X is lognormally distributed,
ln(X) is normally distributed and vice versa. Eq. 1 can also be
translated into Eq. 3 where lnDT, lnDb, and lnDi are normally
distributed. That leads to Eq. 4.

lnDT ¼ lnDb þ
X
i¼1

5

lnDi ð3Þ

σlnDT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
lnDb

þ
X
i¼1

5

σ2
lnDi

vuut ð4Þ

So, if a datum Db is originally normally distributed, Eq. 4
can be expressed in terms of Eq. 5 based, moreover, on the
widely used formula to determine the standard deviation of a
function of random independent variables.

σDT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
Db

þ σ2
DI

q
ð5Þ

where DI represents the random variable modeling the addi-
tional uncertainty that combines the five pedigree criteria.

The correspondences between the normal and the lognor-
mal distribution can be found in Table 2, and Eq. 5 can also be
applied for the uniform, triangular, beta PERT, and gamma
distributions.

The standard deviation expresses an absolute dispersion
around the mean; in the development of generic factors, that
capture uncertainty information for all type of PDFs, the
measure of dispersion should be expressed in terms relative
to the median or mode for all the PDFs. This is done by using
the relations between the lognormal and the normal distribu-
tions (see Table 2).

The coefficient of variation (CV) is chosen as a universal
measure of variability. It is defined as the ratio between the
arithmetic standard deviation and mean. More concretely, the
CV measures a relative dispersion within a specific sample,
regardless the distribution type considered. As it is a dimen-
sionless measure of dispersion, the CVallows the comparison
of the dispersion from different samples. It is also the initial
measure of variation chosen to express the uncertainty with
the pedigree approach (Weidema andWesnæs 1996). The total
uncertainty will also be expressed as a CV. The uncertainty
factors expressed as a GSD2 applied in ecoinvent v2 can be
easily translated into CVusing equations presented in Table 2.
In the same way, the expression of the additional uncertainty
can easily be obtained using Eq. 2 and the definition of the CV
using the GSD. The additional uncertainty expressed in term
of CV (CVI), is defined by Eq. 6 where CVi are the additional
uncertainty factors linked to the five pedigree criteria.

CVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∏
i¼1

5
CV2

i þ 1
� �s

−1 ð6Þ

The next step is also to express Eq. 5 in terms of CV.
Secondly; the standard deviation expresses an absolute dis-
persion around the arithmetic mean value. This dispersion—
as well as the confidence interval around the mean—increases
when additional uncertainty is added. In the case of symmetric
distributions (such as the normal and uniform distributions),
the mean is the mode. Since, for symmetric distribution, the
arithmetic mean should not be modified when adding the
additional uncertainty, the absolute dispersion is equivalent
to the relative dispersion, and Eq. 7 can be used for symmetric
distributions.

CVT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

D þ CV2
I

q
ð7Þ

In the case of asymmetric distributions, the arithmeticmean
differs from the mode. For these distributions, the arithmetic
mean will be affected by the consideration of additional un-
certainty. While Eq. 7 can still be used to calculate the relative
dispersion parameter (CVT), a new arithmetic mean (μT) that
takes into account the effect of the additional uncertainty must
be calculated using Eq. 8 where μ is the arithmetic mean of the
datum with its basic uncertainty.
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μTCVT ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

D þ CV2
I

q
ð8Þ

Having Eq. 7 and Eq. 8, the definition parameters of each
distribution can be expressed through CVTand also be defined
for the total uncertainty.

2.2 Comparison between the analytical approach
and a numerical approach

In order to test and validate the PDFs obtained through ana-
lytically derived formulas, they will be compared with that
obtained using a numerical approach, the Monte Carlo simu-
lation. The starting assumption that the additional uncertainty
factors are described using GSD2 remains unchanged, and
distributions with total uncertainty are generated through a
Monte Carlo simulation where the distribution modeling the
data with its basic uncertainty is multiplied by the additional
uncertainty represented by a lognormal distribution. The
Monte Carlo simulation consists in randomly sampling the
probability of each uncertain parameter (the data and its basic
and additional uncertainty here) and then computing the sam-
pled values using the model. The five distribution applied in
ecoinvent v3 are tested, each with an arbitrary basic uncer-
tainty factor (expressed as a CV), the same deterministic value
and four different quintuplets giving a total of 20 tests. The
simulation will be a 10,000-step analysis performed by the
ORACLE Crystal Ball release fusion edition (v 11.11.2.0)
(ORACLE 2010). As the basic uncertainty and the additional
uncertainty components are considered as independent
(Weidema and Wesnæs 1996), covariances will not be con-
sidered in the simulation.

The Monte Carlo simulation is a good approximation that
tends to theoretical when the number of steps increases. So, in
order to compare the analytical and the numerical approaches
for each distribution, relative errors will be calculated on the
most relevant parameters representing the distribution and its
total uncertainty: the standard deviation and the CV for the
normal distribution; the minimum, the maximum and the CV

for the uniform, triangular and beta PERT distributions; and
the CV for the gamma distribution. In case of the distributions
defined by location parameters (the uniform, triangular, and
beta PERT ones), the percentage of the resulting values ob-
tained through theMonte Carlo simulation and that belongs to
the interval defined by the minimum and the maximum of the
distribution with its total uncertainty will also be determined.

3 Results and discussion

This section presents the obtained results for all distributions
and the starting assumptions to derive the resulting formulas.
Throughout, the subscript T will represent a distribution or
parameter that models a datum with its total uncertainty.

3.1 Symmetric distributions

The normal and the uniform distributions are both symmetri-
cal. Eq. 7 is used, and the arithmetic mean is not modified by
adding the additional uncertainty. Table 3 presents these as-
sumptions in a mathematical form for both distributions and
the resulting formulas to combine the basic and the additional
uncertainties.

3.2 Asymmetric distributions

The triangular, beta PERT, and gamma distributions are all
asymmetric. The starting points to derive the formulas to
combine basic and additional uncertainties are slightly differ-
ent as the ones cited in the previous section. First of all, Eq. 8
is used to determine CVT and the deterministic value (the
mode is not modified when the additional uncertainty is
added). Furthermore, the shape of the distribution is also not
modified by adding the additional uncertainty. This last as-
sumption is translated into a shape parameter (γ) that is
defined for the triangular and the Beta PERT distribution.
Table 4 presents these assumptions and the resulting formulas
to combine the basic and the additional uncertainties.

Table 2 Correspondences be-
tween the normal and the lognor-
mal distributions

Normal distribution Lognormal distribution

Deterministic value μ μlog
Dimensionless measure of variability Coefficient of variation CV ¼ σ

μ σg ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðCV2 þ 1

q� �
where σg is the GSD.

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp ln2σg

� �
−1

q
Alternatively:

Confidence interval (68 %) [μ−σ; μ+σ] [μg/σg; μgσg]
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A note can be added on the triangular distribution: the
starting points lead to solve a quadratic equation. Although
this quadratic equation has two solutions, only one is realistic
here: the one that considers that bTwill be higher than b and aT
smaller than a (where b and a are respectively the maximum
and the minimum of the probability density function).

3.3 Comparison with the results obtained through the Monte
Carlo simulation

The total uncertainty resulting from the formulas available in
Table 3 and Table 4 is compared with that obtained through a
Monte Carlo simulation. The five new distributions with an
arbitrary basic uncertainty factor, now expressed as a CVand
the same most likely value (1.5), are tested with four different
pedigree quintuplets ((2;2;2;2;2), (3;3;3;3;3), (4;4;4;4;4),
(5;5;5;5;5)), giving a total of 20 tests. The definition parame-
ters for the PDFs without additional uncertainty, as well as
those calculated for the total uncertainty, are presented in
Table 5. The graphics of the different resulting distributions
are presented in Fig. 1 (for the basic uncertainty and pedigree
scores (3;3;3;3;3) and (5;5;5;5;5)) both for the analytical
approach and distributions obtained through the Monte Carlo

simulation (representing by the histograms on Fig. 1). The
relative errors on the relevant parameters are calculated. All
the results from this comparison can be found in the Electronic
Supplementary Material, and only the major conclusions are
presented here.

In general, the CVs obtained through the Monte Carlo
simulation are greater than the ones determined by the pro-
posed formulas, except for three tests (the normal distributions
with all pedigree scores equal to 2 and the beta PERT distri-
butions with all pedigree scores equal to 2 and to 3). That can
be explained by the fact that the additional uncertainty is
modeled by a lognormal distribution which is unbounded
and with longer tails when the additional uncertainty (and also
the spread) increases. The resulting distributions from Monte
Carlo simulations have also longer tails (see Fig. 1).

For the normal distribution, relative errors on CVT were
less than 5 %, which can be considered acceptable. These
relative errors on CVT are higher for the other types of distri-
butions. In particular, the approach does not give satisfying
results for the gamma distribution, for which the relative errors
on CVTwere between 24 and 30 %. Moreover, the developed
formulas for the gamma distribution are only valid when it
admits 0 as location parameter. If the definition parameters of

Table 3 Assumptions and resulting formulas for symmetric distributions

Distribution Assumptions Formulas to combine basic and additional uncertainties

Normal μ ¼ μT

CVT ¼ σT=μ

	
μ ¼ μT

σT ¼ μCVT

Uniform
μ ¼ aþ b

2
¼ aT þ bT

2
¼ μT

CVT ¼ bT−aTffiffiffi
3

p
aT þ bTð Þ

8>><
>>:

aT ¼ aþ b−bT
bT ¼ μ 1þ

ffiffiffi
3

p
CVT

� �

Table 4 Assumptions and resulting formulas for asymmetric distributions

Distribution Assumptions Formulas to combine basic and additional uncertainties

Triangular
μ ¼ aþ bþ c

3
and μT ¼ aT þ bT þ c

3

γ ¼ c−a
b−c

¼ c−aT
bT−c

CV 2
T ¼ 0:5

a2T þ b2T þ c2−aTbT−aTc−bTc
aT þ bT þ cð Þ2

8>><
>>:

aT ¼ c 1þ γð Þ−γbT
bT ¼ cþ 3μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

D þ CV2
I

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ γ þ γ2

s

Beta PERT
μ ¼ aþ 4cþ b

6
and μT ¼ aT þ 4cþ bT

6
γ ¼ c−a

b−c
¼ c−aT

bT−c

CVT ¼ bT−aT
aT þ 4cþ bT

8><
>:

aT ¼ c 1þ γð Þ−γbT

bT ¼ cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

D þ CV2
I

q
1þ γ

aþ 4cþ bð Þ

Gamma m ¼ λ k−1ð Þ ¼ λT kT−1ð Þ
CVT ¼ 1=

ffiffiffiffiffi
kT

p
μ ¼ kλ and μT ¼ kTλT

8<
:
where m is the most likely value and μ the arithmetic mean

kT ¼ 1þ
m2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

D þ CV2
I

q� �2

þ m4

s

4μ2 CV 2
D þ CV2

I

� �
λT ¼ m

kT−1
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a Gamma distribution (k and λ) are not perfectly known, a
lognormal distribution should be preferred.

In the specific case of bounded distribution defined by
location parameters (uniform, triangular, and beta PERT dis-
tributions), the percentage of the vales resulting from the
10,000-step Monte Carlo simulation and that belongs to the
interval [aT, bT] was also determined. For the three distribu-
tions, from 100 to 90.79 % of the values from the simulation
belong to the associate interval giving also satisfying results.
For these bounded distributions, the higher the additional
uncertainty, the higher the relative error on the location pa-
rameters. Again, this can be explained by the fact that the
lognormal distribution modeling the additional uncertainty is
an unbounded distribution with higher spread when the value
of additional uncertainty increases. As aMC and bMC are the
minimum and the maximum resulting from the Monte Carlo
simulation, they take into account this larger spread. Finally,
for the uniform and the triangular distributions, the greater the
additional uncertainty, the less values resulting from the Mon-
te Carlo simulations lying in the interval [aT, bT]. For the beta
PERT, the opposite is observed. The Monte Carlo simulation
being only a numerical approximation, in this case (and also
for the other tests), the differences between the obtained
percentages (from 99.52 to 100 %) cannot be considered as
significant. It could also be noted that the value 100 % (ob-
tained from the beta PERT distribution with all pedigree
scores equal to 5) is a rounded value as some outliers are
lying outside the interval [aT, bT].

3.4 Application of the formulas

The proposed formulas can be applied as well to define
the parameters of the desired distribution, keeping in mind
that the used deterministic value should remain the same

after adding additional uncertainty and should be the same
as the one used as assumption in this proposed frame-
work. Table 1 identifies the deterministic value for each
distribution.

The formulas allow determining the CVof the data with its
total uncertainty. If ones choose to express the uncertainty in a
more usual fashion, for example with standard deviation σT, it
can be retrieved from the following relation σT=μTCVT,
where μT and CVT are defined in Table 5.

Furthermore, these formulas, as well as the generic
pedigree framework, should be applied keeping in mind
that it is a semi-quantitative structure that aims to convert
a codification of quality and lack of knowledge into
uncertainty figures. If it is a good approximation when
data characteristics are not known, the approach cannot be
substituted by the use of raw data and statistics when
these are available.

3.5 Results and limitations

As seen for the gamma distribution, the proposed approach
has several limits. Some other limits coming from the applied
methodology and the obtained results can be cited. First of all,
although the used distributions served to model physical
quantities, negative values can be obtained through the devel-
oped formulas (it happens in the given example: for the
normal distribution when the additional uncertainty is deter-
mined through pedigree scores (5;5;5;5;5) the probability to
obtain negative values is 3.10−2). No sustainable way for
avoiding this is proposed here; nevertheless, three ways to
consider negative values can be here cited:

& Consider them in uncertainty analysis, keeping in mind
that they are fictive values;

Table 5 Definition parameters
used to define the tested distribu-
tion that modeled a datum with its
basic uncertainty and resulting
calculated parameters when addi-
tional uncertainty is added. The
basic and additional uncertainty
combination is made using the
proposed formulas foreseen in
Tables 3 and 4

PDF Parameters With basic uncertainty (2;2;2;2;2) (3;3;3;3;3) (4;4;4;4;4) (5;5;5;5;5)

Lognormal μg 1.5 1.5 1.5 1.5 1.5

σg 1.279 1.289 1.313 1.416 1.690

Normal μ 1.5 1.5 1.5 1.5 1.5

σ 0.375 0.380 0.414 0.530 0.821

Gamma k 16 15.66 13.47 8.92 4.72

λ 0.1 0.102 0.120 0.189 0.403

Uniform a 1 0.991 0.921 0.677 0.0386

b 3 3.009 3.079 3.323 3.961

Triangular a 1 0.993 0.940 0.765 0.336

b 3 3.021 3.180 3.706 4.991

c 1.5 1.5 1.5 1.5 1.5

Beta PERT a 1 0.991 0.921 0.700 0.184

b 3 3.028 3.237 3.901 5.450

c 1.5 1.5 1.5 1.5 1.5
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& Define a threshold or a limit value (in this case 0) in the
distribution definition. A certain percentage of possible
values is, with this method, not considered;

& Transform all the negative values into a null value. The
probability to get 0 will be nonetheless more important.

Another limit comes from the assumption that the addition-
al uncertainty is best described using a lognormal distribution.
This aspect will be checked in further work.

Another possible way to apply the pedigree approach to the
other distributions will be to develop a computational solution
based on Monte Carlo simulation. This would have some
advantages. It would be possible to use different PDFs for
different additional uncertainty types. For example, it is pos-
sible that, e.g., the basic uncertainty is best described by a
lognormal distribution, and the uncertainty associated with the
temporal correlation (one of the indicator from the pedigree
matrix) is best described by a triangular distribution. The here

0

a d

b e

c f

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lognormal Distribution

x

D
en

si
ty

Datum with its basic uncertainty
Pedigree scores (3;3;3;3;3)
Pedigree scores (5;5;5;5;5)

Normal Distribution

Forecast results

D
en

si
ty

−2 0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

Uniform Distribution

Forecast results

D
en

si
ty

0 6

0.
0

0.
4

0.
8

Triangular Distribution

Forecast results

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

1.
2

Beta PERT Distribution

Forecast results

D
en

si
ty

0.
0

0.
4

0.
8

1.
2

Gamma Distribution

Forecast results

D
en

si
ty

1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

Fig. 1 Illustrations of the
different distributions foreseen in
Table 5. The histograms represent
the results obtained through the
Monte Carlo simulation
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proposed approach does not permit to create a mix of distri-
bution types as the additional uncertainty is assumed to be
lognormally distributed. The computational approach based
on Monte Carlo simulation will also dispense us of making
some assumptions described in the previous section.

Last but not least, it should be noted that a mathematically
more rigorous, but onerous, approach to determine the vari-
ance of a function of random variables is the convolution
product. While convolution product theoretically yields exact
results, it is difficult to implement in software such as the
ecoEditor and, depending on the assessed distribution, may
actually lead to numerical approximations of the variance.

4 Conclusions

In order to apply the pedigree approach to all distributions
foreseen in ecoinvent v3, it is first proposed to consider the
CV as a dimensionless measure of variability. The proposed
analytical formulas to combine basic and additional uncer-
tainties for distributions other than lognormal are based on
how this combination is made for the lognormal PDF and on
the links between the multiplicative and the additive models.
The different formulas are also based on the CV definition for
each distribution. These obtained formulas fit, often quite
well, with the combination of basic and additional uncer-
tainties obtained through a Monte Carlo simulation. However,
this proposed approach has some limitations. Some of them,
particularly the starting assumption that the additional uncer-
tainty is lognormally distributed, will be treated in future
work. Indeed, despite its limits, based on the fact that it is a
generic approach, the pedigree approach permits to consider
the two elements that affect parameter uncertainty: data inac-
curacy (through basic uncertainty) and lack of representative
data (through additional uncertainty) in a semi-automatic way,
explaining its use in a generic LCI database (see Huijbregts
et al. for further details (2001)).

These data variability assessment techniques will be ap-
plied on all flow exchanges. They will also be applied to
parameters which play an important role in ecoinvent v3 to
calculate different exchange values. In order to be consistent
in the whole ecoinvent database, the same approach—the
pedigree approach—will be applied to define and quantify
uncertainty on parameters.
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