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Abstract
Purpose In LCA, a multi-functionality problem exists when-
ever the environmental impacts of a multi-functional process
have to be allocated between its multiple functions. Methods
for fixing this multi-functionality problem are controversially
discussed because the methods include ambiguous choices.
To study the influence of these choices, the ISO standard
requires a sensitivity analysis. This work presents an analyti-
cal method for analyzing sensitivities and uncertainties of
LCA results with respect to the choices made when a multi-
functionality problem is fixed.
Methods The existing matrix algebra for LCA is expanded by
explicit equations for methods that fix multi-functionality
problems: allocation and avoided burden. For allocation,
choices exist between alternative allocation factors. The ex-
panded equations allow calculating LCA results as a function
of allocation factors. For avoided burden, choices exist in
selecting an avoided burden process frommultiple candidates.
This choice is represented by so-called aggregation factors.
For avoided burden, the expanded equations calculate LCA
results as a function of aggregation factors. The expanded
equations are used to derive sensitivity coefficients for LCA
results with respect to allocation factors and aggregation fac-
tors. Based on the sensitivity coefficients, uncertainties due to
fixing a multi-functionality problem by allocation or avoided

burden are analytically propagated. The method is illustrated
using a virtual numerical example.
Results and discussion The presented approach rigorously
quantifies sensitivities of LCA results with respect to the
choices made when multi-functionality problems are fixed with
allocation and avoided burden. The uncertainties due to fixing
multi-functionality problems are analytically propagated to un-
certainties in LCA results using a first-order approximation. For
uncertainties in allocation factors, the first-order approximation
is exact if no loops of the allocated functional flows exist. The
contribution of uncertainties due to fixing multi-functionality
problems can be directly compared to the uncertainty contribu-
tions induced by uncertain process data or characterization
factors. The presented method allows the computationally effi-
cient study of uncertainties due to fixing multi-functionality
problems and could be automated in software tools.
Conclusions This work provides a systematic method for the
sensitivity analysis required by the ISO standard in case
choices between alternative allocation procedures exist. The
resulting analytical approach includes contributions of uncer-
tainties in process data, characterization factors, and—in ex-
tension to existing methods—uncertainties due to fixing
multi-functionality problems in a unifying rigorous frame-
work. Based on the uncertainty contributions, LCA practi-
tioners can select fields for data refinement to decrease the
overall uncertainty in LCA results.
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1 Introduction

Multi-functionality is still one of the most controversial issues
of LCA (e.g., Finnveden et al. 2009; Guinée et al. 2011). A
multi-functional process causes a multi-functionality problem
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(also called allocation problem) in LCA whenever environ-
mental impacts have to be partitioned among multiple func-
tions (cf. Curran 2007). Following textbooks on LCA, the
most common methods for fixing multi-functionality prob-
lems are system expansion, avoided burden, and allocation
(cf. Baumann and Tillmann 2004, pp. 34–37, 110–119;
Klöpffer and Grahl 2009, pp. 94–123; Guinée et al. 2002,
pp. 505–522).

Avoided burden and system expansion are conceptually
equivalent (cf. Heijungs and Guinée 2007): Both avoided
burden and system expansion select additional processes,
which are either added to (system expansion) or subtracted
from (avoided burden) the process system. The choice for the
LCA practitioner, i.e., selecting a process, is identical for
system expansion and avoided burden; however, it always
occurs for avoided burden. Therefore, this work studies only
avoided burden. Allocation transforms multi-functional unit
processes into mono-functional unit processes; the environ-
mental impacts of the multi-functional unit process are then
partitioned between the mono-functional unit processes using
an allocation principle.

The benefits and disadvantages of these modifications were
frequently discussed over the past 15 years (e.g., Frischknecht
1998; Ekvall 1999; Azapagic and Clift 1999; Weidema 2001;
Guinée et al. 2002; Curran 2007; Suh et al. 2010). From 1998
on, the ISO standard gave guidelines on how to fix multi-
functionality problems in LCA (ISO 2006, pp. 28–32). Still,
the ISO standard is criticized (e.g., in Curran 2007, Reap et al.
2008) for its rather vague formulations such as “avoid alloca-
tion, if possible” or “use other relationships” (ISO 2006, p.
29). The vague formulations leave choices open how to select
processes for system expansion and avoided burden or allo-
cation principles. Therefore, both the EU Commission and the
United Nations Environmental Program (UNEP) published
guidelines that specify how to select processes for system
expansion and avoided burden, and how to choose allocation
principles (European Commission 2010, pp. 72–81 and 254–
272; UNEP 2011, pp. 78–79). Still, choices remain because
multiple candidate processes for avoided burden may exist as
well as multiple allocation principles. Therefore, the ISO
standard requires that “whenever several alternative allocation
procedures seem applicable, a sensitivity analysis shall be
conducted […]” (ISO 2006, p. 28).

The influence of “alternative allocation procedures” is ac-
knowledged and studied in many LCA case studies (e.g., Ayer
et al. 2007; Bernesson et al. 2004; González-Garcia et al.
2010; Guinée and Heijungs 2007; Guinée et al. 2009;
Kaufmann et al. 2010; Luo et al. 2009; Malca and Freire
2006; Nguyen and Hermansen 2012; Sayagh et al. 2010;
Svanes et al. 2011; Thrane 2004; Wardenaar et al. 2012). All
these authors compare LCA results of scenarios that use
alternative allocation principles or alternative processes for
system expansion and avoided burden. The influence of the

choices due to fixing multi-functionality problems is thus
studied using scenario analysis. However, scenario analysis
can suffer from ambiguity because the definition of scenarios
relies completely on the LCA practitioner and can hardly
become an automated part of LCA calculations (Spielmann
et al. 2005; Hojer et al. 2008).

In contrast to the influence of allocation procedures, data
uncertainties are mostly studied using Monte-Carlo (MC)
simulations (Lloyd and Ries 2007). Algorithms for MC sim-
ulations are available in LCA software tools. Therefore, MC
simulations are often used for analyzing uncertainties in pro-
cess data or characterization factors (e.g., Geisler et al. 2005;
Huijbregts 1998a; Hung and Ma 2009; Lo et al. 2005). The
influence or uncertainties due to fixing multi-functionality
problems, however, are only integrated in a few studies (e.g.,
Huijbregts 1998b; Bojarski et al. 2008). These authors com-
bined MC simulations with scenario analysis and acknowl-
edge the influence of uncertainty due to fixing multi-
functionality problems in their studies.

However, MC simulations require time-consuming itera-
tions of the LCA calculations (Heijungs 2010). This drawback
can be overcome by using analytical uncertainty propagation
for uncertainty analysis in LCA. Analytical uncertainty prop-
agation has successfully been applied to LCA calculations,
e.g., by Heijungs (1996), Ciroth (2001), Sakai and Yokoyama
(2002), Heijungs and Suh (2002, pp. 131–146), Heijungs and
Frischknecht (2005), Heijungs (2010), and Hong et al. (2010).
Recently, analytical uncertainty propagation has been com-
pared with MC simulations for uncertainty analysis in LCA:
Imbeault-Tétrault et al. (2013) confirm that analytical uncer-
tainty propagation requires less computation time than MC
simulations and suggest using analytical methods as “some-
what automated” procedure for uncertainty analysis in LCA.

Existing applications of analytical uncertainty propagation
focus on uncertainties in process data and characterization
factors while uncertainties due to fixing multi-functionality
problems are not yet considered in the analytical approach.
Heijungs and Kleijn (2001) and Heijungs and Suh (2002, p.
182) suggest integrating parameters such as allocation factors
into analytical uncertainty propagation. Applying analytical
uncertainty propagation to allocation factors requires explicit
equations for calculating LCA results as a function of alloca-
tion factors. But such explicit equations are missing so far
(Heijungs 2013a).

The aim of this work is deriving explicit equations for
calculating LCA results as a function of allocation factors
and applying analytical uncertainty propagation to these equa-
tions. For this purpose, matrix-based LCA is reviewed in
Section 2: the existing equations of the general matrix algebra
in LCA are summarized in Section 2.1; fixing multi-
functionality problems with allocation and avoided burden
in matrix-based LCA without explicit equations is illustrated
in Section 2.2; and analytical uncertainty propagation for LCA
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calculations is described in Section 2.3. In Section 3.1, new
explicit equations are derived for calculating LCA results as a
function of, e.g., allocation factors. Based on these equations,
sensitivity coefficients for LCA calculations with respect to
parameters such as allocation factors are derived in
Section 3.2. In Section 3.3, parameters such as allocation
factors are used to model and propagate uncertainties due to
fixing multi-functionality problems with allocation and
avoided burden. In Sections 4.1 and 4.2, the approach is
illustrated using a virtual example. The outlook in
Section 4.3 focuses on the applicability of the presented
methods in real life LCA studies. Conclusions complete the
paper in Section 5.

2 Review of matrix-based LCA

2.1 General matrix algebra for LCA

Heijungs and Suh (2002) provided a detailed framework for
matrix-based LCA calculations. That computational structure
and its notation are fundamental for this work and therefore
briefly summarized in this section.

The technologymatrixA consists of the economic flows of
all unit processes included in a LCA study. The functional unit
is expressed in a final demand vector f . A scaling vector s is
calculated for a given final demand vector f and an invertible
technology matrix A from

s ¼ A−1⋅ f : ð1Þ
The elementary flows of all unit processes are collected in

the intervention matrix B . The total elementary flows related
to a final demand vector f are comprised in the inventory
vector g calculated from

g ¼ B⋅s ¼ B⋅A−1⋅ f : ð2Þ
The elementary flows are summarized to environmental

impact flows in the impact vector h calculated from

h ¼ Q⋅g ¼ Q⋅B⋅A−1⋅ f : ð3Þ
The characterization matrix Q contains characterization

factors which transform elementary flows to environmental
impacts. In this work, we refer to the inventory vector g as life
cycle inventory results (LCI results). The impact vector h is
called life cycle impact assessment results (LCIA results).

2.2 Fixing multi-functionality problems in matrix-based LCA

Matrix-based calculations of LCA results require an inverted
technology matrix A−1 (cf. Eqs. (1) to (3)). The inverse A−1

can always be calculated for a square and non-singular tech-
nology matrix A . A multi-functionality problem is

characterized by a technology matrix A that cannot be
inverted (Heijungs and Frischknecht 1998). Fixing multi-
functionality problems with allocation and avoided burden
both modify the structure of the technology matrix A so that
it becomes invertible. In fact, Heijungs and Frischknecht
(1998) showed that the pseudo-inverse can also yield correct
LCA results for non-square technology matrices. In this work,
however, we discuss the most common case with a square
technology matrix A after multi-functionality problems are
fixed. Matrix-based allocation and avoided burden are also
described on pp. 41–49 in Heijungs and Suh (2002). These
authors refer to substitution instead of avoided burden and to
partitioning instead of allocation. The illustration of allocation
and avoided burden are fundamental for Section 3.1; there-
fore, they are briefly repeated here using the virtual example
from Heijungs and Suh (2002).

2.2.1 An illustrating example

The process flow diagram of a virtual example is shown in
Fig. 1.

The process system consists of five economic flows and
four unit processes. The corresponding technology matrix A
and intervention matrix B are

A ¼

−2 100 −5 −10
10 0 0 0
18 0 0 0
0 0 90 0
0 0 0 175

0
BBBB@

1
CCCCA and B ¼

1 10 3 0:1
0:5 2 0 5
0 −50 0 0

0
@

1
A

The columns represent the unit processes and the rows
represent the economic flows (in technology matrix A ) and
the elementary flows (in the intervention matrix B). We as-
sume that a given functional unit represented by the final

Fig. 1 Process flow diagram for a virtual process system containing four
unit processes with five economic flows (Ec1 to Ec5) and three elementary
flows (El1 to El3)
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demand vector f and a characterization matrix Q is used to
calculate three environmental impacts, i.e.,

f ¼

0
1000
0
0
0

0
BBBB@

1
CCCCA and Q ¼

1 0:1 0
0 1 0
0 0 −1

0
@

1
A:

Process 1 in Fig. 1 is multi-functional because it produces
two economic flows Ec2 and Ec3; the technology matrix is A
is non-square and cannot be inverted. Moreover, a
pseudoinverse does not allow calculation of LCA results from
Eqs. (1)–(3). Therefore, a multi-functionality problem exists
(cf. Heijungs and Frischknecht 1998).

2.2.2 Allocation in matrix-based LCA

Allocation fixes a multi-functionality problem by transforming
multi-functional unit processes into mono-functional unit pro-
cesses. For the multi-product process 1, both economic input
flows and the elementary flows are partitioned to two mono-
functional unit processes using an allocation factor C . The
allocated technology matrix Aallocation of the illustrating exam-
ple becomes

Aallocation ¼

C⋅ −2ð Þ 1−Cð Þ⋅ −2ð Þ 100 −5 −10
10 0 0 0 0
0 18 0 0 0
0 0 0 90 0
0 0 0 0 175

0
BBBB@

1
CCCCA:

The matrix A allocation is square and non-singular. LCA
results can thus be calculated from Eqs. (1)–(3) using a like-
wise allocated intervention matrix Ballocation, i.e.,

Ballocation ¼
C⋅1 1−Cð Þ⋅1 10 3 0:1
C⋅0:5 1−Cð Þ⋅0:5 2 0 5
C⋅0 1−Cð Þ⋅0 −50 0 0

0
@

1
A:

The choice for an allocation factor C can be subject to
uncertainties. But even though allocation is implemented in
matrix-based software tools such as CMLCA (Heijungs
2013b) or Simapro (Goedkoop et al. 2006), explicit equations
for calculating LCA results as a function of an allocation
factor C are missing (Heijungs 2013a). Such explicit equa-
tions are necessary for analytical sensitivity analysis and
propagation of uncertainties. Therefore, explicit equations
for calculating LCA results as a function of allocation factors
are derived in Section 3.1.1.

2.2.3 Avoided burden in matrix-based LCA

Avoided burden fixes the multi-functionality problem by
subtracting environmental impacts of an avoided process.

The product(s) of such an avoided process are replaced by
one or more products of a multi-functional process that are not
required by the final demand vector. In the illustrating exam-
ple, the final demand vector contains only the second eco-
nomic flow Ec2 in the technology matrix A . The economic
flow Ec2, however, is produced jointly with the third econom-
ic flow Ec3 in process 1. An avoided process is thus required
producing an economic flow that can be replaced by the third
economic flow from process 1. Here, we assume that process
3 in Fig. 1 produces an equivalent economic flow (fourth
economic flow Ec4 in technology matrix A ) that can be
replaced by the third economic flow of process 1. Therefore,
the rows of the third and fourth economic flow are merged in
both the technology matrix A and the final demand vector f :

Aburden ¼
−2 100 −5 −10
10 0 0 0
18 0 90 0
0 0 0 175

0
BB@

1
CCA; fburden ¼

0
100
0
0

0
BB@

1
CCA:

Production of the third economic flow in process 1 can now
avoid its production in process 3. The environmental impacts
from process 3 are therefore avoided. Mathematically, the
square technology matrixAburden is now invertible and allows
calculating LCA results from Eqs. (1) to (3) using the final
demand vector fburden.

A problem arises if there are several candidates for an
avoided process. In our example, this could occur if the fourth
and the fifth economic flow could both be replaced by the
third economic flow. The LCA practitioner has to select
between processes 3 and 4 as avoided process. This choice
is subject to uncertainty and the consequences are often un-
known. This uncertain choice, however, is not modeled in a
parameter and thereby also not included in explicit equations
for calculating LCA results. A parameter modeling the choice
between multiple candidates for an avoided process and ex-
plicit equations for calculating LCA results as a function of
that parameter are derived in Section 3.1.2.

2.3 Sensitivity analysis and analytical uncertainty propagation
for matrix-based LCA

The matrix-based LCA calculations presented in Section 2.1
allow analytical sensitivity analysis. For sensitivity analysis,
so-called sensitivity coefficients quantify how an output var-
iable is influenced by a change of an input variable. For small
changes of input variables, sensitivity coefficients are first-
order partial derivatives of an output variable with respect to
an input variable (Morgan and Henrion 1990, p. 174).

In matrix algebra for LCA (cf. Section 2.1), inputs are
process data Aij and Bvj in the technology matrix A and the
intervention matrix B and characterization factors Quv in the
characterization matrix Q . Outputs are the scaling vector s ,
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LCI results g , and LCIA results h . For these outputs, sensi-
tivity coefficients can be derived from Eqs. (1) to (3). As an
example, Heijungs and Suh (2002) derived a sensitivity coef-
ficient from Eq. (1) for the influence of technology matrix
element Aij on the scaling vector element sk:

∂sk
∂Aij

¼ − A−1� �
ki
⋅s j: ð4Þ

Following this approach, Heijungs (2010) presented sensi-
tivity coefficients for LCA outputs such as scaling vectors sk,
LCI results gk, and LCIA results hk with respect to input data
such as process data Aij, Bvj, and characterization data Qkv.

The uncertainty in the input data can be propagated into
uncertainties in the outputs using first-order approximations
(cf. Morgan and Henrion 1990, p. 185). For LCA computa-
tions, Heijungs (2010) expressed the total output uncertainty
with the variance and derived analytical equations for vari-
ances of LCA results based on his sensitivity coefficients, e.g.,
for LCI results gk

var gkð Þ¼
X
i; j

∂gk
∂Aij

� �2

var Aij

� �þX
j

∂gk
∂Bkj

� �2

var Bkj

� �
: ð5Þ

In this work, the approach of Heijungs (2010) is expanded
to include input parameters that model uncertainties due to
fixing multi-functionality problems with allocation and
avoided burden.

3 Sensitivity analysis and analytical propagation
of uncertainties due to fixing multi-functionality problems

In Section 3.1, we derive explicit equations for calculating
LCA results as a function of the choices due to fixing multi-
functionality problems. Based on these equations, sensitivity
coefficients with respect to these choices are derived in
Section 3.2. The sensitivity coefficients allow analytical prop-
agation of uncertainties due to fixing multi-functionality
(Section 3.3).

We illustrate the construction of the explicit equations in
Section 3.1 with the example presented in Section 2.2.1. That
example facilitates the understanding of the equations because
it contains only one multi-functional unit process (process 1 in
Fig. 1) with β =2 functional flows. However, the equations
and methods presented in the entire section apply to any

process system given by a (m ×n ) technology matrix A and
a (b ×n ) intervention matrix B . Additionally, we use a (q ×b )
characterization matrix Q and a final demand vector f . The
process systems may contain any desired number of multi-
functional unit processes, i.e., m −n >1. For process systems
with several multi-functional processes, the construction steps
are repeated for each multi-functional process.

3.1 Expanded matrix-based equations for fixing
multi-functionality problems in LCA

3.1.1 Expanded equations for calculating LCA results
as a function of allocation factors

Allocation transforms multi-functional unit processes in the
technology matrix A and the intervention matrix B into
mono-functional unit processes (cf. Section 2.2.2). Thereby,
a (m ×n ) technology matrix A is transformed into a square
(m ×m ) technology matrix A allocation. An explicit formula
realizing this transformation is

Aallocation ¼ U∘ A⋅T1ð Þ½ �⋅C: ð6Þ

In Eq. (6) and throughout this work, the “∘” operator
represents an entry-wise matrix product. Equation (6) uses
three new matrices: a copying matrix T1, a function matrix
U , and an allocation matrix C . The meaning and construction
of these matrices is explained in the following paragraph using
the illustrating example from Section 2.2.2.

The transformation matrix T1 copies columns which rep-
resentmulti-functional unit processes in the technologymatrix
A . The construction of the (n ×(n +β )) transformation matrix
T1 is straightforward from the (m ×n ) technology matrix A :
The transformation matrix T 1 is a (n ×n ) identity matrix
expanded by a total number of β columns, where β is the
number of functional flows of the multi-functional unit pro-
cess. The expanded columns contain zeros except for the row
that corresponds to the column of the multi-functional unit
process in the technology matrix A : The entry in that row is
one. The matrix–product A ·T1 yields a matrix where the
column of a multi-product process is copied β times.

For the illustrating example, the multi-product process is in
the first column of the technology matrix and has β =2 prod-
ucts; thus, the transformation matrix T1 and the matrix prod-
uct A ·T1 of the illustrating example are

T1 ¼
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BB@

1
CCA⇒A⋅T1 ¼

−2 −2 −2 100 −5 −10
10 10 10 0 0 0
18 18 18 0 0 0
0 0 0 0 90 0
0 0 0 0 0 175

0
BBBB@

1
CCCCA:
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The function matrix U creates mono-functional unit pro-
cess from the copied columns in A ·T1. For this purpose, the
(m ×(n +β )) function matrixU has the same dimension as the
product A ·T1 and is directly constructed from this product.
The column vectors of U that correspond to the duplicated
columns (here columns 2 and 3 in A ·T1) have only a single
one-entry. These one-entries define the (mono-) functional
flows in each duplicated column. The one-entries are in rows

that correspond to the functional flows of the multi-
functional unit process (here rows 2 and 3 in A ·T 1).
In contrast, the column vectors of U that corresponds to
the original multi-product process (here column 1) has
zeros in the rows of the functional flows and ones
elsewhere. All other elements of U are ones. The illus-
trating example yields a function matrix U and the
matrix product U∘(A ⋅T 1):

U ¼

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1

0
BBBB@

1
CCCCA⇒U∘ A⋅T1ð Þ ¼

−2 0 0 100 −5 −10
0 10 0 0 0 0
0 0 18 0 0 0
0 0 0 0 90 0
0 0 0 0 0 175

0
BBBB@

1
CCCCA:

The economic and elementary flows of the multi-functional
unit process can be allocated to the mono-functional unit pro-
cess by multiplying the matrix U∘(A ⋅T1) by an allocation
matrix C . The allocation matrix C contains the allocation
factorsCpq. The ((n+β)×m) allocationmatrixC is constructed
from a (m ×m) identity matrix that is expanded by one row for
every multi-functional process of the considered system. The

rows of the allocation matrix C correspond to the columns of
the productA ·T1. The expanded row vectors ofC (here row 1
of C) correspond to the original multi-functional process col-
umns of A ·T1 (here column 1 of A ·T1) and contain the
allocation factors Cpq (here C11=C and C12=1−C11=1−C).
The allocation matrix C of the illustrating example and the
product (U∘(A ⋅T1))⋅C becomes

C ¼

C 1−C 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBBBB@

1
CCCCCCA
⇒ U∘ A⋅T1ð Þð Þ⋅C ¼

−2⋅C −2⋅ 1−Cð Þ 100 −5 −10
10 0 0 0 0
0 18 0 0 0
0 0 0 90 0
0 0 0 0 175

0
BBBB@

1
CCCCA:

The corresponding (b ×m) intervention matrix B allocation is
obtained from

Ballocation ¼ B⋅T0ð Þ⋅C: ð7Þ

In contrast to the copyingmatrixT1, the expanded columns
of copying matrix T0 contain only zeros. For the illustrating
example, T0 is given by:

T0 ¼
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0
BB@

1
CCA⇒ B⋅T0ð Þ⋅C ¼

1⋅C 1⋅ 1−Cð Þ 10 3 0:1
0:5⋅C 0:5⋅ 1−Cð Þ 2 0 5
0 0 −50 0 0

0
@

1
A:

The equations for the technology matrix Aallocation and the
intervention matrix B allocation in Eqs. (6) and (7) can be
inserted in Eqs. (1) to (3). Thereby, LCA results can be
calculated as function of allocation factors comprised in the
allocation matrix C .

3.1.2 Expanded equations for calculating LCA results
as a function of avoided burden

Avoided burden requires merging rows of equivalent econom-
ic flows in the technology matrix A and the final demand

666 Int J Life Cycle Assess (2014) 19:661–676



vector f (cf. Section 2.2.4). For this purpose, the LCA practi-
tioner has to select an avoided process that provides an equiv-
alent economic flow. In this work, the choice between multi-
ple candidates for an avoided process is modeled by aggre-
gating candidate processes for an avoided process into a single
avoided process: The idea is to replace the set of candidate
avoided processes by a mix of weighted candidate processes.
The weighting factors quantifying the contribution of each
candidate process are called aggregation factors to avoid
confusion with weighting factors used during life cycle impact
assessment. Thereby, the discrete selection among candidate
processes is turned into specifying aggregation factors. The
aggregation factors are continuous variables which can be
used for sensitivity and uncertainty analysis.

Avoided burden transforms a (m ×n ) technology matrix A
into modified to a square (r ×r ) technology matrix Aburden

wherein rows of equivalent economic flows are merged and
candidate processes for an avoided process are aggregated. An
explicit formula for the transformation is

Aburden ¼ E⋅A⋅V: ð8Þ
Equation (8) uses two newmatrices: an equivalence matrix

E and an aggregation matrix V. The multiplication of the
technology matrix A by the equivalence matrix E merges
rows of equivalent economic flows. The multiplication of
the technology matrix A by the aggregation matrix V aggre-
gates candidate processes for an avoided process. The con-
struction of both the equivalence matrixE and the aggregation
matrix V is described in the following paragraphs using the
illustrating example from Section 2.2.2.

The (r ×m) equivalence matrix E is directly constructed
from the technology matrixA . The columns of the equivalence

matrix E correspond to the rows (i.e., economic flows) of the
technology matrix A . Every column vector of E has a single
one-entry. Equivalent economic flows of the technology matrix
A have one-entries in the same row of the equivalence matrix
E . The rows of the matrix E represent equivalent economic
flows. For illustration, we assume that economic flows Ec3,
Ec4, and Ec5 (Fig. 1) of the technologymatrixA are equivalent.
Thereby, process 3 and process 4 in Fig. 1 are candidates for an
avoided process. The equivalence matrix E and the matrix
product E ⋅Aare

E ¼
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1

0
@

1
A⇒E⋅A ¼

−2 100 −5 −10
10 0 0 0
18 0 90 175

0
@

1
A:

The (n ×r ) equivalence matrix V is constructed from an
initial (n ×n ) identity matrix. For the aggregation of a total
number of α candidate processes, (α-1) columns in the initial
identitymatrix are deleted. The rows of the aggregationmatrix
V correspond to the columns (i.e., processes) of the technol-
ogy matrix A . The column vectors of the aggregation matrix
V correspond to the rows (i.e., the equivalent products) of the
equivalence matrix E . The aggregation factors of the candi-
date processes are in columns ofV that correspond to a row in
E that includes more than two equivalent products, i.e., the
row sum is greater than 2.

For the illustrating example, one column is deleted from
the initial (4×4) identity matrix. The aggregation factor V33=
V for process 3 is in the third row and the factor V43=1−V for
process 4 is in the fourth row of the aggregation matrixV. The
aggregation matrix V and the matrix product E ·A ·V are

V ¼
1 0 0
0 1 0
0 0 V
0 0 1−V

0
BB@

1
CCA⇒E⋅A⋅V ¼

−2 100 −5ð Þ⋅V þ −10ð Þ⋅ 1−Vð Þ½ �
10 0 0
18 0 90ð Þ⋅V þ 175ð Þ⋅ 1−Vð Þ½ �

0
@

1
A:

Equivalent economic flows have to be merged in the final
demand vector f as well. For this purpose, the final demand
vector f is also multiplied by the equivalence matrix E , i.e.,

fburden ¼ E⋅ f : ð9Þ
The aggregation of candidate processes has to be applied to

the elementary flows in the intervention matrix B as well. For
this purpose, the intervention matrix B is also multiplied by
the aggregation matrix V, i.e.,

Bburden ¼ B⋅V: ð10Þ
The equations for the technology matrix Aburden, the inter-

vention matrix Bburden, and the final demand vector fburden in

Eqs. (8) to (10) can be inserted in Eqs. (1) to (3). Thereby,
LCA results can be calculated as function of aggregation
factors comprised in the aggregation matrix V.

3.1.3 Summary of expanded equations for matrix-based LCA
calculations

The equations presented in the previous sections allow calcu-
lating LCA results as a function of allocation factors Cpq and
aggregation factors Vjl. The equations for allocation and
avoided burden are derived separately to facilitate understand-
ing of the construction of the new matrices. In real LCA
studies, however, multiple multi-functionality problems can
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be fixed with different methods. For this case, the equations
derived in Sections 3.1.1 and 3.1.2 are combined into one set
of equations. The construction procedures described in the
previous sections can be executed repeatedly for each multi-
functionality problem.

Combining Eqs. (6) and (8) in Eq. (1) allows calculating a
scaling vector s as a function of allocation factors Cpq and
aggregation factors Vjl from

s ¼ U∘ EAVð Þ⋅T1ð Þð Þ⋅C½ �−1
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A−1

fixed

⋅Ef : ð11Þ
Consequently, explicit equations for the calculation of LCI

results g and LCIA results h are

g ¼ BVT0C

zfflfflfflffl}|fflfflfflffl{Bfixed

⋅s

¼ BVT0C⋅ U∘ EAVð Þ⋅T1ð Þð Þ⋅C½ �−1⋅Ef ð12Þ

and

h ¼ Q⋅g
¼ Q⋅BVT0C⋅ U∘ EAVð Þ⋅T1ð Þð Þ⋅C½ �−1⋅Ef : ð13Þ

All matrices used in Eqs. (11) to (13) are summarized in
Table 1. Equations (11) to (13) expand the existing matrix-
based equations for LCA calculations by including allocation
factors and aggregation factors for fixing multi-functionality
problems with allocation and avoided burden. To study the
influence of changes in these allocation and aggregation fac-
tors, sensitivity coefficients are derived from Eqs. (11) to (13)
in the following section.

3.2 Sensitivity analysis for fixing multi-functionality
problems

Sensitivity analysis can be performed by calculating partial
derivatives of LCA results with respect to given input

parameters. The partial derivatives are also called sensitivity
coefficients (Heijungs 2010). In this section, we derive sensi-
tivity coefficients ∂

∂Cpq
with respect to allocation factors Cpq

and sensitivity coefficients ∂
∂V jl

with respect to aggregation

factors. The coefficients ∂
∂Cpq

are a systematic measure for the

influence of selecting an allocation principle to fix a multi-
functionality problem. Sensitivity coefficients ∂

∂V jl
are a mea-

sure for the influence of selecting between candidates for an
avoided process used to fix a multi-functionality problemwith
avoided burden.

The derivation of the sensitivity coefficients applies basic
matrix algebra. Most fundamentally, the derivative of a
(α ×β ) matrix Z with respect to a matrix element Zxy is

∂Z α�βð Þ

∂Zxy
¼ J α�βð Þ

xy : ð14Þ

Here, Jxy
(α×β) is a single-entry matrix with Jxy=1 while all

other elements are zero. For a square and invertible (α ×α )
matrix Z , the derivative of the inverted matrix Z−1 with
respect to the matrix elements Zxy is

∂Z−1

∂Zxy
¼ −Z−1⋅

∂Z
∂Zxy

⋅Z−1: ð15Þ

More detailed explanations of matrix algebra can be found
in Petersen and Pedersen (2008) and Magnus and Neudecker
(2007, pp. 3–74).

As indicated in Eqs. (11)–(13), a technology matrix A that
is modified with both allocation and avoided burden is denot-
ed A fixed, i.e.,

Afixed ¼ U∘ EAVð Þ⋅T1ð Þð Þ⋅C: ð16Þ

The corresponding intervention matrix B fixed is

Bfixed ¼ B⋅V⋅T0⋅C: ð17Þ

Table 1 Symbols, dimensions, and functions of matrices used for fixing multi-functionality problems

Symbol Name Dimension Function

A Technology matrix m economic flows ×n processes Process data of economic flows

f Final demand vector m economic flows Functional unit

B Intervention matrix v elementary flows×n processes Process data of elementary flows

Q Characterization matrix u impact categories×v elementary flows Characterization factors of impact assessment method

T Copying matrix w processes ×(w +β) processes Duplicating columns of multi-functional processes

U Functions matrix r products ×(w+β) processes Creating mono-functional unit processes

C Allocation matrix (w+β) processes ×r processes Allocating non-functional flows to mono-functional processes

E Equivalence matrix r economic flows ×m economic flows Merging rows of equivalent economic flows

V Aggregation matrix n processes ×w processes Aggregation of alternative avoided burden processes
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3.2.1 Sensitivity analysis for allocation

A partial derivative of Eq. (11) with respect to an allocation
factor Cpq gives a vector of sensitivity coefficients ∂s

∂Cpq
:

∂s
∂Cpq

¼ −A−1
fixed⋅

∂Afixed

∂Cpq
⋅A−1

fixed⋅Ef
zfflfflfflfflffl}|fflfflfflfflffl{s

¼ −A−1
fixed⋅ U∘ EAVð Þ⋅T1ð Þð Þ⋅J wþβð Þ�r

pq ⋅s

ð18Þ

The vector ∂s
∂Cpq

contains sensitivity coefficients for

all elements of a scaling vector s with respect to an
allocation factor Cpq . The corresponding vectors of
sensitivity coefficients for LCI results g and LCIA
results h are calculated from the partial derivatives of
Eqs. (12) and (13), i.e.,

∂g
∂Cpq

¼ ∂Bfixed

∂Cpq
⋅sþ Bfixed⋅

∂s
∂Cpq

¼ BVT0⋅J wþβð Þ�r
pq ⋅sþ BVT0C⋅

∂s
∂Cpq

¼ BVT0⋅ I wþβð Þ� wþβð Þ−CA−1
fixed⋅ U∘ EAVð Þ⋅T1ð Þð Þ

h i
⋅J wþβð Þ�r

pq ⋅s

ð19Þ

and

∂h
∂Cpq

¼ Q⋅
∂g
∂Cpq

¼ Q⋅BVT0⋅ I wþβð Þ� wþβð Þ−CA−1
fixed⋅ U∘ EAVð Þ⋅T1ð Þð Þ

h i
⋅J wþβð Þ�r

pq ⋅s

ð20Þ
In Eqs. (19) and (20), the matrix I (w+β)×(w+β)denotes a (w +

β )×(w +β ) identity matrix.

3.2.2 Sensitivity analysis for avoided burden

A partial derivative of Eq. (11) with respect to an aggregation
factor Vjl gives a vector of sensitivity coefficients ∂s

∂V jl
:

∂s
∂V jl

¼ −A−1
fixed⋅

∂Afixed

∂V jl
⋅A−1

fixed⋅Ef
zfflfflfflfflffl}|fflfflfflfflffl{s

¼ −A−1
fixed⋅ U∘ EAJn�w

jl

� �
⋅T1

� �� �
⋅C⋅s:

ð21Þ

The vector ∂s
∂V jl

contains sensitivity coefficients for all

elements of a scaling vector s with respect to an allo-
cation factor Vjl . The corresponding vectors of sensitiv-
ity coefficients for LCI results g and LCIA results h

are calculated from the partial derivatives of Eqs. (12)
and (13), i.e.,

∂g
∂V jl

¼ ∂Bfixed

∂V jl
⋅sþ Bfixed⋅

∂s
∂V jl

¼ B⋅ Jn�w
jl T0−VT0CA

−1
fixed⋅ U∘ EAJn�w

jl

� �
⋅T1

� �� �h i
⋅C⋅s

ð22Þ

and

∂h
∂V jl

¼ Q⋅
∂g
∂V jl

¼ Q⋅B⋅ Jn�w
jl T0−VT0CA

−1
fixed⋅ U∘ EAJn�w

jl

� �
⋅T1

� �� �h i
⋅C⋅s:

ð23Þ

3.3 Analytical propagation of uncertainties due to fixing
multi-functionality problems in LCA

In this work, we expand the approach of Heijungs
(2010) to include uncertainties in allocation and aggre-
gation factors. For this purpose, we provide a method
for analytical propagation of uncertainties in allocation
and aggregation factors. Uncertainties in allocation and
aggregation factors represent uncertainties due to fixing
multi-functionality problems with allocation or avoided
burden. The prerequisites are derived in the previous
Sections 3.1 and 3.2: explicit equations for calculating
LCA results as a function of allocation and aggregation
factors (Eqs. (11) to (13)) and equations for sensitivity
coefficients with respect to allocation and aggregation
factors (Eqs. (18) to (23)).

The total variance var (y ) of an output y =f (x1,…,xn) can
be approximated using a first-order approximation (cf.
Morgan and Henrion 1990, p. 185), i.e.,

var yð Þ≈
X
i¼1

n ∂y
∂xi

� �
var xið Þ

� �2

þ 2⋅
X
i¼1

n X
j¼iþ1

n ∂y
∂xi

⋅
∂y
∂x j

⋅cov xi; x j
� �� �

⋅

ð24Þ

The variance of a parameter x can be computed from its
standard deviation σx

var xð Þ ¼ σ2
x : ð25Þ

In this work, we follow Heijungs (2010) in applying
Eq. (24) to calculate the variance of an impact vector element
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hk following Eq. (13). Heijungs (2010) included input uncer-
tainties in process data (elementary flows in the intervention
matrixB and economic flows in the technologymatrixA) and
uncertainties in characterization factors (in the characteriza-
tion matrix Q ).

In this work, we additionally include uncertainties in allo-
cation factors (in the allocation matrix C) and uncertainties in
aggregation factors (in the aggregation matrix V ). The first-
order approximation of the variance of an impact vector
element hk is thus

var hkð Þ≈
X
v

∂hk
∂Qkv

� �2

var Qkvð Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ζ Qð Þ

þ
X
v; j

∂hk
∂Bvj

� �2

var Bvj

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ζ Bð Þ

þ
X
i; j

∂hk
∂Aij

� �2

var Aij

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ζ Að Þ

þ
X
p;q

∂hk
∂Cpq

� �2

var Cpq

� �þ 2
X
p;q

X
q0¼qþ1

∂hk
∂Cpq

∂hk
∂Cpq0

cov Cpq;Cpq0
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ζ Cð Þ

þ
X
j;l

∂hk
∂V jl

� �2

var V jl

� �þ 2
X
j;l

X
j0¼ jþ1

∂hk
∂V jl

∂hk
∂V j0l

cov V jl;V j0l
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼ζ Vð Þ

:

ð26Þ

The partial derivatives ∂hk
∂Cpq

and ∂hk
∂V jl

can be obtained from

element-wise evaluation of Eqs. (20) and (23). The partial

derivatives ∂hk
∂Qkv

, ∂hk
∂Aij

, and ∂hk
∂Bvj

can be derived from Eq. (13).

They are identical to the expressions discussed by Heijungs
(2010) if the matrices in that publication are replaced by the
expanded matrices A fixed and B fixed presented in Section 3.1.
The “0-1” sparsity patters of the matrices T0, T1, U , and E is
constant for a given study. Therefore, uncertainties in matrix
elements of those matrices are not considered in Eq. (26).

In Eq. (26), the first term ζ(Q ) quantifies the contribution
of uncertainty in characterization factors. The contributions of
uncertainties in process data, i.e., elementary flows Bvj and
economic flows Aij, are denoted ζ(B) and ζ (A), respectively.
For these three parameter types, we follow Heijungs (2010)
and neglect correlations because covariance data is hardly
available for these data and in general difficult to obtain
(Morgan and Henrion 1990, pp. 122–123).

In contrast, the contributions of uncertainties in allocation
factors ζ(C) and in aggregation factors ζ(V) include the covari-
ance between allocation factors Cpq and between aggregation
factorsVjl. Both allocation and aggregation factors are correlated:
The ISO standard (2006, p. 28) requires that the sum of allocated
environmental impacts equal the impacts from the multi-
functional unit process. The requirement is met if the sum of all
allocation factors used for each allocation procedure is 1, i.e.,X
q¼1

r

Cpq ¼ 1 for p ¼ 1;…; wþ βð Þ: ð27Þ

The environmental impacts of an aggregated avoided pro-
cess should be equal to the sum of impacts from the candidate

processes weighted with the aggregation factors. Therefore,
the sum of aggregation factors used for each aggregation
procedure is 1, i.e.,

X
j¼1

n

V jl ¼ 1 for l ¼ 1;…;w: ð28Þ

For the common case of allocating between two functional
flows (i.e., two allocation factors Cpq and Cp(q+1)) or aggre-
gating two candidate processes (i.e., two aggregation factors
Vjl and V (j+1)l), Eqs. (27) and (28) can be used to directly
implement the covariance in Eq. (26). For this purpose, one
allocation factor Cp(q+1) is replaced by (1−Cpq) and likewise
V (j+1)l=1−Vjl. The resulting simpler explicit expressions are
presented in the electronic supplementary material 2 and 3.

The applicability of Eq. (26) to analyze uncertainties due to
fixing multi-functionality problems is discussed in the follow-
ing section.

4 Application to the illustrating example and discussion

In this section, the analytical approach for analysis of sensi-
tivities (Section 3.2) and uncertainties (Section 3.3) due to
fixing multi-functionality problems is applied to the illustrat-
ing example given in Section 2.2.1. Thereby, features and
limitations are discussed for both sensitivity analysis
(Section 4.1) and uncertainty analysis (Section 4.2).
Opportunities for further development are provided in
Section 4.3.
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4.1 Sensitivity analysis

4.1.1 Sensitivity analysis with respect to allocation factors

One way to fix the multi-functionality problem in the illus-
trating example is allocation (Sections 2.2.2 and 3.1.1). For
this case, Eq. (13) allows calculating LCIA results hk as a
function of the allocation factor C 11=1−C 12as shown in
Fig. 2.

The three virtual impacts h1, h2, and h3 increase linearly
with the allocation factor C11 (Fig. 2). The corresponding

sensitivity coefficients ∂hk
∂C11

are constant for all values of C11

and do not depend on C12, i.e.,

∂h
∂C11

¼
125:5
54
100

0
@

1
A ¼ const:

But sensitivity coefficients with respect to allocation fac-
tors are not constant in general. This is demonstrated by
modifying process data Aij. A loop of the allocated functional
flow Ec3 is introduced by changing A32=0 to A32

*=−700; the
corresponding technology matrix A*is

A* ¼

−2 100 −5 −10
10 0 0 0
18 −700 0 0
0 0 90 0
0 0 0 175

0
BBBB@

1
CCCCA:

Here, the economic flow Ec3 is produced by process 1 and
required by process 2 while the economic flow Ec1 is required
by process 1 and produced by process 2. For this example,
LCIA results hk

* do not depend linearly on the allocation

factor C11=1−C12 as shown in Fig. 3. Now, the sensitivity

coefficients ∂h�k
∂C11

depend on C11, e.g.,

∂h C11 ¼ 0:2ð Þ
∂C11

¼
331:9
142:9
264:7

0
@

1
A and

∂h C11 ¼ 0:8ð Þ
∂C11

¼
148:5
63:9
118:4

0
@

1
A:

Thus, the sensitivity coefficients quantify the reduced sen-
sitivity of the results with increasing values of the allocation
factor C11.

The findings from the numerical example can be general-
ized. In fact, LCA results depend always linearly on the
allocation factor, if no loops of allocated functional flows
exist. A general proof is provided in the electronic supple-
mentary material 1. The use of this information is further
discussed in Section 4.2.1 where uncertainties in allocation
factors are analyzed and propagated using the method
presented in Section 3.3.

4.1.2 Sensitivity analysis with respect to aggregation factors

The multi-functionality problem in the illustrating example
can also be fixed with avoided burden (cf. Section 2.2.3).
Multiple candidates for an avoided process can be aggregat-
ed into a single avoided burden process (cf. Section 3.1.2).
For that case, the LCIA results h k depend on the
aggregation factor (cf. Eq. 13). In the illustrating exam-
ple, process 3 and 4 (cf. Fig. 1) are aggregated. The
LCIA results hk are shown as a function of the aggre-
gation factor V 33=1−V 43 in Fig. 4. Here, the environ-
mental impacts h k for V 33=1 represent a scenario
wherein only process 3 is used as avoided burden
process. Impacts for V 33=0 model a scenario wherein
only process 4 is used as avoided burden because V 33=
1−V 43.

Fig. 2 LCIA results hk as a function of allocation factor C11=1−C12 for
technology matrix A

Fig. 3 LCIA results hk
* as a function of the allocation factor C11=1−

C12 for technology matrix A*
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Studying the sensitivity coefficients ∂hk
∂V 33

allows

distinguishing impact categories that are strongly influenced by
the choice among the two candidates for the avoided process,
e.g.,

∂h V 33 ¼ 0:5ð Þ
∂V 33

¼
−24
23
0:4

0
@

1
A

Here, the results in the impact categories h1 and h3 are
more influenced by the choice among processes 3 and 4 than

impact category h2. Sensitivity coefficients such as
∂hk
∂V 33

could

be calculated automated in software tools whenever LCA
practitioners have to choose from multiple candidate process-
es for an avoided burden process.

In the following section, uncertainty analysis following
Section 3.3 is applied to the illustrating example.

4.2 Uncertainty analysis

4.2.1 Analysis of uncertainties in allocation factors

The sensitivity coefficients calculated from Eq. (20) can be
used for analytical propagation of uncertainties in allocation
factors following Eq. (26). Thereby, the contribution of un-
certainty in allocation factors to the overall uncertainty in an
LCIA result hk can be approximated and compared to the
contributions of uncertainties in, e.g., process data or

characterization factors. For illustration, this method is applied
to the example given in Sections 2.2.1 and 3.1.1.

For this purpose, we assume that characterization factors
Qkv and process data Aij and Bvj of the virtual example have a
relative standard deviation of 5 %, i.e., σ (Qkv)=0.05⋅Qkv,
σ (Aij)=0.05 ⋅Aij, and σ (Bvj)=0.05⋅Bvj. Moreover, we use
two arbitrary parameterized allocation factors C11=0.36 and
C12=1−C11=0.64. The standard deviation of these allocation
factors is assumed to be σ (C11)=σ (C12)=0.05. The variances
of all input parameters Qkv, Aij, Bvj, and Cpq are calculated
from Eq. (25) and used to propagate the corresponding uncer-
tainties in those input parameters to the uncertainty of the
LCIA results hk (Eq. (26)). The LCIA results hk, the corre-
sponding standard deviations σ (hk), and variances var (hk)
are shown in Table 2. Moreover, the contributions of uncer-
tainties in characterization factors ζ(Q ), in process data ζ (B)
and ζ (A ), and in allocation factors ζ (C ) calculated from
Eq. (26) are also displayed in Table 2.

The contribution of uncertainty in allocation factors ζ(C ) is
large (60.8–74.5%) in this virtual example. For LCAwith real
data, further data refinement of characterization factors Qkv,
process data Aij and Bvj would decrease overall uncertainty,
but the uncertainty in the allocation factors still dominates the
uncertainty of LCIA results. That information supports the
LCA practitioner in selecting meaningful processes for data
refinement.

In the example above, the uncertainty in the allocation
factors was chosen arbitrarily for illustration. In a real case
study, the uncertainty in allocation factors should be chosen in
a way that it reflects the uncertainty due to the choice of
selecting an allocation factor. For this purpose, the sample
variance of the sample mean of alternative allocation factors
could be used in Eq. (26). Equation (26) then quantifies the
contribution of the uncertainty in selecting one out of several
possible allocation principles.

A second potential application for Eq. (26) concerns eco-
nomic allocation (Guinée et al. 2004): Economic allocation is
sometimes criticized because economic allocation factors are
derived from potentially fluctuating market prices (Ardente
and Cellura 2012; Pelletier and Tyedmers 2011; Weinzettel
2012; Pelletier and Tyedmers 2012). The uncertainty due to
using a constant economic allocation factor can be quantified
with Eq. (26). For this purpose, the uncertainty in an allocation

Table 2 LCIA results hk, standard deviation σ(hk), and variance var(hk) calculated for the virtual example. Contributions of uncertainties in
characterization factors ζ(Q), in process data ζ(B) and ζ(A), and in allocation factors ζ(C) calculated from Eq. (26)

k hk σ(hk) var(hk) ζ(Q) ζ(B) ζ(A) ζ(C)

h1 45.1 7.3 52.8 (100 %) 4.7 (8.9 %) 3.4 (6.4 %) 5.4 (10.2 %) 39.3 (74.5 %)

h2 19.4 3.2 10.0 (100 %) 0.9 (9.0 %) 0.8 (8.0 %) 1.0 (10.0 %) 7.3 (73.0 %)

h3 36.0 6.4 41.1 (100 %) 3.2 (7.8 %) 3.2 (7.8 %) 9.7 (23.6 %) 25.0 (60.8 %)

Fig. 4 LCIA results hk as a function of aggregation factor V33=1−V43

for technology matrix A
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factor can be calculated from the sample variance of a set of
fluctuating allocation factors. The contribution of uncertainty in
economic allocation factors then represents the volatility of
economically allocated impacts hk with respect to fluctuating
market prices.

In any case, it is necessary to bear in mind that a first-order
Taylor approximation was used for Eq. (26). In general, the
propagation of uncertainties in allocation factors is thus only a
good approximation if the uncertainties in allocation factors
are small. But the first-order approximation in Eq. (26) is
exact for linear functional relationships (cf. Morgan and
Henrion (1990), p. 186). For the virtual example, the LCIA
results hk are a linear function of the allocation factors (Fig. 2).
In general, LCIA results hk depend linearly on allocation
factors if the allocated functional flows are not re-used in a
loop in their own process system (cf. Section 4.1.1). A proof
for this statement is provided in the electronic supplementary
material 1. In this case, the proposed method to propagate
uncertainties in allocation factors into uncertainties in LCIA
results is thus exact.

For nonlinear relationship between LCIA results and allo-
cation factors, higher order instead of first-order approxima-
tions could improve the accuracy of the uncertainty propaga-
tion in Eq. (26). Ciroth et al. (2004) already demonstrated that
such higher order approximations can be used to propagate
uncertainties in nonlinear LCA calculations more precisely.
Therefore, future work could investigate the applicability of
higher order approximations to matrix-based LCA calcula-
tions with nonlinear relationships. However, the higher accu-
racy of higher order approximations has to be compared with
regard to the increased computational effort: The higher order
partial derivatives become much more complicated than
Eqs. (18) to (20).

4.2.2 Analysis of uncertainties in aggregation factors

The sensitivity coefficients calculated from Eq. (23) can be
used to propagate uncertainties in aggregation factors follow-
ing Eq. (26). Thereby, the contribution of uncertainty due to
selecting an avoided process can be approximated and com-
pared to the contributions of uncertainties in, e.g., process data
or characterization factors. For illustration, this method is
applied to the example given in Sections 2.2.1 and 3.1.2.

As in the previous section, we assume standard deviations
of 5 % for characterization factors Qkv and process data Aij

and Bvj, i.e., σ (Qkv)=0.05Qkv, σ (Aij)=0.05Aij, and σ (Bvj)=
0.05Bvj. The standard deviation of the aggregation factors V33

and V43 is arbitrarily assumed to σ (V33)=σ (V43)=0.05. The
LCIA results hk, the corresponding standard deviations σ (hk),
and variances var (hk) are shown in Table 3. Moreover, the
contributions of uncertainties in characterization factors ζ(Q ),
in process data ζ (B) and ζ (A), and in allocation factors ζ(V)
calculated from Eq. (26) are also displayed in Table 3.

The aggregation factor uncertainty contributes strongest to
the uncertainty of the result in impact categories h2 (25.1 %).
In contrast, for impact category h3, the uncertainty of choos-
ing between the alternative avoided burden processes p3 and
p4 does barely contribute to the total variance of h 3.
Refinement of process data in the technology matrix A would
be advisable to reduce uncertainty in the impact category h3

because uncertainty in process data Aij contributes 80.8 %
(Table 3). For the impact categories h1 and h2, data refinement
of process data in both the technology matrix A and the
intervention matrix B can help reducing the result uncertainty
(ζ(B ) and ζ(A ) contribute between 28 and 43.1 %).

In a real LCA study, it is necessary to specify the variance
of the aggregation factors for evaluation of Eq. (26). For the
choice between multiple candidates for the avoided burden
process, sets of aggregation factors could be created with each
set having exactly one aggregation factor Vjl=1 and all others
zero. The sample variance for the mean aggregation factors of
these sets could be used in Eq. (26).

The uncertainty in an aggregation factor can also be
interpreted as the uncertainty due to fluctuating compositions
of a mix process (e.g., country-specific electricity mix).
Uncertainty is introduced whenever the mix composition is
not constant and changes over time but a constant mix is used
for LCA calculations. This uncertainty can bemodeled using a
sample variance of a set of mix compositions.

For analysis of uncertainties in aggregation factors, the
considerations concerning the accuracy of the first-order ap-
proximation in Eq. (26) discussed in Section 4.2.1 apply.
Here, however, LCIA results do not depend linearly on ag-
gregation factors; the smoothness of LCIA results as a func-
tion of aggregation factors can however be studied using
Eq. (13).

Table 3 LCIA results hk, standard deviation σ(hk), and variance var(hk) calculated for the virtual example. Contributions of uncertainties in
characterization factors ζ(Q), in process data ζ(B) and ζ(A), and in aggregation factors ζ(V)calculated from Eq. (26)

k hk σ(hk) var(hk) ζ(Q) ζ(B) ζ(A) ζ(V)

h1 90.6 8.9 78.6 (100 %) 19.7 (25.0 %) 26.4 (33.6 %) 26.7 (34.0 %) 5.8 (7.4 %)

h2 18.0 4.6 21.1 (100 %) 0.8 (3.8 %) 9.1 (43.1 %) 5.9 (28.0 %) 5.3 (25.1 %)

h3 49.1 7.9 62.7 (100 %) 6.0 (9.6 %) 6.0 (9.6 %) 50.7 (80.8 %) <0.01 (0.0 %)
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4.3 Outlook on future applications

Equation (26) propagates uncertainties in allocation and aggre-
gation factors into uncertainties in LCA results. Even though
the mathematical equations look complicated (cf. Eqs. (18) to
(23)), they do not require any additional matrix inversion
compared to calculating LCA results (cf. Eqs. (11) to (13)).
Therefore, it is expected that the presented approach is com-
putationally more efficient than MC simulations. This, how-
ever, should be demonstrated using a real LCA study instead of
a virtual example. The recent comparison of analytical uncer-
tainty propagation with MC simulations for uncertainties in
process data and characterization factors (Imbeault-Tétrault
et al. 2013) could therefore be expanded for uncertainties in
allocation factors and in aggregation factors.

An application of the method presented in this work should
include a larger process system with multiple multi-functional
processes. Thereby, the influence of allocation factors for
multiple processes can be compared to each other. To be tested
with larger process systems, the presented approach could be
implemented in matrix-based software tools such as CMLCA
(Heijungs 2013b). It could then be used as a systematic method
to meet the ISO standard requirement that “whenever several
alternative allocation procedures seem applicable, a sensitivity
analysis shall be conducted […]” (ISO 2006, p. 28).

In this work, we showed that the first-order approximation
of uncertainties in allocation factors is exact if no loops of
allocated functional flows exist (cf. electronic supplementary
material 1). Future work should investigate the accuracy of the
first-order approximations for nonlinear relationships between
LCA results and allocation or aggregation factors. An approach
could be to compare the uncertainty calculated with a first-
order approximation to the uncertainty calculated with MC
simulations for several sets of LCA results that represent alter-
native allocation factors. In case that the uncertainties calculat-
ed with the first-order approximation differ strongly from the
uncertainties calculated with MC simulations, higher order
approximations could be tested such as in Ciroth et al. (2004).

Another opportunity for future research is to investigate
correlations between process data and allocation factors.
Allocation factors are often derived from mass flows (cf.
Klöpffer and Grahl 2009, pp. 103–104). Mass flows are
typically comprised in the technology matrix A . Therefore,
allocation factors based on mass flows could be expressed as
functions of process data A ij . The equations derived in
Section 3.1 can be the basis for future studies of the relation-
ship between process data and allocation factors.

5 Conclusions

Methods for fixingmulti-functionality problems are controver-
sially discussed. The influence of fixing multi-functionality

problems on LCA results is widely acknowledged. The ISO
standard requires a sensitivity analysis if alternative procedures
for fixing multi-functionality problems exist. This work pro-
vides an analytical matrix-based method for the sensitivity
analysis required by the ISO standard.

This work discusses uncertainties in two practically relevant
fixing methods: allocation and avoided burden. The choices
within each method are represented by continuous parameters:
allocation factors for allocation and aggregation factors for
avoided burden. Expanded, newly developed matrix equations
allow analytical propagation of uncertainties in these parame-
ters. Uncertainties due to fixing multi-functionality problems
were so far mostly analyzed with scenario analyses or MC
simulations. In contrast to MC simulations, the presented
approach seems computationally more efficient. Compared to
scenario analyses, the analytical method could be automated in
a software tool and thereby allow a direct analysis of uncer-
tainties due to fixing multi-functionality problems. Future
work should apply the presented approach to real LCA studies
with larger process systems.Moreover, the analytical approach
should be compared to MC simulations and scenario analysis
with regard to computational effort, input required by the LCA
practitioner, and information acquired.

It is hard to imagine that the uncertainty due to fixingmulti-
functionality problems in LCAwill be reduced by more strict
guidelines in the future. Quantifying the contribution of these
uncertainties to the total result uncertainty therefore remains
essential for the transparency of LCA results. The presented
method could provide an analytical framework for uncertainty
analysis in LCA including uncertainties due to fixing multi-
functionality problems.
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