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Abstract
Purpose This paper uses a dynamic life cycle assessment
(DLCA) approach and illustrates the potential importance of
the method using a simplified case study of an institutional
building. Previous life cycle assessment (LCA) studies have
consistently found that energy consumption in the use phase of
a building is dominant in most environmental impact catego-
ries. Due to the long life span of buildings and potential for
changes in usage patterns over time, a shift toward DLCA has
been suggested.
Methods We define DLCA as an approach to LCA which
explicitly incorporates dynamic process modeling in the
context of temporal and spatial variations in the surround-
ing industrial and environmental systems. A simplified
mathematical model is used to incorporate dynamic infor-
mation from the case study building, temporally explicit

sources of life cycle inventory data and temporally explicit
life cycle impact assessment characterization factors, where
available. The DLCA model was evaluated for the historical
and projected future environmental impacts of an existing
institutional building, with additional scenario development
for sensitivity and uncertainty analysis of future impacts.
Results and discussion Results showed that overall life cycle
impacts varied greatly in some categories when compared to
static LCA results, generated from the temporal perspective of
either the building's initial construction or its recent renova-
tion. From the initial construction perspective, impacts in
categories related to criteria air pollutants were reduced by
more than 50 % when compared to a static LCA, even though
nonrenewable energy use increased by 15 %. Pollution con-
trols were a major reason for these reductions. In the future
scenario analysis, the baseline DLCA scenario showed a
decrease in all impact categories compared with the static
LCA. The outer bounds of the sensitivity analysis varied from
slightly higher to strongly lower than the static results, indi-
cating the general robustness of the decline across the
scenarios.
Conclusions These findings support the use of dynamic mod-
eling in life cycle assessment to increase the relevance of results.
In some cases, decision making related to building design and
operations may be affected by considering the interaction of
temporally explicit information in multiple steps of the LCA.
The DLCA results suggest that in some cases, changes during a
building's lifetime can influence the LCA results to a greater
degree than the material and construction phases. Adapting
LCA to a more dynamic approach may increase the usefulness
of the method in assessing the performance of buildings and
other complex systems in the built environment.
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1 Introduction

The construction and operation of commercial and institu-
tional buildings consume a large amount of energy and
materials, both of which contribute to known environmental
impacts such as global climate change, human health, eco-
system services, and resource depletion (USDOE 2009;
Young and Sachs 1994). Life cycle assessment (LCA) can
aid in quantifying the environmental impacts of whole
buildings by evaluating materials, construction, operation,
and end of life stages, with the goal of identifying areas of
potential improvement (Junnila et al. 2006; Scheuer et al.
2003; Kofoworola and Gheewala 2008; Wu et al. 2011).
Accurate whole-building LCA is limited by the standard
practice of applying static factors throughout the life cycle
inventory (LCI) and life cycle impact assessment (LCIA)
stages. Since buildings have long useful lifetimes, and the
use phase can have large environmental impacts, variations
within the use phase can sometimes be greater than the total
impacts of materials, construction, or end-of-life phases
(Aktas and Bilec 2011; Junnila et al. 2006; Scheuer et al.
2003). The ability to accurately model future scenarios is
critical for improved building sustainability (Scheuer et al.
2003). Additionally, individual buildings are operated with-
in changing industrial and environmental systems; the si-
multaneous evaluation of these dynamic interactions during
product or building lifetimes is recognized as a key need in
LCA (Reap et al. 2008).

1.1 Time in LCA

Time-related issues affect LCA in numerous ways; broadly,
they can be categorized into (1) industrial and environmen-
tal dynamics and (2) time horizons and discounting of future
emissions (Reap et al. 2008). Temporal variations can be
accounted for independently of any discounting of future
emissions, using the physical models underlying the inven-
tory data and impact assessment methods (Hellweg and
Frischknecht 2004; Hellweg et al. 2003). For industrial
and environmental dynamics, one approach is to consider
temporal and spatial variability as components of parameter
uncertainty in LCA and use probabilistic scenario analysis
as a technique for overcoming this uncertainty (Huijbregts
1998; Huijbregts et al. 2001). This approach aggregates
temporal and spatial variability with other sources of uncer-
tainty, such as different technologies in use at different
industrial facilities, or inaccurate emission measurements.
Another approach is to link explicit modeling of the primary
systems of study (e.g., a building or an industrial process)
with traditional aggregated LCA datasets and use additional
probabilistic analysis to characterize uncertainty in upstream
or downstream material flows or emissions (Udo de Haes et
al. 2004; Reap et al. 2003; Ries 2003). Another approach is

to shift the focus away from a single product or functional
unit to the entire in-use suite of products to capture changes
in technology or infrastructure over a given period of inter-
est (Field et al. 2000; Levine et al. 2007; Stasinopoulos et al.
2011).

Recent research has approached different aspects of the
time-LCA problem. These studies can be differentiated by
whether dynamic methods are applied to the LCI or LCIA
steps in the analysis. Several studies have used dynamic LCI
data to assess renewable energy systems, considering past
and potential technology improvements affecting produc-
tion efficiencies (Pehnt 2006; Zhai and Williams 2010).
For the LCIA step, studies have used atmospheric and other
environmental models to calculate time-dependent charac-
terization factors (CFs) on both multi-year scales (Struijs et
al. 2010; Seppälä et al. 2006) and seasonal scales (Shah and
Ries 2009). The time dependence of these CFs is a function
of background pollutant concentrations or climatic factors.
Other studies have investigated the relative impact of emis-
sion timing with respect to a fixed time horizon (e.g., 100-
year global warming potential) in the case of land use
change and biofuels (Kendall et al. 2009; Levasseur et al.
2010); vehicle regulations (Kendall and Price 2012); and the
institutional building previously studied by Scheuer et al.
(2003) (Kendall 2012). In these cases, emissions occurring
farther in the future are effectively discounted by their
proximity to the overall study time horizon. This effec-
tive discounting is distinct from economic discounting
or pure time preference discounting. However, few stud-
ies so far combine dynamic scenario analysis with tem-
porally explicit LCI data or any type of temporally
explicit LCIA method.

1.2 Scope and functional unit of this study

The scope of this study was to establish a dynamic LCA
(DLCA) approach and test this approach with a case study
of an existing institutional building. These results were
compared with LCA results from a static approach. The
functional unit chosen for this study was an institutional
building (Benedum Hall at the University of Pittsburgh)
over its assumed lifetime of 75 years (until 2045).
Benedum Hall is an existing building that opened in 1971.
The system boundary for the study included primarily mate-
rials for construction and renovation and electricity/fuels for
building operation. Two separate comparative static versus
dynamic analyses were constructed: one for the entire life-
time of the building assuming a 1971 perspective and one
for the remaining life of the building including an actual
major renovation and addition, assuming a 2009 perspec-
tive. A scenario and sensitivity analysis was conducted for
the 2009 dynamic perspective to elicit the effects of chang-
ing individual model parameters.
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2 Methods

2.1 Modeling approach

Heijungs and Suh (2002) developed a general equation for
the environmental impact of a product system for a process-
based LCA approach. Mutel and Hellweg (2008) restated
this equation as shown in Eq. (1):

h ¼ C� B� A�1 � f ð1Þ
where h is a vector representing total environmental impacts
of the studied system, in some number of impact categories
determined by the selected LCIA method; f represents the
quantities of outputs from the industrial supply chain (e.g.,
materials, fuels) required for a specified function of the
studied system; A is the technosphere matrix representing
each unit of output as a function of the inputs to the various
processes needed to generate that output; B is the biosphere
matrix representing the environmental interventions (emis-
sions and resource consumption) required for each process
in the supply chain; and C (originally W in Mutel and
Hellweg; changed to C herein) is a matrix of CFs which
represent the magnitude of the effect of each quantity of
emission or other intervention in each impact category. C is
given here as a matrix rather than a vector or diagonal
matrix, to efficiently account for the effect of some emis-
sions in multiple impact categories.

The static approach to LCA often assumes point values
for all of the coefficients in the C, B, and A matrices and is
usually structured such that the f vector represents a one-
time output of the system (quantity x of product y at an
arbitrary time). By contrast, a building is an example of a
system whose input requirements vary with time and as a
function of changes in its usage. Thus, the demand vector f
becomes ft at any point in time t, as a function of basic
operating variables (e.g., occupancy schedules, thermostat
set points), which are not normally captured in LCA. These
operating variables may include material inputs during
maintenance, various types of energy inputs required for
routine operations based on building schedule and seasons,
and replacement of materials and systems at periodic
intervals.

Similarly, over the long life of a building, time-related
changes may affect the other variables in Eq. (1). The
technosphere matrix A may change over time due to product
substitutions, efficiency improvements, or other changes in
the structure of the industrial supply chain. The biosphere
matrix Bmay also change over time for the above reasons or
due to regulatory controls on emissions. Temporal changes
in CFs in the C matrix are also possible as evidenced by
previous studies, e.g., Kendall (2012), Shah and Ries
(2009), Seppälä et al. (2006), and Struijs et al. (2010).

Given the potential for each term in Eq. (1) to
change over time, a simplified model for DLCA is
shown in Fig. 1 and represented mathematically by the
following:

ht ¼
Xte

t0

Ct � Bt � A�1
t � ft ð2Þ

where the t represents a point in time at which the
values in the various terms are known, and t0 and te
represent the beginning and ending time points of the
analysis, usually the beginning and end of the product
or system life cycle. The t subscript does not imply that
these terms are direct mathematical functions of time;
rather, they are functions of their underlying variables
that can be represented as a time series. Particularly, the
matrix of CFs, Ct could encompass variations in all the
underlying variables (fate, exposure, and effect factors),
which must be calculated for each point in time by the
physical models applicable to each category. Ct could
also encompass adjustments made to CFs for other
reasons, such as proximity to the analysis time horizon,
as in Kendall (2012). Separate types of changes to CFs
could be explicitly documented by constructing several
separate C matrices (e.g., Ct, [fate] or Ct, [time horizon])
and combining these matrices by scalar multiplication
(Hadamard product) at the time of analysis.

There are several considerations to this approach. First, this
approach follows an attributional, rather than consequential
LCA structure (Ekvall and Weidema 2004). In attributional

Fig. 1 Conceptual diagram of DLCA framework
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LCA, the impact of an emission is considered to be the total
impact of the product system normalized to a functional unit,
whereas consequential LCA investigates the effects of marginal
choices. In the attributional formulation of the DLCA model,
the aggregation is performed at the time step level (variations at
smaller scales are implicitly averaged). Thus, the terms in Eq.
(2) are able to vary independently of each other. However, the
use of dynamic modeling of system interactions introduces the
possibility of feedback loops in which changes occurring in
different parts of the system induce mutual changes in each
other. The inclusion of feedback loops between variables in Eq.
(2) (e.g., coefficient Ai,j relating process i to product j as a
function of fj, the quantity of product j required) would move
the model toward a consequential structure. For the current
study, feedbacks are hypothesized to be significant only within
the systems captured by the building energy model that produ-
ces the f vector. These feedbacks are briefly discussed in
Section 2.4.1.

Another consideration is the issue of lag time in the supply
chain, where lag time is defined as the difference in timing of
processes and emissions at multiple levels in the supply chain
(Levine et al. 2007). Some examples are the time difference
between the production of a building material and its installa-
tion at the construction site or the time difference between fuel
extraction and combustion. For the simplified mathematical
model in Eq. (2), supply chain functions must be assumed to
occur simultaneously in order to invert the A matrix. A more
complete formulation would involve specifying the lag time
for each supply–demand linkage, which would require calcu-
lation using a tree structure rather than a matrix structure, as
the number of inputs at different time lags would multiply
with each step back through the supply chain. This approach
could be implemented with an inventory or impact cutoff
tolerance. However, data limitations prevented the inclusion
of lag times in this study as discussed further in Section 3.4.

A prototype DLCA model was constructed using
Microsoft Excel and Visual Basic for Applications (VBA).
The model used Excel worksheets to store basic data such as
process inputs and outputs, emission factors, and CFs, while
VBA code was used to perform the matrix calculations. The
key difference between the prototype model and most stan-
dard LCA applications was the use of time series tables to
simulate dynamic variation in matrix coefficients representing
modeled relationships. With the time series enabled, any
coefficient ci in a vector or ci,j in a matrix can become ci,j,t,
where i and j represent the coefficient's position in the matrix
in question and t is the current model time step. The model
explicitly considered four categories of time series in the LCA
calculation, corresponding with the four variables of Eq. (2).
These categories are outlined in Table 1, along with illustrative
examples. Any variable without a time series available due to
data limitations was assumed to have a constant value, as in a
typical static LCA calculation.

2.2 Case study

An existing institutional building—Benedum Hall at UPitt—
was selected as the case study for this project. Originally
constructed in 1971 to house UPitt's engineering program,
the Benedum Hall complex includes 12-story tower housing
laboratories, offices, and classrooms; two below-grade floors
with additional office and laboratory space; and a two-story
auditorium. The two below-grade floors extend under the
footprints of both the tower and the auditorium and support
a first-floor level outdoor plaza. The complex underwent a
major renovation beginning in 2006, including the construc-
tion of a new wing on the first, second, and third floors; major
upgrade of all mechanical systems; replacement of all the
windows and floor coverings; roof replacement including
green roof spaces on both the auditorium and a portion of
the plaza; and numerous interior space renovations. The addi-
tional wing and renovation of the second floor of the tower
were completed in November 2009; roof and window replace-
ment on the remaining structure and renovations of the below-
grade floors, ground floors, and auditorium were completed
by August 2010; and renovations of the 3rd–12th floors of the
tower are scheduled to be completed by the end of 2012.

Since the original construction, steam for heating the build-
ing has been supplied by a district heating system used by the
university and several nearby institutions. Until June 2009,
steam was generated using a combination of coal-fired and
natural gas-fired boilers at a single plant; in June 2009, a second
plant was added and the existing plant was converted to 100 %
natural gas-fired boilers. Cooling was originally provided by a
stand-alone chiller plant on the building's roof, which was
replaced by a connection to a new district chilled water plant
in 2002.

2.3 Static and dynamic LCA comparisons

The DLCA model and a static LCA model were compared
over two analysis time frames. The first time frame con-
sisted of the entire lifetime of the building and used a 1971
perspective; while the second time frame consisted of the
remaining life of the building using a 2009 perspective. We
will refer to these as the “full lifetime” and “remaining
lifetime” analyses hereafter. The system boundary for both
static and dynamic analyses included building materials and
operating fuels/electricity, as well as their respective up-
stream processes. The system boundary of the DLCA mod-
el, including the extent of dynamic processes included,
is shown in Fig. 2. Material transportation, on-site construc-
tion activities, routine maintenance, and end-of-life disposi-
tion were excluded from the study. Due to the complexity of
modeling the entire building, only major systems were se-
lected from the initial construction, and a comparison was
made to two previous studies to assess the degree of
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completeness of the results (Junnila et al. 2006; Scheuer et
al. 2003).

The full lifetime of Benedum Hall was assumed to be
75 years, consistent with its current status (recently renovat-
ed at 40 years old) and one previous study of an institutional
building (Scheuer et al. 2003). It has been noted that arbi-
trary assumptions about building lifetime can significantly
affect LCA results (Aktas and Bilec 2011). The full lifetime
DLCA encompassed four distinct phases: (1) initial con-
struction (1971); (2) initial operations (1971–2008); (3)
renovation activities (2006–2012); and (4) future operations
(2009–2045). The renovation activities were assumed to
occur in 2009. Construction material quantities from the
original construction, renovation, and addition were
obtained from the construction drawings and specifications
for each project (DRA 1965; Edge 2007, 2008). The full
lifetime static LCA coupled the initial construction results
with a projection of the initial year's operations over the 75-
year assumed building lifetime and did not include the
renovation/addition. The remaining lifetime DLCA and

static LCA included the renovation and future operations
phases. The remaining lifetime DLCAwas used as the basis
for the future scenario analysis (Section 2.5).

For this study, the DLCAmodel used a monthly time series
for several reasons. Historical values for the building's utilities
were available on a monthly basis, and fuel mixes for the
electricity grid (USDOE 2010b) and heating plant were also
available on a monthly basis (Section 2.4.2). Annual aggrega-
tion of these values would potentially have masked variation
in the results due to the timing of variations in energy use and
the fuel mix. Emission factors were typically annual values.

2.4 Data collection

2.4.1 Dynamic LCI—building-level data and modeling (ft)

Historical and future values for the f vector were generated
specifically for the case study building. Operating energy
consumption was taken from utility meter data for Benedum
Hall. Data availability varied depending on the individual

Table 1 Categories of dynamic life cycle assessment (DLCA) parameters for buildings, examples, and data sources used in the case study

Category [with parameter from Eq. (1) in brackets] Examples Data used in case study with associated
time interval

Building operations [ft]—initial construction
activities; additions, renovations, or major
component replacements; changes in usage
patterns or energy consumption

Material required for initial construction;
material required for replacement of
components or reconfiguration of interior
spaces; changes in energy consumption

Benedum Hall original construction plans;
1971 (DRA 1965)

Benedum Hall utility usage (steam, electric,
and water); July 1992–December 2010

Benedum Hall construction plans for
renovation and addition; 2006–2010
(Edge 2007, 2008)

eQUEST model (projected); 2009–2045

Supply chain dynamics [At]—changes to
upstream processes independent of
building management decisions

Changes in fuel mix and efficiency of
the electricity grid; changes in origin
of natural gas and petroleum supplies;
changes in regional waste treatment
practices

District heating plant fuel consumption and
steam production; January 2000–December
2010

National annual and monthly electric power
generation by fuel type; 1970–2008 (USDOE
2010b): (projected); 2009–2045 (USDOE
2010a)

Inventory dynamics [Bt]—changes in
resource use or pollutant emissions by
processes due to technology, regulation,
or other factors

Influence of environmental regulations on
pollutant emissions; changes in efficiency
of industrial processes

National GHG emissions from electric power
generation by fuel type and other major GHG
sources; 1990–2008 (USEPA 2010)

National criteria air pollutant (CAP) and
hazardous air pollutant (HAP) emissions;
1970–2008 (USEPA 2009, 2011b): (projected);
2009–2016 (USEPA 2011a)

Environmental system dynamics [Ct]—
changes in background environmental
systems affecting the fate, exposure,
and effects

Changes in system sensitivity due to
background concentrations or
distribution of populations; changes
in ambient conditions affecting
emission fates; consideration of an
analysis time horizon

Time-adjusted (global) warming potentials
(TAWPs); 2009–2045 (Kendall 2012)

Seasonal characterization factors for
photochemical ozone; 2009–2045
(Shah and Ries 2009)

ft vector of outputs from the industrial supply chain (e.g., materials, fuels), At matrix representing each unit of output as a function of the inputs to
the various processes needed to generate that output, Bt matrix representing the environmental interventions (emissions and resource consumption)
required for each process, Ct matrix of characterization factors representing the magnitude of the effect of each quantity of emission or other
intervention in each impact category

542 Int J Life Cycle Assess (2013) 18:538–552



variables; a summary is provided in Table 1 and a complete
list is given in Table SI-1 (Electronic Supplementary
Material). For years prior to data availability, the average
of the first three available years was used. Future energy
consumption was estimated using the U.S. Department of
Energy's (USDOE) eQUEST model (Hirsch 2010), adjust-
ing model default parameters to reflect the specific condi-
tions for Benedum Hall. A qualitative comparison of the
eQUEST model results and both the extensive pre-
renovation and limited post-renovation utility meter data
was performed to verify the model's predictive capacity;
results of this comparison are presented in Figs. SI-1 and
SI-2 (Electronic Supplementary Material).

2.4.2 Dynamic LCI—unit processes (At)

Temporally specific historical and projected future unit pro-
cesses for the A matrix were constructed from U.S. Energy
Information Agency (EIA) records and projections (USDOE
2010a; USDOE 2010b) for the national electricity generation
mix; and meter data for the central campus steam plant (Table
SI-1, Electronic Supplementary Material). Data sources for

each process type are provided in Table 1. Upstream processes
without dynamic data available were referred to (1) United
States Life Cycle Inventory (USLCI) unit processes (NREL
2010), for energy and fuels, and (2) the ecoinvent v2.2
database (Frischknecht and Rebitzer 2005), for materi-
als. Ecoinvent was chosen over USLCI for materials
because some material processes in the USLCI database
do not explicitly link to upstream processes, but rather
aggregate emissions from all upstream processes into
one list. Separation of upstream unit processes was
necessary to enable the DLCA model to function prop-
erly. However, because ecoinvent consists of mainly
European data and does not contain time series, several
modifications were made: (1) process electricity require-
ments from materials in ecoinvent were referred back to
the time series described above, and (2) other process
energy (e.g., heat, equipment fuel use) were referred to
the USLCI energy unit processes. Thus, the material
processes used for the 1971 construction were the same
as those used for the 2009 renovation/addition, with the
exception of changing the fuel mix and emissions for
the electricity generation required by these processes.

Fig. 2 System boundary and dynamic modeling
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2.4.3 Dynamic LCI—emission factors (Bt)

Temporally specific emission factors for the B matrix were
constructed from available industry and environmental data
(USEPA 2009; USEPA 2010, 2011b) and Allegheny County
Health Department (ACHD) data for the central campus
steam plant (ACHD 2011). For example, emission factors
for criteria air pollutants (CAPs) from electric power gener-
ation were calculated by dividing U.S. Environmental
Protection Agency (EPA) historical emission data (USEPA
2009, 2011b) by the U.S. EIA records of power generation
by fuel type (USDOE 2010b). Data sources for each variable
are provided in Table 1; time series of emission factor results
in each LCIA category are presented in Fig. SI-3 (Electronic
Supplementary Material). Where possible, these values were
compared against the USLCI database (NREL 2010) for con-
sistency within the time frames for which the USLCI database
applies. Qualitative results of this comparison are also pre-
sented in Fig. SI-3 (Electronic Supplementary Material).

2.4.4 Dynamic LCIA—characterization factors (Ct)

Temporally specific CFs are only available in a few LCIA
categories. Therefore, for the baseline full lifetime and
remaining lifetime DLCA calculations, static factors from
the Tool for the Reduction and Assessment of Chemical and
other environmental Impacts (TRACI) method were used
(Bare et al. 2003). Temporally specific CFs available in the
literature include monthly CFs for photochemical ozone in
the USA (Shah and Ries 2009); annual global CFs for ozone
depletion (Struijs et al. 2010), decadal-scale CFs for acidi-
fication, and eutrophication in Europe (Seppälä et al. 2006);
time horizon-adjusted CFs for acidification in Europe (Van
Zelm et al. 2007); and time horizon-adjusted CFs for global
warming (e.g., Kendall 2012). The European acidification
and eutrophication CFs are not adaptable to the USA due to
the lack of a US-based database of ecosystem sensitivities
(Norris 2003). The lack of any consistent set of temporally
variable CFs for the USA across multiple impact categories
led to the decision not to include them in the baseline
analyses for this study. However, example calculations us-
ing two sets of dynamic CFs—photochemical ozone from
Shah and Ries (2009) and global warming (Kendall 2012)—
have been included in the future scenario analysis
(Section 2.5). The compilation of a set of temporally vari-
able CFs across multiple impact categories and time scales
for the USA is planned as future work.

2.5 Future scenario analysis

A future scenario analysis was conducted to probe the sensi-
tivity of the results to changes in assumptions about future
trends, building on the remaining lifetime DLCA calculation

(2009–2045). The individual and combined influence of end-
use energy variations, fuel mixes, and emission controls was
investigated by pairing different combinations of each vari-
able in Eq. (1). For ft, scenarios were generated using 10 %
increases and decreases in electricity consumption and steam
heat consumption separately. This range was anticipated to be
within the capacity of adjustments to existing set points and
operating schedules and thus allowed for some level of un-
certainty in occupant usage and behavior. ForAt, the EIA's 47
projected cases from the Annual Energy Outlook (AEO) were
examined and the cases which resulted in the greatest varia-
tion in generation mixes from the baseline were added to the
analysis (USDOE 2010b). For Bt, a scenario without the
EPA's currently proposed regulations was examined, in which
emission factors remained constant at 2009 levels. The sce-
nario pairing no increase or decrease in energy consumption
with no new EPA rules was similar to the static LCA, except
that even the EIA's baseline (reference case) includes expected
changes in the future generation mix and is thus dynamic.

Finally, for Ct, calculations were constructed in the global
warming potential (GWP) category using time-adjusted
warming potentials (TAWPs) from Kendall (2012) and in
the photochemical ozone category using monthly factors for
a typical year from Shah and Ries (2009). Shah and Ries
developed CFs at the midpoint level for nitrogen oxides
(NOx) and volatile organic compounds (VOCs) in terms of
parts per billion O3×square kilometers×day per kilogram
emission. To compare with the static TRACI CFs, which use
a reference unit of kg NOx eq., the Shah and Ries CFs were
normalized by dividing the monthly values for NOx and VOC
by the annual average value for NOx from their own study.

3 Results and discussion

3.1 Static LCA validation

Total mass of the materials and embodied energy inputs of the
static LCA for the original construction were compared with
two previous studies of commercial and/or institutional build-
ings in the USA (Junnila et al. 2006; Scheuer et al. 2003) to
validate LCA inputs. Scheuer et al. analyzed a six-story com-
bination academic and hotel building in Michigan, and Junnila
et al. analyzed a five-story office building in the midwest of
USA. Results of the comparison are summarized in Table 2. A
complete comparison of LCI results is given in Table SI-2
(Electronic Supplementary Material). Total normalized mass
of Benedum Hall was estimated to be 1,670 kg/m2 and total
embodied energy to be 5,080MJ/m2, compared to 2,000 kg/m2

and 6,250 MJ/m2 for Scheuer et al. and 1,290 kg/m2 and
11,900 MJ/m2 for Junnila et al. Total annual operating energy
was 3,920 MJ/m2, compared to 4,100 MJ/m2 for Scheuer et al.
and 1,320 MJ/m2 for Junnila et al.
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The results of this study agreed qualitatively with Scheuer
et al. in most categories and with Junnila et al. in some
categories. A significant degree of variation is expected even
between comparable buildings, due to differences in construc-
tion details, selection of system boundaries, and the use of
different LCI databases. The material systems included in this
study for Benedum Hall represented 90 % of the results of the
Scheuer et al. study by mass and 74 % by embodied energy.
Mass results on a system-by-system basis were comparable to
Scheuer et al. (more detail provided in Table SI-2, Electronic
Supplementary Material); the differences in embodied energy
can be attributed primarily to (1) the exclusion from this study
of internal finish materials, such as carpet and ceiling tiles and
(2) the value for embodied energy for steel from the LCI
databases used. Finish materials such as carpet and ceiling tile
have high embodied energy contents and frequent replace-
ment intervals and account for a significant portion of the total
embodied energy results in Scheuer et al. The amounts of such
materials in Benedum Hall are minor by comparison with
most buildings and were not considered in this study.
Compared with Junnila et al., the lower embodied energy
per unit mass can also be attributed in part to the exclusion
of interior finishes from this study, since items such as struc-
tural steel and concrete had reasonably similar value for total
embodied energy per unit area of the building. However,
Junnila et al. also used a hybrid process-based and economic
input–output-based LCA model, which may have contributed
to the difference. From comparison with both studies, future
work on the dynamic LCA model should include finish mate-
rials such as paint, carpet, and tile for the sake of full compa-
tibility with other studies and to accommodate buildings with
larger amounts of these materials than Benedum Hall.

3.2 DLCA and static LCA results for full lifetime analysis

The DLCA results were lower than static LCA results in
most impact categories with the exception of nonrenewable

energy use (NREU; +12 %), as shown in Fig. 3. The factors
affecting the DLCA results in terms of Eq. (2) were: (1) the

Table 2 Mass and energy inputs for static LCA model of the building materials and initial energy consumption

Material and energy results Case study: Benedum Hall Scheuer et al. (2003) Junnila et al. (2006)

Mass/area
(kg/m2)

Energy/area
(MJ/m2)

Mass/area
(kg/m2)

Energy/area
(MJ/m2)

Mass/area
(kg/m2)

Energy/area
(MJ/m2)

Total materials 1,670 5,080 2,000 6,250 1,360 11,920

Original construction materials 1,570 4,250 NG NG 1,290 7,060

Renovation/addition materials 100 820 NG NG 70 4,860

Annual operating energy—total – 3,920 – 4,100 – 1,360

Annual operating energy—electricity – 3,340 – NG – 700

Annual operating energy—heat – 580 – NG – 660

Embodied energy was calculated as total nonrenewable energy. Results from two other LCA studies of commercial or institutional buildings in the
USA are presented for comparison and validation

NG not given (results are presented graphically)
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DLCA – Post-renovationoperations
DLCA – Renovationandadditionmaterials
DLCA – Pre-renovationoperations
DLCA – Originalconstructionmaterials
Static LCA – Operations
Static LCA – Originalconstructionmaterials

Fig. 3 Comparison of results from static and DLCA models, using the
TRACI method. Results are normalized to the total static LCA results
for each category. Static LCA results were calculated as the total of the
initial construction and projection of the initial year's operating energy
consumption for the 75-year life of the building. DLCA results are
classified into four categories: original construction materials; pre-
renovation operations (operating energy consumption through
2008); renovation and addition materials; and post-renovation
operations (operating energy consumption 2009 through end of
lifetime). GW global warming potential, AC acidification potential,
CA human health cancer effects, NC human health noncancer
effects, RE human health respiratory effects, EU eutrophication,
OD ozone depletion potential, ET ecotoxicity, PO photochemical
smog, NREU nonrenewable energy use
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building's end-use energy consumption (included in ft), (2)
the electrical generation fuel mix (included in At), (3) the
steam generation mix (also included in At), and (4) emission
factors for the national electrical grid (included in Bt). The
results showed reductions of more than half in the categories
of acidification (−57 %), human health respiratory effects
(−61 %), photochemical ozone (−55 %), eutrophication
(−53 %), and carcinogens (−57 %). Non-carcinogens and
ecotoxicity were reduced by lesser amounts (−27 and −9 %,
respectively). GWP decreased by 2 %.

The largest differences in the results were due to the
lowering of emission factors for CAPs from 1970 to the
present, documented by EPA's extensive historical esti-
mation of CAP trends and continuing projected reduc-
tion in the near future through 2015 due to the EPA's
proposed Transport and Toxics Rules. Data for hazard-
ous air pollutants (HAPs) also exist in EPA's historical
estimates and future projections, though coverage dates
are generally more limited (1990–2008). No such na-
tional database for water pollution was found, though
estimates are noted in the literature (Junnila et al. 2006;
Bare 2011). Therefore, the water emissions estimated
herein are primarily static values from the ecoinvent
and USLCI databases. Additionally, water pollution-
related categories such as eutrophication and ecotoxicity
may be underrepresented because wastewater from the
building was not included in the study.

The three toxic pollutant LCIA categories (human health
cancer, human health noncancer, and ecotoxicity) are typi-
cally affected by both air and water emissions of hazardous
metals and organic compounds. However, air emissions of
metals from coal combustion dominated the results in the
three toxic categories. In accordance with EPA modeling
documentation, combustion-related air emissions of metals
were projected proportionately to particulate matter
<2.5 μm and organic compounds were projected propor-
tionately to total VOCs (USEPA 2011a). Non-carcinogens
and ecotoxicity were affected to a higher degree than carci-
nogens by water emissions, and thus do not show as much
reduction from historical levels, due to the use of static data
for water emissions. Material production processes for the
construction and renovation had a proportionately greater
impact in the non-carcinogens and ecotoxicity categories
than the other categories; however, operating energy con-
sumption still had the greatest impact. For ozone depletion,
all processes considered in this LCA are minor sources, and
thus neither the static nor dynamic results were considered
to be significant.

Changes in emissions factors had the greatest influ-
ence on the LCIA results, but the remaining variables in
Eq. (2) (ft, At) were also important, particularly in the
GWP and NREU categories. Figure 4 shows the DLCA
results as cumulative time series in each LCIA category,

normalized to the cumulative totals in each category as
of 2008. Impacts from construction and renovation are
represented at a single point in time; realistically, these
impacts occur over the span of several years. The time
scale associated with these activities is shorter than that
for building operations, even when operations are clas-
sified into phases between major renovations. Since the
temporal changes incorporated into the current analysis
are mainly gradual and on the order of decades, the
treatment of material- and construction-related emissions
as pulses were not expected to influence the overall
results.

Electrical energy consumption increased gradually dur-
ing the period of pre-renovation meter data availability,
growing 10 % from 1993–1994 through 2007–2008.
Steam consumption remained essentially constant during
this same period. The cause of the increased electrical usage
was not known, but it was assumed to be from increases in
laboratory and office equipment demand, including com-
puters. If electrical energy consumption was due to in-
creased use of the overall building (e.g., extended hours,
increased ventilation, etc.), it would be expected to result in
an increase in steam use as well. For the renovated building,
modeled energy consumption of both types increased. An
increase in overall building footprint, coupled with in-
creased heating, cooling, and fan usage demands from in-
creased space ventilation requirements, was responsible for
the increased energy consumption.

In the GWP category, the increasing trend in energy
consumption was offset by a decreasing trend in green-
house gas (GHG) emissions from the energy supply
chain. While the electrical generation mix continues to
rely heavily on coal-fired power plants, GWP for the
electrical generation sector decreased 11 % from
0.72 kg CO2 eq/kWh in 1970 to 0.64 kg CO2 eq/kWh
in 2008. GWP of the district steam production decreased
39 % from 2.3 to 1.4 kg CO2 eq/kg steam, following the
switch from mixed coal- and gas-fired generation to
100 % gas in June 2009. However, the modest decrease
in GWP per kilowatt-hour from electrical generation was
offset by the modest increase in electrical usage over the
building's lifetime to date, and the larger decrease in
GWP per kilogram steam was offset by the larger in-
crease in projected steam usage following the renovation
as noted above. Because the heating fuel switch and
renovations occurred at nearly the same time, the slope
of the NREU curve in Fig. 4 is higher post-renovation
than pre-renovation, while the slope of the GWP curve in
Fig. 4 remains the same. Because natural gas emits fewer
CAPs and HAPs than coal, the heating fuel switch also
affected the curves in Fig. 4, combining with the reduced
emissions factors from electric power generation to re-
duce the slope of the future curves.
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3.3 DLCA and static LCA results for remaining lifetime
analysis

The DLCA results for the remaining lifetime analysis were
lower than the static LCA results in every impact category
shown in Fig. 5. As with the full lifetime analysis, the static
LCA used energy mixes and emission factors from the year
of analysis (2009) projected through the remaining lifetime.
However, in contrast with the full lifetime analysis, the
building's end-use energy consumption was the same for
both static and dynamic analyses, since no actual energy
data were available yet. Reductions in impacts from largest
to smallest were: acidification (−17 %), photochemical
ozone (−16 %), human health respiratory effects (−15 %),

eutrophication (−14 %), carcinogens (−5 %), NREU (−4 %),
non-carcinogens (−3 %), ecotoxicity (−3 %), and GWP
(−2 %). As with the full lifetime analysis, the largest
decreases were caused by a reduction in emission factors
following environmental regulations (the proposed EPA
Transport and Toxics Rules). The reductions in global
warming potential and nonrenewable energy use were due
to changes in the electrical fuel generation mix.

3.4 Future scenario analysis

The maximum variations from the baseline for the different
DLCA scenarios are shown as error bars on the DLCA
results in Fig. 5. For the baseline energy use case, the
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minimum and maximum variabilities from the static LCA
due to combining variability in energy mixes and emissions
factors were: acidification (+39 %/−18 %), photochemical
ozone (+36 %/−15 %), human health respiratory effects
(+35 %/−22 %), eutrophication (+32 %/−20 %), carcino-
gens (+20 %/−34 %), non-carcinogens (+10 %/−12 %), and
ecotoxicity (+9 %/−9 %). The minimum and maximum
variabilities for categories depending only on energy mixes
were nonrenewable energy use (+7 %/−15 %) and global
warming potential (+10 %/−17 %).

Figure 6 shows selected time series for the global warming
and photochemical ozone impact categories, representing sce-
narios with different combinations of variation from the base-
line, for each term in Eq. (2). The remaining series are
presented in Fig. SI-6 (Electronic Supplementary Material).
Of the variations in the f vector, the ±10% electricity scenarios
had greater influence than the ±10% heat scenarios, due to (1)
the larger overall energy use represented by electricity for this
building, and (2) the larger impact in most categories per unit
energy of electricity, due to the use of coal as a fuel. The
variations in the f vector are a simple scaling of the baseline
results, but are qualitatively illustrative of uncertainty in

building use, such as hours of operation, user behavior, or
HVAC system set points. They are also a point of reference in
Fig. 6 for the relative changes in impact due to the scenarios
representing variations of the A, B, and C matrices.

Of the 47 electricity grid mix scenarios drawn from the
EIA AEO (represented in the A matrix), the greatest de-
crease in impact in most categories was the “GHG price
economywide” scenario, representing a future in which coal
use drops steeply due its greater CO2 emissions than other
fuels. The AEO scenario with the greatest increase in
impacts was the “low shale resource” scenario, in which
estimated unproven resources are assumed to be half those
in the reference case. The low availability of shale gas in this
scenario leads to a reduced use of gas and a corresponding
increase in coal for electric power generation.

For any combination of f and A scenarios, eliminating the
introduction of the new EPA regulations (represented in the B
matrix) showed increased impact in most categories associated
with CAPs (and some HAPs, such as metals from coal-fired
power plants) compared to the baseline DLCA case. Scenarios
eliminating the new EPA regulations combined with low gas
resources—and hence increased coal use for power generation
without significant new emission controls—showed increased
impacts in these categories compared even to the static LCA.

The effect of including dynamic CFs is shown in the odd-
numbered curves in Fig. 6 and is reflected in the error bars in
the global warming and photochemical ozone categories in
Fig. 5. In both cases, the addition of dynamic CFs reduced the
total impacts compared to static CFs, though for different
reasons. For global warming potential, the dynamic CFs, or
TAWPs, reduced the cumulative impacts for any combination
of other variables by approximately 13 % at the year 2045.
This reduction represents the application of a fixed 100-year
time horizon for integrating radiative forcing of GHGs, ap-
plied over the 36-year lifetime of the building. For example,
CO2 emissions in 2045 treated in this manner have a TAWP of
0.71, instead of 1. For more information on TAWPs, see
Kendall (2012). Although the TAWPs for different GHGs
vary differently with time, CO2 was by far the dominant
GHG in this analysis. Since the TAWP is calculated on an
annual basis, any process with a total lag time of less than
1 year is accurately represented, which should capture the
bulk of energy extraction and supply processes.

For photochemical ozone, the inclusion of dynamic CFs
reduced the individual scenarios resulting from the combi-
nation of the other variables by 26 to 50 %. The reduction
was lowest for low emission scenarios (e.g., scenario 16 in
Fig. 6; 90 % electricity with AEO GHG price and new EPA
rules) and highest for high emission scenarios (e.g., scenario
36; 110 % electricity with AEO low shale resources and no
new EPA rules). The overall reductions are explained by the
fact that higher emissions of ozone precursors—mainly
NOx in this case—occurred during winter months, when the
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Fig. 5 Comparison of predicted results from static and DLCA models
for the renovation and post-renovation operations. Error bars on the
DLCA results indicate the minimum and maximum values obtained
through the sensitivity analysis. For the GW and PO categories, the
error bars include consideration of dynamic characterization factors at
the impact assessment step. Error bars for all other categories include
only variation in the life cycle inventory. GW global warming potential,
AC acidification potential, CA human health cancer effects, NC human
health noncancer effects, RE human health respiratory effects, EU
eutrophication, OD ozone depletion potential, ET ecotoxicity, PO
photochemical smog, NREU nonrenewable energy use
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dynamic CFs are lowest. This was due to (1) overall increased
demand for energy in the winter, due to heating needs, and (2)
relatively constant year-round electrical demand, but
with a higher percentage of coal-fired power generation
in winter months. Since the photochemical ozone CFs
vary on a scale of months, it is possible that including
lag times could affect this calculation. However, uncer-
tainty in the supply chain required assuming an annual
average CF for all upstream processes, while using the
monthly CFs for combustion. This formulation implicitly
resulted in a variable lag time of up to 1 year between up-
stream processes and combustion.

3.5 Limitations

3.5.1 Additional dynamic CFs

CF variations were not considered in most categories because
no applicable source of temporally CFs was found in the
literature. The lack of characterization methods incorporating
both short-term and long-term temporal variability is a short-
coming of current LCA practice and could be remedied by
additional LCIA method development. Temporally variable
CFs need to take into account changes in background chemical

concentrations, environmental systems, and the distributions of
exposed populations, as well as time horizon relevance. The
examples used in this study represent one instance of a
time horizon-related CF (TAWP) and one instance of a
physical system variation (photochemical ozone). In the
case of the latter, additional investigation into the com-
bination of daily, seasonal, and long-term factors is needed
(Reap et al. 2008).

3.5.2 Data availability

Dynamic variation in industrial processes and emission fac-
tors is hampered by a lack of available data. In this case
study, unit energy use for industrial processes and emission
factors from fuel use other than in electrical power plants
were not able to be modeled dynamically. This resulted in
lower energy use and emissions associated with building
material production for the initial construction. However, in
LCIA categories that were highly influenced by energy use,
these contributions were small relative to the impacts of
operating energy. With respect to emission factors, it is
noted that continued increases in data quality are expected
to provide additional accuracy in results. Efforts to track and
control toxic pollutants have historically lagged behind

Fig. 6 Time series of DLCA
results for the sensitivity
analysis, shown as cumulative
percent deviations from the
baseline scenario for the global
warming potential and
photochemical smog categories.
Time series plots of the
deviations from baseline for the
remaining TRACI impact
categories are presented in Fig.
SI-6 in the Supporting
Information
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CAPs, and thus, there is greater uncertainty in the temporal
trends in toxic-related impact categories. With respect to lag
times, the inclusion of supply chain lag times as an addi-
tional variable in LCI databases is critical for the accurate
application of temporally varying CFs. However, the uncer-
tainty related to upstream production functions may require
annual averaging of most processes except those occurring
in the building itself, which can be known with some detail,
or those which are predictable based on system character-
istics, such as energy and fuel supplies.

3.5.3 Spatial variability

Significant spatial uncertainty exists in LCA. The definition
proposed herein for DLCA includes consideration of spatial
variability, though it has not been directly addressed yet in
this analysis. Noting that the term dynamic usually connotes
temporal changes, it should be considered that spatial pat-
terns of industrial activity and environmental impacts
change over time; the NEI and other databases provide
explicit spatial detail related to emissions, and LCIA meth-
ods with spatially explicit CFs are available. For North
America, both TRACI and Impact (e.g., Impact North
America, Humbert et al. 2009) models have some spatial
resolution, though additional detail is needed in most cate-
gories. Related to spatial variation, it has been noted that
there is extensive regional variation in the electrical gener-
ation mix. The national generation mix has been used here-
in, but regional or even sub-state-level mixes have been
used in some studies. However, it has been shown that
power trading between regions tends to drive the mix
toward a national average (Weber et al. 2010); thus, the
use of non-spatially explicit factors may be warranted in
this case. More so than for electricity, the concentration
of major producers in some industries (e.g., petroleum
refineries, mining) in specific regions with CFs different
from the national average may lead to a case for regionaliza-
tion of LCA results even when the exact supply chain is
uncertain.

3.5.4 Uncertainty of future scenarios

The outlook of this paper comprises both historical temporal
variations and predicted future variations. However, it is
likely that the primary use for LCA of buildings will con-
tinue to be predictive. Uncertainty in future scenarios
depends on both building-level variables (e.g., occupancy
levels, renovations) and external variables such as emission
controls and environmental background conditions. Since
Benedum Hall was recently renovated, projection of past
building-level trends into the future was limited to assuming
as-is operations of the building and district heating plants
(since the building recently underwent a full renovation),

with variation in energy usage of ±10 % to accommodate
occupant behavior. However, exact knowledge of future
occupant needs or renovation schedules will not usually be
available to the LCA practitioner, even with DLCA model-
ing. There are also predictive assumptions built into the
models used by EIA and EPA to forecast future energy
mixes and emissions. Though uncertainty in prediction can-
not be fully avoided, considering multiple future scenarios
can illuminate possible environmental tradeoffs; for exam-
ple, the often-cited tradeoff between embodied energy in
construction materials and use-phase operating energy is
changed somewhat when a DLCA model with varying
energy supply background conditions is used.

4 Conclusions

This paper explicitly uses DLCA and illustrates the potential
importance of the method using a simplified case study of an
institutional building. The results show that the environmental
impacts of the building over its lifetime vary significantly
from what would be predicted if temporal changes were not
taken into account. Particularly, the results indicate the impor-
tance of changes in building usage, energy sources, and envi-
ronmental regulations in calculating the overall environmental
impacts of the building. Given that temporal changes are
rarely accounted for in LCA practice, it seems clear that
LCA could be improved by incorporating a more dynamic
focus. Previous whole-building LCAs have demonstrated the
relative importance of the operations phase in most impact
categories, compared to the materials, construction, and end-
of-life phases. The DLCA results suggest an additional con-
clusion; that in some cases, changes in building usage, or
changes in external conditions such as energy mixes or envi-
ronmental regulations during a building's lifetime, can influ-
ence the LCA results to a greater degree than the material and
construction phases. Correspondingly, adapting LCA to a
more dynamic approach as demonstrated herein seems likely
to increase the usefulness of the method in assessing the
performance of buildings and other complex systems in the
built environment. Future research needs to include character-
ization of uncertainty related to building systems modeling
(e.g., future occupant needs and maintenance/renovation
schedules), additional exploration of the interactions with
dynamic, temporally evolving (and themselves uncertain)
LCI and LCIA background variables, and development of
additional dynamic CFs and dynamic parameters for LCI
databases.
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