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Abstract
What makes one type of entrepreneurial ecosystem (EE) more conducive to entrepre-
neurial dynamics than another? EE research is a hot topic, and considerable progress 
has been made as regards its elements, network, and actors’ components. However, 
some scholars regret the absence of an empirical analysis of EE as a whole to under-
stand how EE configuration operates. To introduce this perspective, we propose an 
unexplored inter-organizational ties analysis among all EE actors, at a country-level 
scale. Based on the network theory perspective, we conduct an exploratory research 
in five low-income African countries, using innovative research methods (the quan-
titative graph theory, web scraping, the fuzzy-set qualitative comparative analysis) to 
understand the organizational patterns in these EEs, and their impact on entrepreneur-
ial outcomes. At the core of this perspective lie inter-organizational ties measures of 
closeness, cohesiveness, and inter-connectedness, which are key causal conditions for 
high entrepreneurial dynamics levels and rates in low-income countries. This research 
underlines the importance of EE network attributes to facilitate the easy distribution of 
entrepreneurial nurturing components to entrepreneurs. It also highlights the impor-
tance of ease of information and knowledge flow, as well as a strong collaborative and 
coopetitive environment to make an EE more conducive to entrepreneurial dynamics.
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Introduction

Since Van De Ven (1993)’s paper on “infrastructure for entrepreneurship,” and 
Isenberg (2010)’s seminal work, the analysis of entrepreneurial ecosystem (EE) 
has become a popular research topic (Velt et al., 2020). EE is a “set of interde-
pendent actors and factors coordinated in such a way that they enable produc-
tive Entrepreneurship” (Stam, 2015). It underlines the inter-organizational nature 
of EE, and—by design—a field of research meant to “explain entrepreneurial 
activities” (Cantner et  al., 2020). Even as the knowledge of EE has improved 
drastically, several core topics remain under-explored; scholars criticized the 
EE concept (Acs et al., 2016; Cunningham et al., 2019), pointing at “superficial 
generalisations” research (Stam & Spigel, 2016), regretting the inconsistency in 
terms of social science-oriented methods (O’Connor et  al., 2018) and the lack 
of a “clear analytical framework that makes explicit what is cause and what is 
effect in an EE” (Alvedalena & Boschmaa, 2017). This might be explained by a 
theoretical and empirical research (Cao & Shi, 2020; Cavallo et al., 2019) void at 
a meso-level of analysis, and a lack of research on structural and organizational 
patterns among the EE elements at a full EE scale. Such analysis would explain 
how EE-specific organizational configuration weighs on the effective distribution 
of its resources, and is a causality of entrepreneurial dynamics.

In order to address these criticisms, we have to take into account the composi-
tion of EEs, their inter-dependencies, and, especially, understand the properties of 
EE interactions at a global level. EE comprise interacting elements (Stam & van 
de Ven, 2019) that are diverse in their roles and nature: physical infrastructure, 
demand, intermediaries, talent, knowledge, leadership, or finance (Isenberg, 2010). 
If the system theory (Daniel et al., 2018) and the complexity theory (Roundy et al., 
2018) are classically evoked to modelize EEs, it appears interesting to consider a 
core aspect of EE: the network theory.

The network theory is regularly highlighted (Purbasari et  al., 2020a) and 
induced in most EE definitions (Malecki, 2018), but it has never been empiri-
cally mobilized to understand what arises at an EE whole scale. We propose to 
improve on such research. As EEs comprise organizations, to understand their 
interactions, we are led to research their inter-organizational ties (Gaonkar & 
Mele, 2019; Granovetter, 1985; Tatarynowicz et al., 2016; Xu et al., 2019). We 
chose the quantitative graph theory (QGT) (Dehmer et al., 2017), an innovative 
method for EEs, in order to analyze its actors’ dyadic ties. Indeed, this method 
allows us to identify EE network properties (Auschra et al., 2019; Barnes, 1969), 
and better understand EE effectiveness in resource distribution to entrepreneurs. 
As the use of this method in the context of EE is new, we decided to realize an 
exploratory empirical analysis.

To avoid a high noise effect of external elements in the understanding of the 
EE impact on entrepreneurial dynamics, we chose low resource environments. In 
ecosystems, everything matters. If an important factor is reduced (in our case 
resources), the other elements, such as the efficiency of inter-organizational ties, 
reveal the properties that influence related entrepreneurial dynamics. Research on 
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causes of entrepreneurial dynamics reveals interesting results in the lowest resources 
environments. Indications that low knowledge and resources stimulate international 
entrepreneurship (Baier-Fuentes et al., 2020) are interesting, as well as indications of 
existing higher efficiency EE in low-incomes countries (Dionisio et al., 2021). Such 
evidence suggests that in low-resource environments, EE plays a more significant 
role to stimulate entrepreneurial dynamics compared to high-resource environments, 
where the relative abundance of resources attenuates the importance of a well-per-
forming EE. Research acknowledges that a low-resource environment undermines 
entrepreneurial dynamics (Muñoz et  al., 2020), underlining a positive effect on 
necessity entrepreneurship and a negative effect on opportunistic entrepreneurship. 
However, these studies do not capture the EE configurational causes of those entre-
preneurial dynamic variances in the low-income countries group. In this group we 
can see an unexplained and significant Total early-stage Entrepreneurial Activity 
(TEA) level and evolution variance (Tran, 2018) among low-income countries. For 
this reason, we chose to run this research in a continent where we can find similar 
and comparable low-income countries: Africa.

We propose to open new perspectives on EE under a network theory standpoint, 
by measuring inter-organizational ties between its actors using QGT methods, in 
the context of select low-income countries in Africa, especially Morocco, Tunisia, 
Burkina Faso, Senegal, and Madagascar. The analysis of the causality of EE out-
comes in a reduced number of countries is evaluated through a fuzzy-set qualitative 
comparative analysis (fsQCA). By doing so, we provide a new understanding of the 
power of network within the entrepreneurial ecosystem, and how its network attrib-
utes stimulate or undermine related entrepreneurial dynamics. One would consider 
that, in a sense, we open “the black box” of EE, and so, new points of view in this 
field of research (van Gelderen et al., 2021).

Theoretical background and hypothesis

The under‑explored entrepreneurial ecosystem under social science perspective

A rising number of scholars point out that EE literature lacks “rigorous social sci-
ence research” perspectives (Audretsch et al., 2018; Stam & Spigel, 2016). Recent 
empirical studies explored micro-level of the analysis scale approach, for example, 
with a network theory micro-level of analysis on incubators (van Rijnsoever, 2020), 
entrepreneur network-oriented perspective (Tiba et  al., 2020), structural perspec-
tive at a local micro-level scale (Scheidgen, 2020), network perspective at a local 
micro-level scale (Purbasari et al., 2020b), network-oriented triple-helix approach at 
a local scale (Purbasari et al., 2020a), and mix-method to capture local evaluation of 
antecedents and outcomes (Muñoz et al., 2020). These micro-level analyses address 
local or small groups of actors, but none addresses the analysis of EE at a country 
level, or the analysis of inter-organizational ties of all EE actors or elements.

Some scholars propose a research canvas in network adjacent fields of research 
(Shipilov & Gawer, 2020), but it is not actually mobilized in EE research. Never-
theless, the network theory research canvas suggests an interesting question in the 
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EE research field: how can one EE produce more entrepreneurial dynamics than 
another?

Inter‑organizational ties within entrepreneurial ecosystems

The inter-organizational ties stream of research, established by William Evan 
(1965), saw interesting research in trust measurement (Seppänen et  al., 2007), 
relations between network structure and innovation attitude (Ferraro & Iovanella, 
2016), configurations (Wooten & Sacco, 2017), and network formation (Gaonkar 
& Mele, 2019), all suggesting that inter-organizational network configuration has 
a significant impact on performance. Inter-organizational ties in EE are place-
centric (Autio et al., 2018; Kuebart & Ibert, 2019), suggesting that physical dis-
tance plays a key role in its effectiveness. However, the issue of network distance 
has not yet been addressed, despite the fact that network closeness appears to be 
key in an EE (Purbasari et  al., 2020b). This opens an inter-organizational per-
spective in EE research.

EE is a complex phenomenon. Scholars highlight its multi-level characteristic 
(Theodoraki & Messeghem, 2017), complexity (Phillips & Ritala, 2019), and its 
underlying various forms of cooperation (Purbasari et al., 2020a; Xu et al., 2019). 
Nevertheless, in EEs, inter-organizational ties (Dagnino et al., 2016; Tatarynowicz 
et al., 2016; Belso-Martínez et al., 2020; Shipilov & Gawer, 2020) appear to be a 
key research element to evaluate the efficiency of entrepreneurial support, especially 
regarding the “central role of alignment between structure and process” (Krishnan 
et al., 2020). The outputs of multiple dyads can be combined into a “broader innova-
tive whole” (Davis, 2016), which can explain EE outcomes variances.

Entrepreneurial ecosystem spillover measurement

The “creation of new business is seen as a key factor to reach economic goals at 
regional and national levels” (Micozzi, 2020). There are various entrepreneurial 
dynamics measurement methods (Mathews & Zander, 2007) mainly at a national 
level (Sternberg et al., 2019), such as the Global Entrepreneurship Monitor’s (GEM) 
TEA, and the motivation index, which evaluate the opportunity entrepreneurship 
level. Moreover, the GEM provides a multi-factor econometric-oriented evalu-
ation of EEs at a country level. The World Bank Group Entrepreneurship Survey 
(WBGES) proposes entry density measurement. The “GEM data may represent the 
potential supply of entrepreneurs, whereas the World Bank data may represent the 
actual rate of entrepreneurship” (Acs et al., 2008). Therefore, Research designates 
the TEA level and rate (TEA evolution on time basis) as the preferred metric to 
evaluate EE’s attributes’ impact on its outcomes.
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Network theory measurements applied to entrepreneurial ecosystems

Some studies apply the network theory at a micro-level of analysis, but never on a 
larger scale. Recent research on the network and ecosystem theories (Shipilov & 
Gawer, 2020) has offered an interesting perspective on the elaboration of an EE 
research canvas (Theodoraki et  al., 2018). As the network theory relies massively 
on the graph theory, the recent development of the QGT (Dehmer et al., 2017) and 
associated methods, measurements, and tools provide fresh empirical research per-
spectives. The provided analytic methods facilitate the grasping of EE’s global prop-
erties through its network attributes based on its actors’ dyadic ties. There are three 
groups of interesting attributes: cohesiveness, inter-connectedness, and closeness, 
which capture different dimensions of the EE configuration.

Entrepreneurial ecosystem cohesiveness

Two measures provide a network’s cohesiveness information: centrality and density. 
Locally addressed research on actor roles (Purbasari et al., 2020b) reveals the impor-
tance of these measures for understanding how information and knowledge spread 
impact an ecosystem outcome. They are extremely important in the context of EE 
(Agarwal et al., 2007; Audretsch & Belitski, 2020; Kuebart & Ibert, 2019) as they 
are strongly related to its innovation and productivity capabilities. Centrality meas-
ures indicate the cohesiveness level of a network (Borgatti & Everett, 2006). An EE 
that has high cohesiveness provides an entrepreneur a high degree of information on 
its resources and actors, which leads to a positive impact on the outcomes. It benefits 
the autonomy of the entrepreneurs and the effectiveness and speed of their entrepre-
neurial process. Therefore, we predict that a high level of cohesiveness is a causal 
condition for a high level and high rate of entrepreneurial dynamics.

Hypothesis 1a : EE actors-ties high cohesiveness is a causal condition for high TEA 
level.

Hypothesis 1b : EE actors-ties high cohesiveness is a causal condition for high TEA 
rate.

Entrepreneurial ecosystem inter‑connectedness

The inter-connectedness measure is based on the average weight measure, which 
calculates the average number of ties of each actor in a network. This indicates the 
degree to which a network provides multiple paths possibilities to entrepreneurs 
who have to travel across the EE to collect a resource. As an addition, we completed 
this measure with the rate of actors that have at least one tie, as we see that some EE 
actors seem isolated, with no partnerships. We predict that high inter-connectedness 
levels are a causal condition for high entrepreneurial dynamics level and rate.
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Hypothesis 2a : EE actors-ties’ high inter-connectedness is a causal condition for 
high TEA level.

Hypothesis 2b : EE actors-ties’ high inter-connectedness is a causal condition for 
high TEA rate.

Entrepreneurial ecosystem closeness

A third set of measures, the distance measures, with the average shortest path, 
clustering coefficient, and mean distance, is also highly useful to evaluate a net-
work. It allows us to evaluate the connectedness and connectivity (Barnes, 1969) 
between network actors, and, consequently, the intensity of various forms of 
collaborations (Xu et al., 2019) across the EE. This information is important to 
appreciate the distribution capability of entrepreneurial nurturing components. 
Short distance measure means proximity, and we reversed those measures to pro-
vide a proximity factor. We predict that a high level of closeness is a causal con-
dition for high entrepreneurial dynamics level and rate.

Hypothesis 3a : EE actors-ties’ high closeness is a causal condition for high TEA 
level.

Hypothesis 3b : EE actors-ties’ high closeness is a causal condition for high TEA 
rate.

Data and methods

EE actors in 5 African low‑income countries: Morocco, Madagascar, Burkina Faso, 
Senegal, and Tunisia

We decided to apply this methodological approach to an unexplored but stimu-
lating context: Africa. We chose, as a case study sample, five culturally similar 
low-income countries, presenting important TEA gaps (-6,46% to 115%) (GEM, 
2019)1: Morocco, Madagascar, Burkina Faso, Senegal and Tunisia. These coun-
tries present other similarities too: French occupation history, similar institutional 
structures, and cultural similarities (Donaldson, 2020).

Research design and protocol

We designed a new research protocol to perform a rigorous and relevant analy-
sis of the EE of each of these countries, and to conduct a comparative analysis 
between them. We defined 10 methodological steps: (1) draw the complete list 

1 https:// www. gemco nsort ium. org/ report/ gem- 2019- 2020- global- report
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of EE actors within each country; (2) verify that list and identify the appropriate 
online media that contains the most EE actors’ information; (3) clean the actors’ 
list and prepare sub-set lists for automated treatment; (4) identify the dyadic data 
source and identify web CSS codes to run a web scraping loop; (5) run the web 
scraping loop and verify the result; (6) run a data pretreatment protocol to iden-
tify dyadic associations; (7) identify the central actor and the number of inter-
connected actors; (8) run the various R specialized packages to extract measures, 
plots, and statistics; (9) build a country comparative table from extracted meas-
ures; and (10) run an fsQCA data calibration and an fsQCA statistics protocol.

Steps 1 to 3

To identify all the EE actors (incubators, accelerators, fablabs, institutions, busi-
ness angels, etc.) we decided to mobilize economic services from French and Ger-
man embassies to identify the proper source(s) to list the EE actors. We verified 
the robustness and accuracy of the given repositories of actors by checking social 
networks and web pages of each actor, corrected typographical errors in their names, 
and removed some actors that appeared not to belong to EE, such as accountants 
or communication agencies. The final list presents a total of 472 actors: 141 for 
Morocco; 50 for Madagascar; 62 for Burkina Faso; 56 for Senegal; and 163 for 
Tunisia.

Steps 4 to 5

Thereafter, we needed to analyze ties between actors, and for this, we used online 
media coverage. EE actors advertise their partnerships and ties through press 
releases; journalists directly report them, making media coverage relevant for 
detecting positive dyadic associations. They indicate strong and positive inter-
organizational ties, as none of the actors would publicly communicate an existing 
negative or weak tie, or the end of a partnership. Other forms of communication, 
such as social network posts, embed noisy messages or negative ties, making these 
sources of information irrelevant. Partnerships among EE actors are neither always 
contractually formalized, nor reported in existing EE repositories. This makes press 
releases the only available and the most significant secondary data source to track 
positive, and known, inter-organizational ties among EE actors. To identify EE 
actors’ inter-organizational ties, we used big-data from online media coverage (Von 
Bloh et al., 2019) in the targeted country’s top economic online journals, employ-
ing web scraping.

We chose the open-source R Studio software packages2 to run web scraping pro-
tocols, and various network measures, plots, and analyses. To operate this protocol, 
we developed a genuine R code of 800 + lines to run the web scraping loop and 
treatments, and QGT calculations, plots and statistics. In order to develop the code, 
we prepared a cleaned list of actors, as well as identified the target HTML page web 
structure to operate and target the web scraping method.

2 Main R packages used: rvest, ggraph, netrankr, tnet, and CINNA.
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Steps 6 to 9

We analyzed the network properties of the EE. We used the QGT measurements to 
quantify structural information of networks (Dehmer et al., 2017), as well as vari-
ous forms of comparative analyses, based on isomorphism-based measures, graph 
edit distance, iterative graph similarity methods, string-based measures, and graph 
kernels. Its characterization for determining the complexity of a given network 
can be obtained through distance-based graph measures, degree-based measures, 
eigenvalue-based measures, or information-theoretic measures. For this explora-
tory research, we chose to extract cohesiveness, inter-connectedness, and closeness 
measurements. This research, using the QGT, provides five countries nine sets of 
results, each measure having specific explanations (Table 2) related to EE outcomes 
casualties.

Step 10

After modelizing the five EEs through network theory-related methods, it becomes 
possible to compare them to understand what is going on. The appropriate method 
to compare a limited number of cases is the qualitative comparative analysis (QCA) 
method (Ragin, 1987). It can provide an interesting causality analysis of EE meas-
ures on its outcomes. However, for this exploratory research, QCA does not fit to 
run this attribute-base comparative analysis (Kraus et al., 2018). Contrastingly, the 
fsQCA is suitable to reach this goal, and has been successfully used in EE research 
in Africa (Beynon et al., 2020). In order to perform the fsQCA, we first created a 
data calibration matrix, and prepared our dataset. Using the fsQCA’s truth table, we 
obtained the potential causal configurations. We used the fsqca3 software for the cal-
culations (Beynon et al., 2021).

This research design, applied to the five selected low-income countries, led to 
some interesting results that we present in the following section.

Results

We web scrapped each national top online economic journal for a total of 54,060 
articles citing at least one of the 472 listed actors, representing inter-organizational 
ties announcements from 2014 to 2020. Counting the co-occurrence of those actors 
in articles allowed establishing dyadic associations and elaborating the QGT graph 
matrices, network plots, and measures. Using bottom-line network measures, we 
drove a comparative analysis using fsQCA methods to identify how the EE network 
impacts its outcomes in these countries.

3 http:// www. socsci. uci. edu/ ~cragin/ fsQCA/ softw are. shtml

760

http://www.socsci.uci.edu/~cragin/fsQCA/software.shtml


International Entrepreneurship and Management Journal (2022) 18:753–772

1 3

Country level network measures

Extracted measures from our protocol provided interesting metrics on the expected 
dimensions (Table 1), each one having a specific meaning (Table 2, Measure). They 
represent the various cohesiveness (centrality and density), inter-connectedness 
(average weight and inter-connected actors’ ratio), and closeness measures (reverse 
average shortest path and mean distance, and clustering coefficient). We reported the 
known TEA levels for the five selected countries from the country profile page of 
the GEM website.

The first interesting result is the inter-connectivity ratio, presenting the propor-
tion of actors reporting inter-organizational ties.

fsQCA data calibration

Those sets of measures (cohesiveness, inter-connectedness, closeness) have not yet 
been mobilized in the EE field of research; we do not have measurement bench-
marks to compare our results to existing ones. Based on a Boolean approach, owing 
to the limited number of studied countries, and the relative contrast of those meas-
urements, we built the following data calibration matrix, except for the outcome 

Table 1  Country level EE network and outcomes measures

Morocco Madagascar Burkina Faso Senegal Tunisia

Actors (a) 141 50 62 56 163
Articles (ar) 16,588 6,863 2,388 4,653 23,568
Nodes (N) 85 19 7 19 75
Vertices (M) 970 25 4 85 411

Cohesiveness Density (d) 0.34 0.16 0.67 0.81 0.3
Centrality (c) 0.46 0.41 1 0.69 0.38
Cohesiveness factor 

(c*d)
0.16 0.07 0.67 0.56 0.11

Inter-connectedness Inter-connectivity (N/a) 0.6 0.38 0.11 0.34 0.46
Average weight (aw) 4 7 2 3 4

Closeness Average shortest path 
(asp)

1.99 3.08 1.5 1.56 2.07

Clustering coefficient 
(cc)

0.44 0.14 0 0.47 0.35

Mean distance (md) 1.99 3.08 1.5 1.56 2.07
Proximity factor 

_((1-asp)*(1-md))
0.25 0.11 0.44 0.41 0.23

Outcome TEA level 2018 (ta) 6.65 20.74 29.75 38.55 4.78
TEA level 2019 (tb) 11.4 19.4 33.53 40.28 10.3
TEA rate 18_19 (tb/

ta)-1
0.71 -0.06 0.13 0.04 1.15
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measures (Table 2). For each measure, we described its global meaning, crossover 
point, and qualitative threshold calibration rules in order to obtain a Boolean result.

Following this matrix, we built an algorithm to automatically calculate the cali-
brated data (Table 3) in order to avoid any error.

Based on this calibrated data, we first elaborated the fsQCA truth tables so as 
to identify five significant causal solutions: (C1) centered on a high cohesiveness 

Table 3  Calibrated data

Country Morocco Madagascar Burkina Faso Senegal Tunisia

Cohesiveness Density 0 0 1 1 0
Centrality 0 0 1 1 0
Cohesiveness 0 0 1 1 0

Inter-connectedness Inter-connectivity 1 0 0 0 1
Average weight 1 1 0 0 1

Closeness Average short path 0 1 0 0 1
Clustering coefficient 1 0 0 1 0
Mean distance 0 1 0 0 1
Proximity 0 0 1 1 0

Outcome TEA level 0 0,5 0,5 1 0
TEA rate 1 1 1 1 1

Table 4  Solution table

no indication: solution might be high or low
◉ High level
◯ Low level
C1 & C2 solutions’ consistency: 1.00**, solutions’ coverage: 0.40, combined: 063
C3 & C4 & C5 solutions’ consistency: 0.50, solutions’ coverage: 0.33, combined: 0.13

Attributes Solutions C1 C2 C3 C4 C5

Cohesiveness Density
(h1) Centrality

Cohesiveness ◉ ◉
Inter-connectedness Inter-connectivity ◉ ◉
(h2) Average weight ◉ ◉ ◉
Closeness Average short path ◯ ◯
(h3) Clustering coefficient ◉ ◉

Mean distance ◯ ◯
Proximity ◉ ◉

Outcome TEA level (a)
Consistency 0.80* 0.80* 0.60 0.20 0.20
Coverage 1.00** 0.67* 0.37 0.17 0.17
TEA rate (b)
Consistency 0.33 1.00** 1.00** 1.00**
Coverage 0.17 0.37 0.50 0.50
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and proximity among EE actors; (C2) with high cohesiveness, clustering coeffi-
cient, and proximity; (C3) with high inter-connectivity, average weight, and clus-
tering coefficient; (C4) with high average weight and low average short path and 
mean distance; and (C5) with high inter-connectivity and average weight with 
low average short path and mean distance.

Based on these solutions we drove a necessary conditions analysis in order to 
identify the most consistent and explanatory solutions (Table 4).

When the consistency of a causal combination is less than 1, it implies that the 
combination incorporates one or more non-stable cases—the standard threshold 
being set at 0.80 for sufficient conditions (Ragin, 2008). In this study, results explain 
the extent to which two causal conditions (C1 and C2) lead to a high TEA. The TEA 
rate’s solution consistency—made of C3, C4, and C5 causal conditions—is suffi-
cient to explain its stability. The degree to which these causal conditions belong to 
the complete solution forms a sufficient set of causal combinations so as to produce 
a high TEA rate.

The various causal conditions sub-set measures are presented in three groups: 
cohesiveness, including centrality, density, and a cohesiveness factor; inter-connect-
edness including average weight and inter-connectivity ratio; and closeness, two 
negated measures: average short path and mean distance, a proximity factor elabo-
rated with these two measures, and the clustering coefficient. There are two ana-
lyzed outcomes: the TEA, and its rate between 2018 and 2019. We chose this yearly 
rate because of the availability of the GEM data and coherence with web scrapped 
dyadic ties.

Fig. 1  The power of network in entrepreneurial ecosystem
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Findings

The causal conditions presenting a significant consistency level include C1 and C2 
for the TEA level, and C3, C4, and, C5 for the TEA rate. We found that our first 
hypothesis was partially supported by C1 and C2 causal conditions on high TEA 
levels (h1a); the second hypothesis by C3, C4, and C5 solutions (h2b); and the third 
hypothesis by all solutions (h3a and h3b) (Fig. 1).

Solution consistency indicates the extent to which the complete solution (com-
posed of all causal combinations) is sufficient to explain the stability, that is, the 
extent to which the solution is a sub-set of the observed phenomenon. In our case 
the C1 and C2 solution consistency coverage is 1, which indicates that all related 
cases have a high TEA level. Combined causal conditions C3, C4, and C5 do not 
provide a sufficient coverage (50% and less), but sub-set analysis indicates that com-
binations of inter-connectivity and average weight, and inter-connectivity alone pro-
vide a 1,00 coverage with 0,75 consistency rate, indicating that those attributes are 
foundations of a high TEA rate.

Discussion and conclusions

First, this study confirmed the value of the network theory perspective to open EE’s 
black box. This first exploratory research allowed us to effectively run an empiri-
cal study in low-income countries’ EEs at a whole scale. It also confirmed both the 
interest to mobilize the QGT (Dehmer et al., 2017) and the fsQCA methods (Kraus 
et  al., 2018; Ragin, 2008) in low-income African countries (Beynon et  al., 2020). 
Doing so, we emphasize the interest of using big-data (Von Bloh et al., 2019) in EE 
research. Our mixed-method approach, based on newly applied protocols in the EE 
field of research, provided interesting results that can allow us to contribute to an 
empirically based theoretical analysis of organizational configurations. This analy-
sis enables us to highlight inter-organizational ties attributes, such as cohesiveness, 
inter-connectedness and closeness among EE actors as causal conditions for high 
TEA levels and rates.

Theoretical implications

Inter-organizational ties among actors make EEs in low-income countries more con-
ducive to entrepreneurial dynamics (Fig.  1) under various conditions. High entre-
preneurial dynamics levels are related to strong cohesiveness and closeness, and 
high entrepreneurial dynamics rates are related to strong inter-connectedness and 
closeness.

EE closeness as a foundation of high TEA

The first, and universal, causal condition for a high TEA level or rate is strong close-
ness among EE actors. Whatever the size of the EE, the fundamental attribute to 
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conduct entrepreneurial dynamics is tight ties between its actors. This emphasizes 
the importance of a proper collaborative and coopetition mindset among EE actors, 
rather than a competition mindset, which would undermine related entrepreneurial 
dynamics, confirming recent micro-levels results (Purbasari et al., 2020a; Xu et al., 
2019). The ability of an ecosystem to distribute its nurturing components signifi-
cantly impacts entrepreneurial dynamics. It allows entrepreneurs to pick appropriate 
resources for their project. Recent research indicates that treatment design is more 
crucial than selection for innovative firms to achieve growth (Buffart et al., 2020), 
meaning that in the EE context, natural selection rather than forced selection among 
entrepreneurial projects produces higher entrepreneurial dynamics. However, to pro-
duce its full effect, this approach must be supported by a highly collaborative EE, 
which allows entrepreneurs find more accurate resources for their project, within a 
shorter duration. This explains why this attribute is a foundation of a high perform-
ing EE.

EE cohesiveness as a condition for high TEA level

Cohesiveness among EE actors is a causal condition for high TEA level only. It is 
interesting to see that it is not a causal condition for high TEA rates, meaning that 
related capabilities are secondary to sustain a high TEA rate. Strong cohesiveness 
is the sign that an EE has an average number of ties per actor that allows the over-
all network to be cohesive. The direct impact of such network attributes is the ease 
of knowledge and information flow, which is essential to sustain a high TEA level. 
When closeness is strong, this ease of flow offers entrepreneurs the requisite infor-
mation to recognize appropriate nurturing components. Robust cohesiveness is also 
a sign that information and knowledge flow, and entrepreneurs’ mobility, is uniform 
across the EE, thereby making every “corner” useful for the entrepreneur. This is a 
valuable asset especially for low-income low-resources countries, where optimal use 
of resources is essential.

EE inter‑connectedness as a TEA rate stimulus

Inter-connectedness is associated with high TEA rates, when closeness is high. It 
indicates the high degree of partnership per actor, meaning that strong partnership 
intensity is a causal condition for a high TEA rate. The weakest EEs tend to be cor-
related to high competition between its actors, but when EE actors switch to a more 
collaborative or coopetitive scheme, the TEA rate improves. EE actors are supposed 
to provide an efficient access to people (Hui-Chen et al., 2014), resources, network-
ing opportunities (Albourini et al., 2020), knowledge (Ratten & Rashid, 2020), and, 
more generally, to various EE nurturing components (Stam & van de Ven, 2019). 
These actors interact with each other to support entrepreneurial efforts, and conse-
quently, their ties influence entrepreneurial dynamics and its rates. A collaborative 
mindset among EE actors, thus, has a spillover effect on entrepreneurial dynamics.
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Managerial implications

We identified EE attributes related to high TEA levels and rates. A full presence 
of appropriate attributes will have a sustaining effect on related EE. Similarly, 
absence or mitigated presence of those attributes will produce a discontinuity effect 
by retarding the distribution of existing nurturing components within the EE, and 
reducing the mobility of entrepreneurs to execute their projects.

Policymakers willing to sustain a high TEA level will promote closeness and 
cohesiveness among EE actors. In order to raise TEA rates, they will promote close-
ness and inter-connectedness through an intensive partnership policy across the EE. 
This resonates with recent research on EE governance in order to promote independ-
ent, decentralized, and autonomous decision-making in EEs (Audretsch & Moog, 
2020), but with clear guidance on the EE attributes so as to develop and sustain 
entrepreneurial dynamics at a country level. It will have a positive effect, irrespec-
tive of the available portfolio of entrepreneurial nurturing components. This study 
also provides useful EE indicators and EE success factors to follow. Following 
the actual research, it is possible to deploy an EE audit framework based on net-
work measures, in order to identify relevant EE attributes and critical configuration 
patterns.

Limitations and further research

In this study, the low number of subject countries is a limitation. However, the 
methods deployed, which required a high investment coding for web scraping and 
network measurement protocol, can be now easily and quickly replicated in any 
given country or region. Such a campaign to expand our research cases will provide 
novel results to refine the EE knowledge, for instance, to qualitatively compare low-
income countries with other kinds of countries. We are also limited by secondary 
data—we used online media big data—but which constrained this analysis; how-
ever, we do not predict finding better data sources in the immediate future. Finally, 
we are limited because of the spillover measures set at a national level, limiting this 
method to countries with only one EE.

There is a potential for future research: building a structured research canvas 
(Shipilov & Gawer, 2020) and exploring the definition and criteria of EE actors and 
entrepreneurial nurturing components, the role of the EE central actor, as well as 
other network measures to be sought. This research leads also to open a strategic 
research perspective on various ways to stimulate entrepreneurship in a given terri-
tory, may be through a resource-based view approach applied to EEs with a modu-
larity perspective (Baldwin & Clark, 2000).
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